STMICROELECTRONICS VN710SP

VN710SP
®
AUTOMOTIVE GLOW PLUG DRIVER
PRELIMINARY DATA
TYPE
VN710SP
■
■
■
■
■
■
■
■
RDS(on)
18mΩ
IOUT
35 A
VCC
16 V
CMOS COMPATIBLE INPUT
ON STATE OPEN LOAD DETECTION
OFF STATE OPENLOAD DETECTION
10
SHORTED LOAD PROTECTION
UNDERVOLTAGE AND OVERVOLTAGE
SHUTDOWN
PROTECTION AGAINST LOSS OF GROUND
VERY LOW STAND-BY CURRENT WHEN
ENABLE PIN IS LOW
REVERSE BATTERY PROTECTION (*)
DESCRIPTION
The VN710SP is a monolithic device made using
STMicroelectronics VIPower M0-3 technology,
intended for driving any kind of load with one side
connected to ground. Active VCC pin voltage
clamp protects the device against low energy
spikes (see ISO7637 transients compatibility
table). Active current limitation combined with
thermal shutdown protect the device against
1
PowerSO-10™
overload. After a thermal shutdown event, device
stays latched off and diagnostic stays at a low
level until next falling edge of input signal. The
device detects open load condition both in on
state and off state. Output shorted to VCC is
detected in the off state. Device automatically
turns off in case of ground pin disconnection.
Enable pin allows to switch the device to idle state
with very low quiescent current from VCC. When
enable is low, device turns off regardless of input
pin state.
BLOCK DIAGRAM
V CC
OVERVOLTAGE
DETECTION
VCC
CLAMP
UNDERVOLTAGE
DETECTION
GND
Power CLAMP
DRIVER
INPUT
OUTPUT
LOGIC
CURRENT LIMITER
ON STATE OPENLOAD
DETECTION
STATUS
ENABLE
OFF STATE OPENLOAD
AND OUTPUT SHORTED
TO VCC DETECTION
OVERTEMPERATURE
DETECTION
(*) See application schematic at page 7
October 2000
1/11
1
VN710SP
THERMAL DATA
Symbol
Rtj-case
Rtj-amb (*)
Parameter
Thermal resistance junction-case
Thermal resistance junction-ambient
Value
1.4
52
Unit
°C/W
°C/W
Value
41
-0.3
-200
Internally limited
-35
+/-10
+/-10
+/-10
2000
89
Internally limited
-40 to 150
-55 to 150
Unit
V
V
mA
A
A
mA
mA
mA
V
W
°C
°C
°C
(*) When mounted on a standard single-sided FR-4 board with 50mm2 of Cu (at least 35µm thick).
ABSOLUTE MAXIMUM RATING
Symbol
VCC
-VCC
-I GND
IOUT
-IOUT
IIN
Ien
ISTAT
VESD
Ptot
Tj
Tc
Tstg
Parameter
DC supply voltage
Reverse DC supply voltage
Reverse DC ground pin current
DC output current
Reverse DC output current
DC input current
DC enable current
DC status current
Electrostatic discharge (R=1.5kΩ; C=100pF)
Power dissipation at Tc=25°C
Junction operating temperature
Case operating temperature
Storage temperature
CONNECTION DIAGRAM (TOP VIEW)
5
4
3
6
7
GROUND
ENABLE
STATUS
INPUT
N.C.
