TSH80-TSH81-TSH82 Wide band rail-to-rail operational amplifier with standby function Features ■ Operating range from 4.5V to 12V ■ 3dB-bandwidth: 100MHz ■ Slew-rate 100V/μs ■ Output current up to 55mA ■ Input single supply voltage ■ Output rail-to-rail ■ Specified for 150Ω load ■ Low distortion, THD 0.1% ■ SOT23-5, TSSOP and SO packages Video buffers ■ A/D converters driver ■ Hi-fi applications Output 1 5 VCC- 2 VCC+ +4 Inv. input Non-inv. input 3 Pin connections TSH80/SO-8 NC 1 8 NC Inv. input 2 _ 7 VCC+ 3 + 6 Output 5 NC VCC- 4 Description The TSH8x series offers single and dual operational amplifiers featuring high video performance with large bandwidth, low distortion and excellent supply voltage rejection. These amplifiers also feature large output voltage swing and high output current capability to drive standard 150Ω loads. Pin connections TSH81 SO-8/TSSOP8 NC 1 8 STANDBY Inverting input 2 _ 7 VCC+ Non inverting Input 3 + 6 Output 5 NC VCC- 4 Running at single or dual supply voltage from 4.5V to 12V, these amplifiers are tested at 5V (±2.5V) and 10V (±5V) supplies. Pin connections TSH82 SO-8/TSSOP8 The TSH81 also features a standby mode, which allows the operational amplifier to be put into a standby mode with low power consumption and high output impedance. This function allows power saving or signal switching/multiplexing for high-speed applications and video applications. Output1 1 Rev 4 8 VCC+ Inverting input1 2 _ Non inv. input1 3 + VCC- 4 For board space and weight saving, the TSH8x series is proposed in SOT23-5, TSSOP8 and SO-8 plastic micropackages. October 2007 TSSOP8 Pin connections TSH80/SOT23-5 Applications ■ SO-8 SOT23-5 7 Output2 _ 6 Inverting input2 + 5 Non inv. input2 1/24 www.st.com 24 Contents TSH80-TSH81-TSH82 Contents 1 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 3 2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.1 Layout precautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2 Video capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4 Precautions on asymmetrical supply operation . . . . . . . . . . . . . . . . . 19 5 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.1 SO-8 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.2 TSSOP8 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.3 SOT23-5 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2/24 TSH80-TSH81-TSH82 1 Absolute maximum ratings and operating conditions Absolute maximum ratings and operating conditions Table 1. Absolute maximum ratings Symbol VCC Vid Vi Parameter Value Unit 14 V ±2 V ±6 V Supply voltage (1) Differential input voltage Input voltage (2) (3) Toper Operating free air temperature range -40 to +85 °C Tstg Storage temperature -65 to +150 °C 150 °C 80 28 37 °C/W 250 157 130 °C/W 2 kV Tj Maximum junction temperature (4) Rthjc Thermal resistance junction to case SOT23-5 SO8 TSSOPO8 Rthja Thermal resistance junction to ambient area SOT23-5 SO8 TSSOPO8 ESD Human body model (HBM) 1. All voltage values, except differential voltage are with respect to network ground terminal. 