TS924 Rail-to-rail High Output Current Quad Operational Amplifier ■ Rail-to-rail input and output ■ Low noise: 9nV/√Hz ■ Low distortion ■ High output current: 80mA (able to drive 32Ω loads) ■ High-speed: 4MHz, 1.3V/µs ■ Operating from 2.7V to 12V ■ Low input offset voltage: 900µV max (TS924A) ■ ESD Internal protection: 3kV ■ Latch-up immunity ■ Macromodel included in this specification N DIP14 (Plastic Package) D SO-14 (Plastic Micropackage) Description The TS924 is a rail-to-rail quad BiCMOS operational amplifier optimized and fully specified for 3V and 5V operation. P TSSOP14 (Thin Shrink Small Outline Package) High output current allows low load impedances to be driven. Pin connection (top view) The TS924 exhibits a very low noise, low distortion, low offset and high output current capability making this device an excellent choice for high quality, low voltage or battery operated audio systems. 14 Output 4 Output 1 1 The device is stable for capacitive loads up to 500pF. Inverting Input 1 2 - - 13 Inverting Input 4 Non-inverting Input 1 3 + + 12 Non-inverting Input 4 VCC + 4 11 VCC - Non-inverting Input 2 5 + + 10 Non-inverting Input 3 Inverting Input 2 6 - - 9 Inverting Input 3 8 Output 3 Output 2 7 Applications ■ Headphone amplifier ■ Line driver, buffer ■ Piezoelectric speaker driver ■ ■ Sound cards Cordless telephones and portable communication equipment ■ MPEG boards, multimedia systems,... ■ Instrumentation with low noise as key factor November 2005 Rev 4 1/14 www.st.com 14 TS924 Order Codes Part Number Temperature Range Package Packaging DIP14 Tube TS924IN TS924IN TS924AIN TS924AIN TS924ID/IDT 924I SO-14 Tube or Tape & Reel TS924AID/AIDT 924AI TS924IPT -40°C, +125°C TS924AIPT 924I TSSOP14 (Thin Shrink Outline Package) Tape & Reel SO-14 (automotive grade level) Tube or Tape & Reel 924AI TS924IYD/IYDT 924IY TS924AIYD/AIYDT 924AIY TS924IYPT 924IY TSSOP14 (automotive grade level) TS924IAIYPT 2/14 Marking Tape & Reel 924AIY TS924 1 Absolute Maximum Ratings Absolute Maximum Ratings Table 1. Key parameters and their absolute maximum ratings Symbol Parameter Value Unit VCC Supply voltage (1) 14 V Vid Differential Input Voltage (2) ±1 V VDD -0.3 to V CC+0.3 V -65 to +150 °C Maximum Junction Temperature 150 °C Thermal Resistance Junction to Ambient DIP14 103 SO14 66 TSSOP14 100 Vi Tstg Tj Rthja Input Voltage (3) Storage Temperature HBM: Human Body Model(4) ESD °C/W 3 kV 100 V CDM: Charged Device Model 1 kV Output Short Circuit Duration see note(6) MM: Machine Model(5) Latch-up Immunity 200 mA Soldering Temperature (10sec), leaded version 250 °C Soldering Temperature (10sec), unleaded version 260 °C 1. All voltages values, except differential voltage are with respect to network ground terminal. 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. If Vid > ±1V, the maximum input current must not exceed ±1mA. In this case (Vid > ±1V) an input serie resistor must be added to limit input current. 3. Do not exceed 14V. 4. Human body model, 100pF discharged through a 1.5kΩ resistor into pin of device. 