Advance Information This document contains information on a new product. Specifications and information herein are subject to change without notice. A G R E E M E N T 68HC08PT48 68HC908PT48 N O N - D I S C L O S U R E HC08 R E Q U I R E D Order this document by MC68HC08PT48/D Rev. 2.0 A G R E E M E N T R E Q U I R E D Advance Information N O N - D I S C L O S U R E Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Advance Information 2 MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA List of Sections Section 1. General Description . . . . . . . . . . . . . . . . . . . 27 R E Q U I R E D Advance Information — MC68HC(9)08PT48 Section 3. Central Processing Unit (CPU). . . . . . . . . . . . 53 Section 4. Clock Generator Module (CGMB) . . . . . . . . 69 Section 5. Computer Operating Properly (COP) Module . . . . . . . . . . . . . . . . . . . 103 Section 6. Keyboard Interrupt (KBI) Module . . . . . . . . 109 Section 7. System Integration Module (SIM) . . . . . . . . 117 A G R E E M E N T Section 2. Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . 37 Section 9. 2-Kbyte FLASH Memory. . . . . . . . . . . . . . . . 143 Section 10. 48-Kbyte FLASH Memory. . . . . . . . . . . . . . 153 Section 11. Serial Peripheral Interface (SPI) Module . . . . . . . . . . . . . . . . . . . . 165 Section 12. Serial Communications Interface (SCI) Module. . . . . . . . . . . . . . . . . . . . 197 Section 13. Analog-to-Digital Converter (ADC) Module. . . . . . . . . . . . . . . . . . 233 Section 14. Configuration Register (CONFIG) . . . . . . . 243 Section 15. Timer Interface Module (TIM) . . . . . . . . . . 247 MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information List of Sections 3 N O N - D I S C L O S U R E Section 8. Random-Access Memory (RAM) . . . . . . . . 141 R E Q U I R E D List of Sections Section 16. Timebase Module (TIMTBX). . . . . . . . . . . . 275 Section 17. Input/Output (I/O) Ports . . . . . . . . . . . . . . 281 Section 18. Monitor ROM (MON) . . . . . . . . . . . . . . . . . 299 Section 19. Break Module. . . . . . . . . . . . . . . . . . . . . . . 309 Section 20. External Interrupt Module (IRQ) . . . . . . . . 315 A G R E E M E N T Section 21. Alert Output Generator (ALR) . . . . . . . . . . 325 Section 22. Electrical Specifications . . . . . . . . . . . . . . 331 Section 23. Mechanical Data. . . . . . . . . . . . . . . . . . . . 345 N O N - D I S C L O S U R E Section 24. Ordering Information . . . . . . . . . . . . . . . . . 347 Advance Information 4 MC68HC(9)08PT48 — Rev. 2.0 List of Sections MOTOROLA 1.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 1.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 1.4 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 1.5 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 1.6 Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 1.6.1 Power Supply Pins (VDD, VSS, EVDD1-4, EVSS1-4,VDDA1,2,VSSA1,2). . . . . . . . . . . . . . . . . . . . . . . .32 1.6.2 Oscillator Pins (OSC1 and OSC2) . . . . . . . . . . . . . . . . . . .33 1.6.3 External Reset Pin (RST) . . . . . . . . . . . . . . . . . . . . . . . . . .33 1.6.4 External Interrupt Pin (IRQ1). . . . . . . . . . . . . . . . . . . . . . . .34 1.6.5 External Interrupt Pin (IRQ2). . . . . . . . . . . . . . . . . . . . . . . .34 1.6.6 External Filter Capacitor Pins (PLLXFC). . . . . . . . . . . . . . .34 1.6.7 Port A I/O Pins (PTA7–PTA0) . . . . . . . . . . . . . . . . . . . . . . .34 1.6.8 Port B I/O Pins (PTB7–PTB0) . . . . . . . . . . . . . . . . . . . . . . .34 1.6.9 Port C I/O Pins (PTC7–PTC0). . . . . . . . . . . . . . . . . . . . . . .34 1.6.10 Port D I/O Pins (PTD7–PTD0). . . . . . . . . . . . . . . . . . . . . . .34 1.6.11 Port E I/O Pins (PTE7/AD3–PTE4/AD0 and PTE3/MISO-PTE0/SS) . . . . . . . . . . . . . . . . . . . . . .35 1.6.12 Port F I/O Pins (PTF7/KBD7–PTF0/KBD0) . . . . . . . . . . . . .35 1.6.13 Port G I/O Pins (PTG7/TCH3–PTG3/TCLK, PTG2/TxD, PTG1/RxD, and PTG0) . . . . . . . . . . . . . . . . . . . . . . . . .35 1.6.14 Alert Generator Output (ALERT) . . . . . . . . . . . . . . . . . . . . .35 1.6.15 ADC Voltage Reference Pin (VRH) . . . . . . . . . . . . . . . . . . .35 MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Table of Contents 5 R E Q U I R E D Section 1. General Description A G R E E M E N T Table of Contents N O N - D I S C L O S U R E Advance Information — MC68HC(9)08PT48 R E Q U I R E D Table of Contents A G R E E M E N T Section 2. Memory Map 2.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 2.3 I/O Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 2.4 Random-Access Memory (RAM) . . . . . . . . . . . . . . . . . . . . . . .38 2.5 Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 2.6 User FLASH/ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 2.7 FLASH PROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 2.8 Monitor ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 Section 3. Central Processing Unit (CPU) 3.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 3.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54 N O N - D I S C L O S U R E 3.4 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54 3.4.1 Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 3.4.2 Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 3.4.3 Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 3.4.4 Program Counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 3.4.5 Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . .58 3.5 Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . .60 3.6 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .60 3.7 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 3.8 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 Section 4. Clock Generator Module (CGMB) 4.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 4.