2. Differential voltages are the non-inverting input terminal with respect to the inverting terminal. 3. The magnitude of input and output must never exceed VCC +0.3V. 4. Short-circuits can cause excessive heating. Table 2. Operating conditions Symbol VCC VIC Standby (pin 8) Parameter Supply voltage Common mode input voltage range Threshold on pin 8 for TSH81 VCC- Value Unit 4.5 to 12 V to (VCC+ -1.1) (VCC-) to (VCC+) V V 3/24 Electrical characteristics TSH80-TSH81-TSH82 2 Electrical characteristics Table 3. VCC+ = +5V, VCC- = GND, Vic = 2.5V, Tamb = 25°C (unless otherwise specified) Symbol Parameter Test conditions Min. Typ. Max. Unit 10 12 mV |Vio| Input offset voltage Tamb= 25°C Tmin < Tamb < Tmax 1.1 ΔVio Input offset voltage drift vs. temperature Tmin < Tamb < Tmax 3 Iio Input offset current Tamb= 25°C Tmin < Tamb < Tmax 0.1 3.5 5 μA Iib Input bias current Tamb= 25°C Tmin < Tamb < Tmax 6 15 20 μA Cin Input capacitance ICC Supply current per operator Tamb= 25°C Tmin < Tamb < Tmax CMR Common mode rejection ratio (δVic/δVio) +0.1<Vic<3.9V and Vout=2.5V Tamb= 25°C Tmin < Tamb < Tmax 72 70 97 SVR Supply voltage rejection ratio (δVCC/δVio) Tamb= 25°C Tmin < Tamb < Tmax 68 65 75 PSR Power supply rejection ratio (δVCC/δVout) Positive & negative rail Large signal voltage gain RL=150Ω connected to 1.5V and Vout=1V to 4V Tamb= 25°C Tmin < Tamb < Tmax 75 70 84 |Source| Vid=+1, Vout connected to 1.5V Tamb= 25°C Tmin < Tamb < Tmax 35 28 55 Sink Vid=-1, Vout connected to 1.5V Tamb= 25°C Tmin < Tamb < Tmax 33 28 55 4.2 High level output voltage Tamb= 25°C RL = 150Ω connected to GND RL = 600Ω connected to GND RL = 2kΩ connected to GND RL = 10kΩ connected to GND RL = 150Ω connected to 2.5V RL = 600Ω connected to 2.5V RL = 2kΩ connected to 2.5V RL = 10kΩ connected to 2.5V Tmin < Tamb < Tmax RL = 150Ω connected to GND RL = 150Ω connected to 2.5V 4.36 4.85 4.90 4.93 4.66 4.90 4.92 4.93 Avd Io Voh 4/24 μV/°C 0.3 8.2 75 4.5 4.1 4.4 pF 10.5 11.5 mA dB dB dB dB mA V TSH80-TSH81-TSH82 Table 3. VCC+ = +5V, VCC- = GND, Vic = 2.5V, Tamb = 25°C (unless otherwise specified) Symbol Vol GBP Bw SR Electrical characteristics Parameter Low level output voltage Test conditions Min. Tamb= 25°C RL = 150Ω connected to GND RL = 600Ω connected to GND RL = 2kΩ connected to GND RL = 10kΩ connectedto GND RL = 150Ω connected to 2.5V RL = 600Ω connected to 2.5V RL = 2kΩ connected to 2.5V RL = 10kΩ connected to 2.5V Tmin < Tamb < Tmax RL = 150Ω connected to GND RL = 150Ω connected to 2.5V Gain bandwidth product F=10MHz AVCL= +11 AVCL= -10 Bandwidth @-3dB AVCL= +1 RL= 150Ω connected to 2.5V Slew rate AVCL=+2 RL=150Ω // CL to 2.5V CL = 5pF CL = 30pF Typ. Max. 48 54 55 56 