5. Machine model ESD, a 200pF cap is charged to the specified voltage, then discharged directly into the IC with no external series resistor (internal resistor < 5Ω), into pin to pin of device. 6. There is no short-circuit protection inside the device: short-circuits from the output to Vcc can cause excessive heating. The maximum output current is approximately 80mA, independent of the magnitude of Vcc. Destructive dissipation can result from simultaneous short-circuits on all amplifiers. Table 2. Operating conditions Symbol Parameter VCC Supply voltage Vicm Common Mode Input Voltage Range Toper Operating Free Air Temperature Range Value Unit 2.7 to 12 V VDD -0.2 to VCC +0.2 V -40 to +125 °C 3/14 Electrical Characteristics 2 Electrical Characteristics Table 3. VCC = +3V, VDD = 0V, Vicm = VCC/2, Tamb = 25°C, RL connected to VCC/2 (unless otherwise specified) Symbol Vio DVio Parameter Min. Typ. Input Offset Voltage - TS924 TS924A Tmin. ≤ Tamb ≤ Tmax. - TS924 TS924A Max. Unit 3 0.9 5 1.8 mV µV/°C Input Offset Voltage Drift 2 Iio Input Offset Current Vout = Vcc/2 1 30 Iib Input Bias Current Vout = Vcc/2 15 100 VOH High Level Output Voltage RL= 100k RL = 600Ω RL = 32Ω 2.90 2.87 nA nA V 2.63 Low Level Output Voltage RL= 10k RL = 600Ω RL = 32Ω 180 Avd Large Signal Voltage Gain (Vout = 2Vpk-pk) RL= 10k RL = 600Ω RL = 32Ω 200 35 16 Icc Total Supply Current no load, V out = Vcc/2 4.5 VOL 50 100 mV V/mV 7 mA GBP Gain Bandwidth Product RL = 600Ω CMR Common Mode Rejection Ratio 60 80 dB SVR Supply Voltage Rejection Ratio - V cc = 2.7 to 3.3V 60 85 dB Output Short Circuit Current 50 80 mA SR Slew Rate 0.7 1.3 V/µs φm Phase Margin at Unit Gain - R L = 600Ω, CL =100pF 68 Degrees Gm Gain Margin - RL = 600Ω, CL =100pF 12 dB en Equivalent Input Noise Voltage - f = 1kHz 9 nV -----------Hz Io THD Cs 4/14 TS924 Total Harmonic Distortion Vout = 2Vpk-pk, F = 1kHz, Av = 1, RL =600Ω Channel Separation 4 0.005 120 MHz % dB TS924 Electrical Characteristics Table 4. VCC = +5V, VDD = 0V, Vicm = VCC/2, Tamb = 25°C, RL connected to VCC/2 (unless otherwise specified) Symbol Vio DVio Parameter Min. Typ. Input Offset Voltage - TS924 TS924A Tmin. ≤ Tamb ≤ Tmax. - TS924 TS924A Max. Unit 3 0.9 5 1.8 mV µV/°C Input Offset Voltage Drift 2 Iio Input Offset Current Vout = Vcc/2 1 30 Iib Input Bias Current Vout = Vcc/2 15 100 VOH High Level Output Voltage RL= 100k RL = 600Ω RL = 32Ω 4.90 4.85 nA V 4.4 Low Level Output Voltage RL= 10k RL = 600Ω RL = 32Ω 300 Avd Large Signal Voltage Gain (Vout = 2Vpk-pk) RL= 10k RL = 600Ω RL = 32Ω 200 40 17 Icc Total Supply Current no load, Vout = V cc/2 4.5 VOL nA 50 120 mV V/mV 7 mA GBP Gain Bandwidth Product RL = 600Ω CMR Common Mode Rejection Ratio 60 80 SVR Supply Voltage Rejection Ratio Vcc = 3V to 5V 60 85 Output Short Circuit Current 50 80 mA SR Slew Rate 0.7 1.3 V/µs φm Phase Margin at Unit Gain RL = 600Ω, CL =100pF 68 Gm Gain Margin RL = 600Ω, CL =100pF 12 en Equivalent Input Noise Voltage f = 1kHz Io THD Cs Total Harmonic Distortion Vout = 2Vpk-pk, F = 1kHz, Av = 1, RL =600Ω Channel Separation 4 9 MHz dB dB Degrees dB nV -----------Hz % 0.005 120 dB 5/14 Electrical Characteristics Figure 1. TS924 Output short circuit current