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 Advance Information 6 MC68HC(9)08PT48 — Rev. 2.0 Table of Contents MOTOROLA 4.6 CGMB Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 4.6.1 PLL Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87 4.6.2 PLL Bandwidth Control Register . . . . . . . . . . . . . . . . . . . . .90 4.6.3 PLL Multiplier Select Register High. . . . . . . . . . . . . . . . . . .92 4.6.4 PLL Multiplier Select Register Low . . . . . . . . . . . . . . . . . . .93 4.6.5 PLL VCO Range Select Register . . . . . . . . . . . . . . . . . . . .94 4.6.6 PLL Reference Divider Select Register. . . . . . . . . . . . . . . .95 4.7 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 4.8 Special Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 4.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 4.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97 4.9 CGMB During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . .97 4.10 Acquisition/Lock Time Specifications . . . . . . . . . . . . . . . . . . . .98 4.10.1 Acquisition/Lock Time Definitions . . . . . . . . . . . . . . . . . . . .98 4.10.2 Parametric Influences on Reaction Time . . . . . . . . . . . . . .99 MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Table of Contents 7 A G R E E M E N T 4.5 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82 4.5.1 Crystal Amplifier Input Pin (OSC1) . . . . . . . . . . . . . . . . . . .82 4.5.2 Crystal Amplifier Output Pin (OSC2) . . . . . . . . . . . . . . . . . .82 4.5.3 External Filter Capacitor Pin (CGMXFC). . . . . . . . . . . . . . .83 4.5.4 PLL Analog Power Pin (VDDA1) . . . . . . . . . . . . . . . . . . . . . .83 4.5.5 PLL Analog Ground Pin (VSSA1) . . . . . . . . . . . . . . . . . . . . .83 4.5.6 Buffered Crystal Clock Output (CGMVOUT) . . . . . . . . . . . .83 4.5.7 CGMVSEL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83 4.5.8 Oscillator Enable Signal (SIMOSCEN) . . . . . . . . . . . . . . . .84 4.5.9 Crystal Output Frequency Signal (CGMXCLK) . . . . . . . . . .84 4.5.10 CGMB Base Clock Output (CGMOUT) . . . . . . . . . . . . . . . .84 4.5.11 CGMB CPU Interrupt (CGMINT) . . . . . . . . . . . . . . . . . . . . .84 N O N - D I S C L O S U R E 4.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 4.4.1 Crystal Oscillator Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . .73 4.4.2 Phase-Locked Loop Circuit (PLL) . . . . . . . . . . . . . . . . . . . .73 4.4.2.1 PLL Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 4.4.2.2 Acquisition and Tracking Modes . . . . . . . . . . . . . . . . . . .75 4.4.2.3 Manual and Automatic PLL Bandwidth Modes . . . . . . . .75 4.4.2.4 Programming the PLL . . . . . . . . . . . . . . . . . . . . . . . . . . .77 4.4.2.5 Special Programming Exceptions . . . . . . . . . . . . . . . . . .80 4.4.3 Base Clock Selector Circuit. . . . . . . . . . . . . . . . . . . . . . . . .80 4.4.4 CGMB External Connections . . . . . . . . . . . . . . . . . . . . . . .81 R E Q U I R E D Table of Contents R E Q U I R E D Table of Contents 4.10.3 4.10.4 Choosing a Filter Capacitor. . . . . . . . . . . . . . . . . . . . . . . .100 Reaction Time Calculation . . . . . . . . . . . . . . . . . . . . . . . .101 A G R E E M E N T Section 5. Computer Operating Properly (COP) Module 5.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103 5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103 5.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104 N O N - D I S C L O S U R E 5.4 I/O Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 5.4.1 CGMXCLK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 5.4.2 STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 5.4.3 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 5.4.4 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 5.4.5 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 5.4.6 Reset Vetor Fetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 5.4.7 COPD (COP Disable) . . . . . . . . . . . . . . . . . . . . . . . . . . . .106 5.5 COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106 5.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106 5.7 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106 5.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106 5.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107 5.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107 5.9 COP Module During Break Interrupts . . . . . . . . . . . . . . . . . . .107 Section 6. Keyboard Interrupt (KBI) Module 6.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109 6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109 6.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109 6.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111 6.5 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 Advance Information 8 MC68HC(9)08PT48 — Rev. 2.0 Table of Contents MOTOROLA KBI During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .114 6.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114 6.8.1 Keyboard Status and Control Register . . . . . . . . . . . . . . .114 6.8.2 Keyboard Interrupt Enable Register . . . . . . . . . . . . . . . . .116 Section 7. System Integration Module (SIM) 7.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117 7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118 7.3 SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . .121 7.3.1 Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121 7.3.2 Clock Start-Up from POR or LVI Reset . . . . . . . . . . . . . . .121 7.3.3 Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . .122 7.4 Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . .122 7.4.1 External Pin Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123 7.4.2 Active Resets from Internal Sources . . . . . . . . . . . . . . . . .124 7.4.2.1 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 7.4.2.2 Computer Operating Properly (COP) Reset. . . . . . . . . .126 7.4.2.3 Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . .126 7.4.2.4 Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . .126 7.4.2.5 Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . .127 7.5 SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127 7.5.1 SIM Counter During Power-On Reset . . . . . . . . . . . . . . . .127 7.5.2 SIM Counter During Stop Mode Recovery . . . . . . . . . . . .128 7.5.3 SIM Counter and Reset States . . . . . . . . . . . . . . . . . . . . .128 7.6 Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128 7.6.1 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129 7.6.1.1 Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . .131 7.6.1.2 SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132 7.6.2 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132 7.6.3 Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132 7.6.4 Status Flag Protection in Break Mode. . . . . . . . . . . . . . . .132 MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Table of Contents 9 A G R E E M E N T 6.7 N O N - D I S C L O S U R E 6.