220 105 76 61 150 400 Unit mV 200 450 60 65 55 MHz 87 MHz 104 105 V/μs φm Phase margin RL= 150Ω // 30pF to 2.5V 40 ° (degree) en Equivalent input noise voltage F= 100kHz 11 nV/√Hz Total harmonic distortion AVCL= +2, F= 4MHz RL= 150Ω // 30pF to 2.5V Vout= 1Vpp Vout= 2Vpp -61 -54 Second order intermodulation product AVCL= +2, Vout= 2Vpp RL= 150Ω connected to 2.5V Fin1= 180kHz, Fin2= 280kHz spurious measurement @100kHz -76 dBc IM3 Third order intermodulation product AVCL= +2, Vout= 2Vpp RL= 150Ω to 2.5V Fin1=180kHz, Fin2= 280kHz spurious measurement @400kHz -68 dBc ΔG Differential gain AVCL=+2, RL=150Ω to 2.5V F= 4.5MHz, Vout= 2Vpp 0.5 % Df Differential phase AVCL= +2, RL=150Ω to 2.5V F= 4.5MHz, Vout= 2Vpp 0.5 ° (degree) Gf Gain flatness F= DC to 6MHz, AVCL= +2 0.2 dB F= 1MHz to 10MHz 65 dB THD IM2 Vo1/Vo2 Channel separation dB 5/24 Electrical characteristics Table 4. TSH80-TSH81-TSH82 VCC+ = +5V, VCC- = -5V, Vic = GND, Tamb = 25°C (unless otherwise specified) Symbol Parameter Test conditions Min. Typ. Max. Unit 10 12 mV |Vio| Input offset voltage Tamb= 25°C Tmin < Tamb < Tmax 0.8 ΔVio Input offset voltage drift vs. temperature Tmin < Tamb < Tmax 2 Iio Input offset current Tamb= 25°C Tmin < Tamb < Tmax 0.1 3.5 5 μA Iib Input bias current Tamb= 25°C Tmin < Tamb < Tmax 6 15 20 μA Cin Input capacitance ICC Supply current per operator Tamb= 25°C Tmin < Tamb < Tmax CMR Common mode rejection ratio (δVic/δVio) -4.9 < Vic < 3.9V and Vout=GND Tamb= 25°C Tmin < Tamb < Tmax 81 72 106 SVR Supply voltage rejection ratio (δVCC/δVio) Tamb= 25°C Tmin < Tamb < Tmax 71 65 77 PSR Power supply rejection ratio (δVCC/δVout) Positive & negative rail Large signal voltage gain RL=150Ω connected to GND Vout= -4 to +4 Tamb= 25°C Tmin < Tamb < Tmax 75 70 86 |Source| Vid=+1, Vout connected to 1.5V Tamb= 25°C Tmin < Tamb < Tmax 35 28 55 Sink Vid=-1, Vout connected to 1.5V Tamb= 25°C Tmin < Tamb < Tmax 30 28 55 4.2 High level output voltage Tamb= 25°C RL = 150Ω connected to GND RL = 600Ω connected to GND RL = 2kΩ connected to GND RL = 10kΩ connected to GND Tmin < Tamb < Tmax RL = 150Ω connected to GND 4.36 4.85 4.9 4.93 Avd Io Voh Vol 6/24 Low level output voltage μV/°C 0.7 Tamb= 25°C RL = 150Ω connected to GND RL = 600Ω connected to GND RL = 2kΩ connected to GND RL = 10kΩ connected to GND Tmin < Tamb < Tmax RL = 150Ω connected to GND 9.8 pF 12.3 13.4 mA dB dB 75 dB dB mA V 4.1 -4.63 -4.86 -4.9 -4.93 -4.4 mV -4.3 TSH80-TSH81-TSH82 Table 4. VCC+ = +5V, VCC- = -5V, Vic = GND, Tamb = 25°C (unless otherwise specified) Symbol GBP Bw SR Electrical characteristics Parameter Test conditions Gain bandwidth product F=10MHz AVCL= +11 AVCL= -10 Bandwidth @-3dB AVCL= +1 RL=150Ω // 30pF to GND Slew rate AVCL=+2 RL=150Ω // CL to GND CL = 5pF CL = 30pF Min. 68 Typ. Max. Unit 65 55 MHz 100 MHz 117 118 V/μs φm Phase margin RL= 150Ω connected to GND 40 ° (degree) en