vs. output voltage Figure 2. Output short circuit current vs. output voltage 100 100 80 Output Short-Circuit Current (mA) Output Short-Circuit Current (mA) 80 60 Sink 40 Vcc=0/12V 20 0 -20 -40 Source -60 60 Sink 40 20 Vcc=0/3V 0 -20 -40 Source -60 -80 -80 -100 0 -100 0 2 4 6 8 10 0,5 1 1,5 2 2,5 3 Output Voltage (V) 12 Output Voltage (V) Figure 3. Voltage gain and phase vs. frequency Figure 4. Output short circuit current vs. output voltage 100 C L=500pF V CC=±1.5V Phase Gain Output Short-Circuit Current (mA) 80 60 Sink 40 20 Vcc=0/5V 0 -20 -40 Source -60 -80 -100 0 1 2 3 4 Output Voltage (V) Figure 5. Voltage gain & phase vs. frequency Figure 6. RL =10κ CL=100pF VCC=±1.5V Phase Gain 6/14 THD + noise vs. frequency RL =2k Vo=10Vpp VCC =±6V Av= -1 5 TS924 Figure 7. Electrical Characteristics THD + noise vs. frequency R L=2k Vo=10Vpp V CC=±6V Av= 1 Figure 9. THD + noise vs. Vout RL=32Ω f=1kHz V CC=±1.5V Av= -1 Figure 11. THD + noise vs. Vout Figure 8. THD + noise vs. frequency RL=32Ω Vo=2Vpp VCC =±1.5V Av= 10 Figure 10. THD + noise vs. frequency RL=32Ω Vo=4Vpp V CC=±2.5V Av= 1 Figure 12. THD + noise vs. Vout RL=2kΩ f=1kHz VCC=±1.5V Av= -1 7/14 Macromodel TS924 3 Macromodel 3.1 Important note concerning this macromodel Please consider following remarks before using this macromodel. ● All models are a trade-off between accuracy and complexity (i.e. simulation time). ● Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a design approach and help to select surrounding component values. ● A macromodel emulates the NOMINAL performance of a TYPICAL device within SPECIFIED OPERATING CONDITIONS (i.e. temperature, supply voltage, etc.). Thus the macromodel is often not as exhaustive as the datasheet, its goal is to illustrate the main parameters of the product. ● Data issued from macromodels used outside of its specified conditions (Vcc, Temperature, etc.) or even worse: outside of the device operating conditions (Vcc, Vicm, etc.) are not reliable in any way. In Section 3.3, the electrical characteristics resulting from the use of these macromodels are presented. 3.2 Electrical characteristics from macromodelization Table 5. Electrical characteristics resulting from macromodel simulation at V CC = 3V, VDD = 0V, R L, CL connected to VCC/2, Tamb = 25°C (unless otherwise specified) Symbol Conditions Vio Unit 0 mV Avd RL = 10kΩ 200 V/mV ICC No load, per operator 1.2 mA -0.2 to 3.2 V Vicm 8/14 Value VOH RL = 10kΩ 2.95 V VOL RL = 10kΩ 25 mV Isink VO = 3V 80 mA Isource VO = 0V 80 mA GBP RL = 600kΩ 4 MHz SR RL = 10kΩ, CL = 100pF 1 V/µs φm RL = 600kΩ 68 Degrees TS924 3.3 Macromodel Macromodel code ** Standard Linear Ics Macromodels, 1996. ** CONNECTIONS: * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIVE POWER SUPPLY * 5 NEGATIVE POWER SUPPLY .SUBCKT TS92X 1 2 3 4 5 * .MODEL MDTH D IS=1E-8 KF=2.664234E-16 CJO=10F * * INPUT STAGE CIP 2 5 1.000000E-12 CIN 1 5 1.000000E-12 EIP 10 5 2 5 1 EIN 16 5 1 5 1 RIP 10 11 8.125000E+00 RIN 15 16 8.125000E+00 RIS 11 15 2.238465E+02 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 153.5u VOFN 13 14 DC 0 IPOL 13 5 3.200000E-05 CPS 11 15 1e-9 