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 6.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 6.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 R E Q U I R E D Table of Contents R E Q U I R E D Table of Contents 7.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133 7.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133 7.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135 A G R E E M E N T 7.8 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136 7.8.1 SIM Break Status Register . . . . . . . . . . . . . . . . . . . . . . . .136 7.8.2 SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . .138 7.8.3 SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . .139 Section 8. Random-Access Memory (RAM) 8.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141 8.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141 8.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141 N O N - D I S C L O S U R E Section 9. 2-Kbyte FLASH Memory 9.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143 9.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143 9.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144 9.4 FLASH 3 Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . .145 9.5 FLASH 3 Block Protect Register. . . . . . . . . . . . . . . . . . . . . . .147 9.6 Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148 9.7 Charge Pump Frequency Control . . . . . . . . . . . . . . . . . . . . . .148 9.8 FLASH Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149 9.9 FLASH Program and Margin Read Operation . . . . . . . . . . . .150 Section 10. 48-Kbyte FLASH Memory 10.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153 10.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153 10.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154 10.4 FLASH 1Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .155 10.5 FLASH 2 Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . .155 Advance Information 10 MC68HC(9)08PT48 — Rev. 2.0 Table of Contents MOTOROLA 10.7 FLASH 2 Block Protect Register. . . . . . . . . . . . . . . . . . . . . . .159 10.8 Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160 10.9 Charge Pump Frequency Control . . . . . . . . . . . . . . . . . . . . . .161 10.10 FLASH Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161 10.11 FLASH Program and Margin Read Operation . . . . . . . . . . . .162 Section 11. Serial Peripheral Interface (SPI) Module 11.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165 11.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166 11.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166 11.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166 11.4.1 Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168 11.5 Slave Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170 11.6 Transmission Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171 11.6.1 Clock Phase and Polarity Controls . . . . . . . . . . . . . . . . . .171 11.6.2 Transmission Format When CPHA = 0 . . . . . . . . . . . . . . .171 11.6.3 Transmission Format When CPHA = 1 . . . . . . . . . . . . . . .173 11.6.4 Transmission Initiation Latency . . . . . . . . . . . . . . . . . . . . .174 11.7 Queuing Transmission Data . . . . . . . . . . . . . . . . . . . . . . . . . .176 11.8 Error Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177 11.8.1 Overflow Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177 11.8.2 Mode Fault Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180 11.9 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182 11.10 Resetting the SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184 11.11 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185 11.12 SPI During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .185 11.13 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186 11.13.1 MISO (Master In/Slave Out) . . . . . . . . . . . . . . . . . . . . . . .186 11.13.2 MOSI (Master Out/Slave In) . . . . . . . . . . . . . . . . . . . . . . .186 11.13.3 SPSCK (Serial Clock) . . . . . . . . . . . . . . . . . . . . . . . . . . . .187 11.13.4 SS (Slave Select) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187 MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Table of Contents 11 A G R E E M E N T FLASH 1 Block Protect Register. . . . . . . . . . . . . . . . . . . . . . .158 N O N - D I S C L O S U R E 10.6 R E Q U I R E D Table of Contents R E Q U I R E D Table of Contents 11.13.5 CGND (Clock Ground) . . . . . . . . . . . . . . . . . . . . . . . . . . .188 11.14 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189 11.14.1 SPI Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189 11.14.2 SPI Status and Control Register . . . . . . . . . . . . . . . . . . .192 11.14.3 SPI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195 A G R E E M E N T Section 12. Serial Communications Interface (SCI) Module 12.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197 12.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .198 12.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .198 N O N - D I S C L O S U R E 12.