Equivalent input noise voltage F= 100kHz 11 nV/√Hz Total harmonic distortion AVCL= +2, F=4 MHz RL=150Ω // 30pF to GND Vout= 1Vpp Vout= 2Vpp -61 -54 Second order intermodulation product AVCL= +2, Vout= 2Vpp RL= 150Ω to GND Fin1= 180kHz, Fin2= 280kHz spurious measurement @100kHz -76 dBc IM3 Third order intermodulation product AVCL= +2, Vout= 2Vpp RL=150Ω to GND Fin1= 180kHz, Fin2= 280kHz spurious measurement @400kHz -68 dBc ΔG Differential gain AVCL=+2, RL=150Ω to GND F= 4.5MHz, Vout= 2Vpp 0.5 % Df Differential phase AVCL= +2, RL= 150Ω to GND F= 4.5MHz, Vout= 2Vpp 0.5 ° (degree) Gf Gain flatness F=DC to 6MHz, AVCL=+2 0.2 dB Channel separation F=1MHz to 10MHz 65 dB THD IM2 Vo1/Vo2 dB 7/24 Electrical characteristics Table 5. Symbol Vlow Vhigh ICC-STBY Standby mode - VCC+, VCC-, Tamb = 25°C (unless otherwise specified) Parameter Min. VCC- Standby high level - Ton Time from Standby mode to Active mode Toff Time from Active mode to Standby mode Typ. Rout Cout Down to ICC-STBY = 10μA Max. Unit (VCC- +0.8) V + (VCC +2) Current consumption per pin 8 (TSH81) to VCCoperator when Standby is active Output impedance (Rout//Cout) 8/24 Test conditions Standby low level Zout Table 6. TSH80-TSH81-TSH82 20 (VCC ) V 55 μA 10 17 MΩ pF 2 μs 10 μs TSH81 standby control pin status TSH81 standby control pin 8 (STANDBY) Operator status Vlow Standby Vhigh Active TSH80-TSH81-TSH82 Figure 1. Electrical characteristics Closed loop gain and phase vs. frequency Gain=+2, VCC= ±2.5V, RL=150Ω, Tamb = 25°C 10 Figure 2. Overshoot vs. output capacitance Gain=+2, VCC= ±2.5V, Tamb = 25°C 10 200 150Ω//33pF 5 Gain 100 150Ω//22pF 0 -5 Phase 150Ω//10pF Gain (dB) 0 Phase (°) Gain (dB) 5 150Ω 0 -100 -10 -15 1E+4 -200 1E+5 1E+6 1E+7 1E+8 -5 1E+6 1E+9 1E+7 Frequency (Hz) Figure 3. 1E+8 1E+9 Frequency (Hz) Closed loop gain and phase vs. frequency Gain=-10, VCC= ±2.5V, RL=150Ω, Tamb = 25°C Figure 4. Gain=+11, VCC= ±2.5V, RL=150Ω, Tamb = 25°C 200 30 Phase Closed loop gain and phase vs. frequency 30 0 Phase 150 20 20 -50 Gain Phase (°) Gain (dB) 50 10 Phase (°) Gain (dB) 100 Gain 10 0 -100 0 0 -50 -10 1E+4 1E+5 1E+6 1E+7 1E+8 -10 1E+4 -100 1E+9 1E+5 Large signal measurement positive slew rate Figure 6. Gain=2, VCC=±2.5V, ZL=150Ω//5.6pF, Vin=400mVpk 1E+8 -150 1E+9 Large signal measurement negative slew rate Gain=2, VCC=±2.5V, ZL=150Ω//5.6pF, Vin=400mVpk 3 3 2 2 1 1 Vout (V) Vout (V) 1E+7 Frequency (Hz) Frequency (Hz) Figure 5. 1E+6 0 0 -1 -1 -2 -2 -3 -3 0 10 20 30 40 Time (ns) 50 60 70 80 0 10 20 30 40 50 60 70 Time (ns) 9/24 Electrical characteristics Figure 7. TSH80-TSH81-TSH82 Small signal measurement - rise time 0.06 0.06 0.04 0.04 0.02 0.02 0 Small signal measurement - fall time Gain=2, VCC=±2.5V, RL=150Ω, Vin=400mVpk Vout Vin Vout (V) Vin, Vout (V) Gain=2, VCC=±2.5V, RL=150Ω, Vin=400mVpk Figure 8. Vout Vin -0.02 Vin 0 -0.02 -0.04 -0.04 -0.06 -0.06 0 10 20 30 40 50 0 60 10 20 30 Figure 9. 