DINN 17 13 MDTH 400E-12 VIN 17 5 -0.100000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 0.400000E+00 FCP 4 5 VOFP 1.865000E+02 FCN 5 4 VOFN 1.865000E+02 FIBP 2 5 VOFP 6.250000E-03 FIBN 5 1 VOFN 6.250000E-03 * GM1 STAGE *************** FGM1P 119 5 VOFP 1.1 FGM1N 119 5 VOFN 1.1 RAP 119 4 2.6E+06 RAN 119 5 2.6E+06 * GM2 STAGE *************** G2P 19 5 119 5 1.92E-02 G2N 19 5 119 4 1.92E-02 R2P 19 4 1E+07 R2N 19 5 1E+07 ************************** VINT1 500 0 5 GCONVP 500 501 119 4 19.38 VP 501 0 0 GCONVN 500 502 119 5 19.38 VN 502 0 0 9/14 Macromodel ********* orientation isink isource VINT2 503 0 5 FCOPY 503 504 VOUT 1 DCOPYP 504 505 MDTH 400E-9 VCOPYP 505 0 0 DCOPYN 506 504 MDTH 400E-9 VCOPYN 0 506 0 *************************** F2PP 19 5 poly(2) VCOPYP VP 0 0 0 0 F2PN 19 5 poly(2) VCOPYP VN 0 0 0 0 F2NP 19 5 poly(2) VCOPYN VP 0 0 0 0 F2NN 19 5 poly(2) VCOPYN VN 0 0 0 0 * COMPENSATION ************ CC 19 119 25p * OUTPUT *********** DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 6.250000E+02 VIPM 28 4 5.000000E+01 HONM 21 27 VOUT 6.250000E+02 VINM 5 27 5.000000E+01 VOUT 3 23 0 ROUT 23 19 6 COUT 3 5 1.300000E-10 DOP 19 25 MDTH 400E-12 VOP 4 25 1.052 DON 24 19 MDTH 400E-12 VON 24 5 1.052 .ENDS ;TS92X 10/14 TS924 ******* 0.5 0.5 1.75 1.75 TS924 4 Package Mechanical Data Package Mechanical Data In order to meet environmental requirements, ST offers these devices in ECOPACK ® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. 4.1 DIP14 Package Plastic DIP-14 MECHANICAL DATA mm. inch DIM. MIN. a1 0.51 B 1.39 TYP MAX. MIN. TYP. MAX. 0.020 1.65 0.055 0.065 b 0.5 0.020 b1 0.25 0.010 D 20 0.787 E 8.5 0.335 e 2.54 0.100 e3 15.24 0.600 F 7.1 0.280 I 5.1 0.201 L Z 3.3 1.27 0.130 2.54 0.050 0.100 P001A 11/14 Package Mechanical Data 4.2 TS924 SO-14 package SO-14 MECHANICAL DATA DIM. mm. MIN. TYP A a1 inch MAX. MIN. 0.1 0.003 0.064 b 0.35 0.46 0.013 b1 0.19 0.25 0.007 0.5 0.018 0.010 0.019 c1 45˚ (typ.) D 8.55 E 5.8 e 8.75 0.336 6.2 0.228 1.27 e3 3.8 G L 0.344 0.244 0.050 7.62 F S 0.007 1.65 C MAX. 0.068 0.2 a2 M TYP. 1.75 0.300 4.0 0.149 4.6 5.3 0.181 0.208 0.5 1.27 0.019 0.050 0.68 0.157 0.026 8 ˚ (max.) PO13G 12/14 TS924 4.3 Package Mechanical Data TSSOP14 package TSSOP14 MECHANICAL DATA mm. inch DIM. MIN. TYP A MAX. MIN. TYP. MAX. 1.2 A1 0.05 A2 0.8 b 0.047 0.15 0.002 0.004 0.006 1.05 0.031 0.039 0.041 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.0089 D 4.9 5 5.1 0.193 0.197 0.201 E 6.2 6.4 6.6 0.244 0.252 0.260 E1 4.3 4.4 4.48 0.169 0.173 0.176 1 e 0.65 BSC K 0˚ L 0.45 A 0.60 0.0256 BSC 8˚ 0˚ 0.75 0.018 8˚ 0.024 0.030 A2 A1 b e K c L E D E1 PIN 1 IDENTIFICATION 1 0080337D 13/14 Revision History 5 TS924 Revision History Date Revision May 2001 1 First Release May 2005 2 Modifications on AMR Table 1 on page 3 (explanation of Vid and Vi limits, ESD MM and CDM values added, Rthja added) July 2005 3 PPAP references inserted in the datasheet see Table on page 2. 4 – Package mechanical data modified – TS924IYPT/TS924AYIPT PPAP reference inserted in Table on page 2. – Macromodel modified Nov. 2005 Changes Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 14/14