8
9
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
2
10
1
11
VCC
CURRENT AND VOLTAGE CONVENTIONS
Ien
ICC
VCC
Ven
IIN
VCC
ENABLE
INPUT
VIN
ISTAT
IOUT
OUTPUT
STATUS
VOUT
GND
VSTAT
2/11
1
IGND
VN710SP
ELECTRICAL CHARACTERISTICS (7V<VCC<16V; -40°C<Tj<150°C; unless otherwise specified)
POWER
Symbol
VCC
VUSD
VOV
RON
IS
Parameter
Operating supply voltage
Undervoltage shutdown
Overvoltage shutdown
On state resistance
Supply current
ILGND
Output current at Turn-off
IL(off1)
IL(off2)
Off state output current
Off state output current
Test Conditions
Min
5.5
3
16
Typ
13
4
18
IOUT=15A; Tj=25°C
IOUT=15A
Max
16
5.5
20
20
Unit
V
V
V
mΩ
40
mΩ
Off state; VCC=13V; Ven=VOUT=0V;
VIN=5V
10
25
µA
Off state; VCC=13V; Ven=VOUT=0V;
VIN=5V; Tj=25°C
10
20
µA
On state; VCC=13V; VIN=0V; IOUT=0A;
Ven>Venh
2.5
4
mA
2
mA
50
0
µA
µA
Max
Unit
VCC=VGND=16V
VIN=Ven=n.c.; VOUT=0V
VOUT=0V; VIN>VIH
VOUT=3.5V; VIN>VIH; Ven>Venh
0
-75
SWITCHING (VCC=13V)
Symbol
Parameter
td(on)
Turn-on delay time
td(off)
Turn-off delay time
dVOUT/
dt(on)
dVOUT/
dt(off)
Turn-on voltage slope
Turn-off voltage slope
Test Conditions
RL=0.85Ω, from VIN falling edge to
VOUT=1.3V
RL=0.85Ω, from VIN rising edge to
VOUT=11.7V
RL=0.85Ω, from VOUT=1.3V to
VOUT=10.4V
RL=0.85Ω, from VOUT=11.7V to
VOUT=1.3V
Min
Typ
40
µs
80
µs
0.1
V/µs
0.1
V/µs
INPUT PIN (active low)
Symbol
VIL
IIL
VIH
Parameter
Input low level
Low level input current
Input high level
IIH
High level input current
VI(hyst)
Input hysteresis voltage
VICL
Input clamp voltage
Test Conditions
VIN=1.25V; Ven>Venh
Min
Typ
-35
3.25
VIN=3.25V; Ven>Venh
VIN=3.25V; Ven=0V
IIN=1mA
Max
1.25
-4
-300
0.5
6
IIN=-1mA
-4
6.8
8
-0.7
Unit
V
µA
V
µA
µA
V
V
V
ENABLE PIN (active high)
Symbol
Venl
Ienl
Venh
Ienh
Vehyst
Vencl
Parameter
Test Conditions
Enable low level
Low level enable current Ven=1.25V
Enable high level
High level enable current Ven=3.25V
Enable hysteresis voltage
Ien=1mA
Enable clamp voltage
Ien=-1mA
Min
Typ
Max
1.25
4
3.25
35
0.5
6
6.8
-0.7
8
Unit
V
µA
V
µA
V
V
V
3/11
1
VN710SP
ELECTRICAL CHARACTERISTICS (continued)
STATUS PIN (Open Drain)
Symbol
VSTAT
ILSTAT
CSTAT
VSCL
Parameter
Status low output
voltage
Status leakage current
Status pin input
capacitance
Status clamp voltage
Test Conditions
Max
Unit
ISTAT=1.6mA
0.5
V
Normal operation; VSTAT=5V
10
µA
Normal operation; VSTAT=5V
100
pF
ISTAT=1mA
Min
6
ISTAT=-1mA
Typ
6.8
8
-0.7
V
V
PROTECTIONS
Symbol
TTSD
TR
Thyst
tSDL
Ilim
Vdemag
Parameter
Shut-down temperature
Reset temperature
Thermal hysteresis
Overload detection delay
Current limitation
Turn-off output clamp
voltage
Test Conditions
Min
170
135
7
Typ
190
35
55
15
Tj>TTSD
IOUT=2A; VIN=5V; L=6mH
Max
20
80
VCC-41 VCC-48 VCC-55
Unit
°C
°C
°C
µs
A
V
OPENLOAD DETECTION
Symbol
IOL
VOL
tDOL(off)
tDOL(on)
Parameter
Openload on state
Min
Typ
Max
Unit
VIN=0V
0.1
1
2
A
Openload off state voltage
VIN=5V
detection threshold
1.5
2.5
3.5
V
500
µs
200
µs
detection threshold
Test Conditions
Openload detection
delay at turn-off
Openload detection
delay at turn-on
IOUT=0V
OPENLOAD STATUS TIMING (with external pull-up)
IOUT<IOL
VOUT>VOL
VIN
OVERTEMP STATUS TIMING
VIN
Tj>TTSD
VSTAT
VSTAT
tDOL(off)
4/11
2
tDOL(on)
tSDL
VN710SP
Switching Time Waveforms
VOUT
90%
80%
dVOUT/dt(off)
dVOUT/dt(on)
10%
t
VIN
td(off)
td(on)
t
TRUTH TABLE
CONDITIONS
Normal operation
Current limitation
Overtemperature
Undervoltage
Overvoltage
Output voltage > VOL
Output current < IOL
Any
ENABLE
INPUT
OUTPUT
STATUS
H
H
L
L
H
H
H
H
L
L
X
H
H
L
H
L (*)
L
L (*)
L
H
L
L
L
X
X
H
L
L
L
H
H
H
L
H
H
L
H
H
L
L
H
H
L
X
L
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
(*) Latched on first overtemperature event; latch cleared on next input falling edge.