40 50 60 Time (ns) Time (ns) Channel separation (crosstalk) vs. frequency Measurement configuration: crosstalk=20log(V0/V1) Figure 10. Channel separation (crosstalk) vs. frequency Gain=+11, VCC=±2.5V, ZL=150Ω//27pF -20 VIN 49.9Ω -30 ++ -- -40 V1 4/1output -50 3/1output Xtalk (dB) 100Ω 1kΩ 150Ω -60 -70 -80 + 49.9Ω - 2/1output -90 VO 100Ω 1kΩ -100 -110 1E+4 150Ω 1E+5 1E+6 1E+7 Frequency (Hz) Figure 11. Equivalent input noise voltage Figure 12. Maximum output swing Gain=100, VCC=±2.5V, no load Gain=11, VCC=±2.5V, RL=150Ω 30 3 + _ 25 2 Vout 10k Vin, Vout (V) en (nV/√Hz) 100 20 15 10 Vin 0 -1 -2 5 0.1 1 10 Frequency (kHz) 10/24 1 100 1000 -3 0.0E+0 5.0E-2 1.0E-1 Time (ms) 1.5E-1 2.0E-1 TSH80-TSH81-TSH82 Electrical characteristics Figure 13. Standby mode - Ton, Toff Figure 14. Third order intermodulation(1) VCC= ±2.5V, open loop Gain=2, VCC= ±2.5V, ZL=150Ω//27pF, Tamb = 25°C 0 Vin 3 -10 2 -20 IM3 (dBc) Vin, Vout (V) -30 1 0 Vout -1 -40 740kHz -50 80kHz -60 -70 -2 -80 -3 Ton -90 Standby 380kHz Toff 640kHz -100 0 2E-6 4E-6 6E-6 8E-6 1E-5 0 1 2 3 4 Vout peak(V) Time (s) 1. The IFR2026 synthesizer generates a two-tone signal (F1=180kHz, F2=280kHz), each tone having the same amplitude. The HP3585 spectrum analyzer measures the intermodulation products as a function of the output voltage. The generator and the spectrum analyzer are phase locked for better accuracy. Figure 15. Group delay Gain=2, VCC= ±2.5V, ZL=150Ω//27pF, Tamb = 25°C Gain Group Delay 5.32ns 11/24 Electrical characteristics TSH80-TSH81-TSH82 Figure 16. Closed loop gain and phase vs. frequency Figure 17. Overshoot vs. output capacitance Gain=+2, VCC= ±5V, RL=150Ω, Tamb = 25°C Gain=+2, VCC= ±5V, Tamb = 25°C 10 10 200 150Ω//33pF 5 Gain 100 150Ω//22pF 0 -5 150Ω//10pF Gain (dB) Phase (°) Gain (dB) 5 0 150Ω 0 Phase -100 -10 -15 1E+4 1E+5 1E+6 1E+7 -200 1E+9 1E+8 -5 1E+6 1E+7 Frequency (Hz) 1E+8 1E+9 Frequency (Hz) Figure 18. Closed loop gain and phase vs. frequency Figure 19. Closed loop gain and phase vs. frequency Gain=-10, VCC= ±5V, RL=150Ω, Tamb = 25°C Gain=+11, VCC= ±5V, RL=150Ω, Tamb = 25°C 200 30 30 0 Phase Phase 150 10 50 -50 Gain Phase (°) 100 Gain Gain (dB) 20 Phase (°) Gain (dB) 20 10 -100 0 0 0 -10 1E+4 1E+5 1E+6 1E+7 -50 1E+9 1E+8 -10 1E+4 1E+5 1E+6 1E+7 -150 1E+9 1E+8 Frequency (Hz) Frequency (Hz) Figure 21. Large signal measurement negative slew rate Gain=2, VCC=±5V, ZL=150Ω//5.6pF, Vin=400mVpk Gain=2, VCC=±5V, ZL=150Ω//5.6pF, Vin=400mVpk 5 5 4 4 3 3 2 2 1 Vout (V) Vout (V) Figure 20. Large signal measurement positive slew rate 0 -1 -2 -1 -2 -3 -3 -4 -4 -5 -5 0 20 40 60 Time (ns) 12/24 1 0 80 100 0 20 40 60 Time (ns) 80 100 TSH80-TSH81-TSH82 Electrical characteristics Figure 22. Small signal measurement - rise time Figure 23. Small signal measurement - fall time Gain=2, VCC=±5V, RL=150Ω, Vin=400mVpk Gain=2, VCC=±5V, RL=150Ω, Vin=400mVpk 0.06 0.04 0.04 0.02 0.02 Vin, Vout (V) Vin, Vout (V) 0.06 0 Vout Vin -0.02 Vout 0 Vin -0.02 -0.04 -0.04 -0.06 -0.06 0 10 20 30 40 50 0 60 10 20 30 40 50 60 Time (ns) Time (ns) Figure 24. Channel separation (crosstalk) vs. frequency Figure 25. Channel separation (crosstalk) vs. frequency Measurement configuration: crosstalk=20log(V0/V1) Gain=+11, VCC=±5V, ZL=150Ω/ /27pF -20 VIN 49.9Ω -30 ++ -- -40 V1 4/1output -50 150Ω Xtalk (dB) 100Ω 1kΩ 3/1output -60 -70 -80 + 49.9Ω - 2/1output -90 VO 100Ω 1kΩ -100 150Ω -110 1E+4 1E+5 1E+6 1E+7 Frequency (Hz) Figure 26. Equivalent input noise voltage Figure 27. Maximum output swing Gain=100, VCC=±5V, no load Gain=11, VCC=±5V, RL=150Ω 30 5 4 25 3 + _ 2 10k Vin, Vout (V) 100 en (nV/√Hz) Vout 20 15 1 Vin 0 -1 -2 -3 10 -4 5 0.1 1 10 Frequency (kHz) 100 1000 -5 0.0E+0 5.0E-2 1.0E-1 1.5E-1 2.0E-1 Time (ms) 13/24 Electrical characteristics TSH80-TSH81-TSH82 Figure 28. Standby mode - Ton, Toff Figure 29. Third order intermodulation(1) VCC= ±5V, open loop Gain=2, VCC= ±5V, ZL=150Ω/ /27pF, Tamb = 25°C 0 Vin -10 5 -20 IM3 (dBc) Vin, Vout (V) -30 Vout 0 -40 80kHz -50 740kHz -60 -70 -80 -5 0 -90 Standby Ton 2E-6 4E-6 6E-6 380kHz 640kHz Toff -100 8E-6 0 1 2 3 4 Vout peak(V) Time (s) 1. The IFR2026 synthesizer generates a two-tone signal (F1=180kHz, F2=280kHz), each tone having the same amplitude. The HP3585 spectrum analyzer measures the intermodulation products as a function of the output voltage. The generator and the spectrum analyzer are phase locked for better accuracy. Figure 30. Group delay Gain=2, VCC= ±5V, ZL=150Ω//27pF, Tamb = 25°C Gain Group Delay 5.1ns 14/24 TSH80-TSH81-TSH82 3 Test conditions 3.1 Layout precautions Test conditions To use the TSH8X circuits in the best manner at high frequencies, some precautions have to be taken for power supplies: ● In high-speed circuit applications, the implementation of a proper ground plane on both sides of the PCB is mandatory to ensure low inductance and low resistance common return. ● Power supply bypass capacitors (4.7µF and ceramic 100pF) should be placed as close as possible to the IC pins in order to improve high frequency bypassing and reduce harmonic distortion. The power supply capacitors must be incorporated for both the negative and the positive pins. ● All inputs and outputs must be properly terminated with output resistors; thus, the amplifier load is resistive only and the stability of the amplifier will be improved. All leads must be wide and as short as possible especially for op-amp inputs and outputs in order to decrease parasitic capacitance and inductance. ● In lower gain applications, use a low feedback resistance (under 1kΩ) to reduce the time constant with parasitic capacitance. ● Choose component sizes as small as possible (SMD). ● On the output, the load capacitance must be negligible to maintain good stability. You