5/11
VN710SP
ELECTRICAL TRANSIENTS REQUIREMENTS ON VCC PIN
TEST LEVELS
ISO T/R 7637/1
Test Pulse
I
II
III
IV
Delays and Impedance
1
-25V
-50V
-75V
-100V
2ms, 10Ω
2
+25V
+50V
+75V
+100V
0.2ms, 10Ω
3a
-25V
-50V
-100V
-150V
0.1ms, 50Ω
3b
+25V
+50V
+75V
+100V
0.1ms, 50Ω
4
-4V
-5V
-6V
-7V
100ms, 0.01Ω
5
+26.5V
+46.5V
+66.5V
+86.5V
400ms, 2Ω
TEST LEVELS RESULT
ISO T/R 7637/1
Test Pulse
I
II
III
IV
1
C
C
C
C
2
C
C
C
C
3a
C
C
C
C
3b
C
C
C
C
4
C
C
C
C
5
C
E
E
E
CLASS
C
E
CONTENTS
All functions of the device are performed as designed after exposure to disturbance.
One or more functions of the device is not performed as designed after exposure and cannot be
returned to proper operation without replacing the device.
SUGGESTED SCHEME FOR ISO TEST PULSE
from test
generator
10K Ω
10K Ω
ENABLE
VCC
INPUT
10KΩ
STATUS
OUTPUT
GND
Warning: Input, Enable, Status Pulled to VCC voltage during
negative transient.
6/11
open
VN710SP
APPLICATION SCHEMATIC
+5V
+5V
VCC
Rprot
STATUS
Dld
µC
Rprot
INPUT
OUTPUT
Rprot
ENABLE
GND
VGND
GND PROTECTION
REVERSE BATTERY
NETWORK
AGAINST
Solution 1: Resistor in the ground line (RGND only). This
can be used with any type of load.
The following is an indication on how to dimension the
RGND resistor.
1) RGND ≤ 600mV / (IS(on)max).
2) RGND ≥ (−VCC) / (-IGND)
where -IGND is the DC reverse ground pin current and can
be found in the absolute maximum rating section of the of
the device’s datasheet.
Power Dissipation in RGND (when VCC<0: during reverse
battery situations) is:
PD= (-VCC)2/RGND
This resistor can be shared amongst several different
HSD. Please note that the value of this resistor should be
calculated with formula (1) where IS(on)max becomes the
sum of the maximum on-state currents of the different
devices.
Please note that if the microprocessor ground is not
common with the device ground then the RGND will
produce a shift (IS(on)max * RGND) in the input thresholds
and the status output values. This shift will vary
depending on many devices are ON in the case of several
high side drivers sharing the same RGND.
If the calculated power dissipation leads to a large resistor
or several devices have to share the same resistor then
the ST suggest to utilize Solution 2 (see below).
Solution 2: A diode (DGND) in the ground line.
A resistor (RGND=1kΩ) should be inserted in parallel to
DGND if the device will be driving an inductive load.
RGND
DGND
This small signal diode can be safely shared amongst
several different HSD. Also in this case, the presence of
the ground network will produce a shift (j600mV) in the
input threshold and the status output values if the
microprocessor ground is not common with the device
ground. This shift will not vary if more than one HSD
shares the same diode/resistor network.
LOAD DUMP PROTECTION
Dld is necessary (Transil or MOV) if the load dump peak
voltage exceeds VCC max DC rating. The same applies if
the device will be subject to transients on the VCC line that
are greater than the ones shown in the ISO T/R 7637/1
table.
µC I/Os PROTECTION:
If a ground protection network is used and negative
transient are present on the VCC line, the control pins will
be pulled negative. ST suggests to insert a resistor (Rprot )
in line to prevent the µC I/Os pins to latch-up.
The value of these resistors is a compromise between the
leakage current of µC and the current required by the
HSD I/Os (Input levels compatibility) with the latch-up limit
of µC I/Os.
-VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC-VIH-VGND) / IIHmax
Calculation example:
For VCCpeak= - 100V and Ilatchup ≥ 20mA; VOHµC ≥ 4.5V
5kΩ ≤ Rprot ≤ 18.57kΩ.
Recommended Rprot value is10kΩ.
7/11
1
VN710SP
Figure1: Waveforms
NORMAL OPERATION
INPUT
LOAD VOLTAGE
STATUS
UNDERVOLTAGE
VUSDhyst
VCC
VUSD
INPUT
LOAD VOLTAGE
STATUS
undefined
OVERVOLTAGE
VOV
VCC
VCC<VOV
VCC>VOV
VOVhyst
INPUT
LOAD VOLTAGE
STATUS
OPENLOAD
INPUT
LOAD VOLTAGE
STATUS
tDOL(on)
tDOL(on)
OVERTEMPERATURE
ENABLE
Tj
TTSD
TR
INPUT
LOAD CURRENT
STATUS
SHORT TO VCC
INPUT
LOAD VOLTAGE
STATUS
undefined
tDOL(off)
undefined
tDOL(off)
8/11
1
1
VN710SP
PowerSO-10™ MECHANICAL DATA
mm.
DIM.
MIN.
A
A (*)
A1
B
B (*)
C
C (*)
D
D1
E
E2
E2 (*)
E4
E4 (*)
e
F
F (*)
H
H (*)
h
L
L (*)
α
α (*)
inch
TYP
3.35
3.4
0.00
0.40
0.37
0.35
0.23
9.40
7.40
9.30
7.20
7.30
5.90
5.90
MAX.
MIN.
3.65
3.6
0.10
0.60
0.53
0.55
0.32
9.60
7.60
9.50
7.60
7.50
6.10
6.30
0.132
0.134
0.000
0.016
0.014
0.013
0.009
0.370
0.291
0.366
0.283
0.287
0.232
0.232
1.35
1.40
14.40
14.35
0.049
0.047
0.543
0.545
1.80
1.10
8º
8º
0.047
0.031
0º
2º
1.27
TYP.
MAX.
0.144
0.142
0.004
0.024
0.021
0.022
0.0126
0.378
0.300
0.374
300
0.295
0.240
0.248
0.050
1.25
1.20
13.80
13.85
0.50
0.053
0.055
0.567
0.565
0.002
1.20
0.80
0º
2º
0.070
0.043
8º
8º
(*) Muar only POA P013P
B
0.10 A B
10
H
E
E
E2
1
SEATING
PLANE
e
B
DETAIL "A"
A
C
0.25
h
E4
D
= D1 =
=
=
SEATING
PLANE
A
F
A1
A1
L
DETAIL "A"
α
P095A
9/11
1
VN710SP
PowerSO-10™ SUGGESTED PAD LAYOUT
TUBE SHIPMENT (no suffix)
14.6 - 14.9
CASABLANCA
B
10.8- 11
MUAR
C
6.30
C
A
A
0.67 - 0.73
10
9
1
9.5
2
3
B
0.54 - 0.6
All dimensions are in mm.
8
7
4
5
1.27
Base Q.ty Bulk Q.ty Tube length (± 0.5)
6
Casablanca
Muar
50
50
1000
1000
532
532
A
B
C (± 0.1)
10.4 16.4
4.9 17.2
0.8
0.8
TAPE AND REEL SHIPMENT (suffix “13TR”)
REEL DIMENSIONS
Base Q.ty
Bulk Q.ty
A (max)
B (min)
C (± 0.2)
F
G (+ 2 / -0)
N (min)
T (max)
600
600
330
1.5
13
20.2
24.4
60
30.4
All dimensions are in mm.
TAPE DIMENSIONS
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb 1986
Tape width
Tape Hole Spacing
Component Spacing
Hole Diameter
Hole Diameter
Hole Position
Compartment Depth
Hole Spacing
W
P0 (± 0.1)
P
D (± 0.1/-0)
D1 (min)
F (± 0.05)
K (max)
P1 (± 0.1)
All dimensions are in mm.
24
4
24
1.5
1.5
11.5
6.5
2
End
Start
Top
No components
Components
No components
cover
tape
500mm min
Empty components pockets
saled with cover tape.
500mm min
User direction of feed
10/11
1
1
VN710SP
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
 2000 STMicroelectronics - Printed in ITALY- All Rights Reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com
11/11