can put a serial resistance as close as possible to the output pin to minimize the effect of the load capacitance. Figure 31. CCIR330 video line 15/24 Test conditions 3.2 TSH80-TSH81-TSH82 Video capabilities To characterize the differential phase and differential gain a CCIR330 video line is used. The video line contains 5 (flat) levels of luminance onto which the chrominance signal is superimposed. The luminance gives various amplitudes which define the saturation of the signal. The chrominance gives various phases which define the color of the signal. Differential phase (or differential gain) distortion is present if a signal chrominance phase (gain) is affected by luminance level. Differential phase and gain represent the ability to uniformly process the high frequency information at all luminance levels. When differential gain is present, color saturation is not correctly reproduced. The input generator is the Rhode & Schwarz CCVS. The output measurement is done by the Rhode and Schwarz VSA. Figure 32. Measurement on Rhode and Schwarz VSA 16/24 TSH80-TSH81-TSH82 Table 7. Test conditions Video results Parameter Value (VCC=±2.5V) Value (VCC=±5V) Unit Lum NL 0.1 0.3 % Lum NL Step 1 100 100 % Lum NL Step 2 100 99.9 % Lum NL Step 3 99.9 99.8 % Lum NL Step 4 99.9 99.9 % Lum NL Step 5 99.9 99.7 % Diff Gain pos 0 0 % Diff Gain neg -0.7 -0.6 % Diff Gain pp 0.7 0.6 % Diff Gain Step1 -0.5 -0.3 % Diff Gain Step2 -0.7 -0.6 % Diff Gain Step3 -0.3 -0.5 % Diff Gain Step4 -0.1 -0.3 % Diff Gain Step5 -0.4 -0.5 % Diff Phase pos 0 0.1 degree Diff Phase neg -0.2 -0.4 degree Diff Phase pp 0.2 0.5 degree Diff Phase Step1 -0.2 -0.4 degree Diff Phase Step2 -0.1 -0.4 degree Diff Phase Step3 -0.1 -0.3 degree Diff Phase Step4 0 0.1 degree Diff Phase Step5 -0.2 -0.1 degree 17/24 Precautions on asymmetrical supply operation 4 TSH80-TSH81-TSH82 Precautions on asymmetrical supply operation The TSH8x can be used either with a dual or a single supply. If a single supply is used, the inputs are biased to the mid-supply voltage (+VCC/2). This bias network must be carefully designed, in order to reject any noise present on the supply rail. As the bias current is 15µA, you should use a high resistance R1 (approximately 10kΩ) to avoid introducing an offset mismatch at the amplifier inputs. Figure 33. Asymmetrical supply schematic diagram IN Cin Cout OUT + Vcc+ R1 R2 R3 C1 RL R5 C3 Cf C2 R4 C1, C2, C3 are bypass capacitors intended to filter perturbation from VCC. The following capacitor values are appropriate: C1=100nF and C2=C3=100µF R2 and R3 are such that the current through them must be superior to 100 times the bias current. Therefore, you could use the following resistance values: R2=R3=4.7kΩ Cin and Cout are chosen to filter the DC signal by the low pass filters (R1, Cin) and (Rout, Cout). With R1=10kΩ, Rout=RL=150Ω, and Cin=2µF, Cout=220µF the cutoff frequency obtained is lower than 10Hz. Figure 34. Use of the TSH8x in gain = -1 configuration Cf 1k IN Cin 1k Vcc+ R1 R2 R3 C1 18/24 + C3 C2 Cout OUT RL TSH80-TSH81-TSH82 5 Package information Package information In order to meet environmental requirements, STMicroelectronics offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics trademark. ECOPACK specifications are available at: www.st.com. 19/24 Package information 5.1 TSH80-TSH81-TSH82 SO-8 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Max. Min. Typ. 1.75 0.25 Max. 0.069 A1 0.10 A2 1.25 b 0.28 0.48 0.011 0.019 c 0.17 0.23 0.007 0.010 D 4.80 4.90 5.00 0.189 0.193 0.197 H 5.80 6.00 6.20 0.228 0.236 0.244 E1 3.80 3.90 4.00 0.150 0.154 0.157 e 0.004 0.010 0.049 1.27 0.050 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 k 1° 8° 1° 8° ccc 20/24 Inches 0.10 0.004 TSH80-TSH81-TSH82 5.2 Package information TSSOP8 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Inches Max. Min. Typ. 1.2 A1 0.05 A2 0.80 b Max. 0.047 0.15 0.002 1.05 0.031 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.008 D 2.90 3.00 3.10 0.114 0.118 0.122 E 6.20 6.40 6.60 0.244 0.252 0.260 E1 4.30 4.40 4.50 0.169 0.173 0.177 e 1.00 0.65 k 0° L 0.45 0.60 0.006 0.039 0.041 0.0256 8° 0° 0.75 0.018 8° 0.024 L1 1 0.039 aaa 0.1 0.004 0.030 21/24 Package information 5.3 TSH80-TSH81-TSH82 SOT23-5 package mechanical data Dimensions Ref. Millimeters Min. Max. Min. Typ. Max. A 0.90 1.45 35.4 57.1 A1 0.00 0.15 0.00 5.9 A2 0.90 1.30 35.4 51.2 b 0.35 0.50 13.7 19.7 C 0.09 0.20 3.5 7.8 D 2.80 3.00 110.2 118.1 E 2.60 3.00 102.3 118.1 E1 1.50 1.75 59.0 68.8 e 0.95 37.4 e1 1.9 74.8 L 22/24 Typ. Mils 0.35 0.55 13.7 21.6 TSH80-TSH81-TSH82 6 Ordering information Ordering information Table 8. Order codes Type Temperature range Package TSH80ILT Packaging SOT23-5 K303 TSH80IYLT(1) SOT23-5 (Automotive grade level) TSH80ID/DT SO-8 TSH81ID/DT TSH81IPT -40°C to +85°C Tape & reel K310 TSH80I SO-8 (Automotive grade level) TSH80IYD/IYDT(1) Marking Tube or tape & reel SH80IY SO-8 TSH81I TSSOP8 SH81I Tape & reel TSH81IYPT(1) TSSOP8 (Automotive grade level) TSH82ID/DT SO-8 Tube or tape & reel TSH82I TSSOP8 Tape & reel SH82I SO-8 (Automotive grade level) Tube or tape & reel SH82IY TSH82IPT TSH82IYD/IYDT(1) H81IY 1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are on-going. 7 Revision history Date Revision Changes 1-Feb-2003 1 First release. 2-Aug-2005 2 PPAP references inserted in the datasheet, see Table 8: Order codes on page 23. 12-Apr-2007 3 Corrected temperature range for TSH80IYD/IYDT and TSH82IYD/IYDT order codes in Table 8: Order codes on page 23. 24-Oct-2007 4 TSH81IYPT PPAP references inserted in the datasheet, see Table 8: Order codes on page 23. 23/24 TSH80-TSH81-TSH82 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2007 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 24/24