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199 12.4.1 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202 12.4.2 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202 12.4.2.1 Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202 12.4.2.2 Character Transmission . . . . . . . . . . . . . . . . . . . . . . . . .203 12.4.2.3 Break Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204 12.4.2.4 Idle Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205 12.4.2.5 Inversion of Transmitted Output. . . . . . . . . . . . . . . . . . .205 12.4.2.6 Transmitter Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . .206 12.4.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206 12.4.3.1 Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206 12.4.3.2 Character Reception . . . . . . . . . . . . . . . . . . . . . . . . . . .206 12.4.3.3 Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208 12.4.3.4 Framing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210 12.4.3.5 Baud Rate Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . .210 12.4.3.6 Receiver Wakeup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213 12.4.3.7 Receiver Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . .214 12.4.3.8 Error Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214 12.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215 12.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215 12.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215 12.6 SCI During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .215 Advance Information 12 MC68HC(9)08PT48 — Rev. 2.0 Table of Contents MOTOROLA Section 13. Analog-to-Digital Converter (ADC) Module 13.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233 13.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233 13.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234 13.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234 13.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234 13.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235 13.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236 13.4.4 Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236 13.4.5 Accuracy and Precision. . . . . . . . . . . . . . . . . . . . . . . . . . .236 13.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236 13.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237 13.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237 13.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237 13.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237 13.7.1 ADC Analog Power Pin (VDDA2) . . . . . . . . . . . . . . . . . . . .237 13.7.2 ADC Analog Ground Pin (VSSA2) . . . . . . . . . . . . . . . . . . .238 13.7.3 ADC Voltage Reference Pin (VRH) . . . . . . . . . . . . . . . . . .238 13.7.4 ADC Voltage In (ADVIN) . . . . . . . . . . . . . . . . . . . . . . . . . .238 13.8 Input/Output Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238 13.8.1 ADC Status and Control Register . . . . . . . . . . . . . . . . . . .238 13.8.2 ADC Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241 13.8.3 ADC Clock Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241 MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Table of Contents 13 A G R E E M E N T 12.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216 12.8.1 SCI Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . .217 12.8.2 SCI Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . .220 12.8.3 SCI Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . .222 12.8.4 SCI Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .225 12.8.5 SCI Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . .228 12.8.6 SCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229 12.8.7 SCI Baud Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . .229 N O N - D I S C L O S U R E 12.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216 12.7.1 PTG2/TxD (Transmit Data) . . . . . . . . . . . . . . . . . . . . . . . .216 12.7.2 PTG1/RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . .216 R E Q U I R E D Table of Contents R E Q U I R E D Table of Contents Section 14. Configuration Register (CONFIG) 14.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243 14.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243 14.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243 A G R E E M E N T Section 15. Timer Interface Module (TIM) 15.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247 15.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248 15.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248 N O N - D I S C L O S U R E 15.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248 15.4.1 Timer Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . .252 15.4.2 Input Capture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252 15.4.3 Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252 15.4.3.1 Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . .252 15.4.3.2 Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .253 15.4.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . .254 15.4.4.1 Unbuffered PWM Signal Generation . . . . . . . . . . . . . . .255 15.4.4.2 Buffered PWM Signal Generation . . . . . . . . . . . . . . . . .256 15.4.4.3 PWM Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257 15.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259 15.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259 15.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259 15.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259 15.7 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .260 15.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .260 15.8.1 TIM Clock Pin (PTG3/TCLK) . . . . . . . . . . . . . . . . . . . . . . .261 15.8.2 Timer Channel I/O Pins (PTG4/TCH0–PTG7/TCH3) . . . .261 15.9 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .261 15.9.1 Timer Status and Control Register . . . . . . . . . . . . . . . . . .262 15.9.2 Timer Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . .264 15.9.3 Timer Modulo Registers . . . . . . . . . . . . . . . . . . . . . . . . . .265 15.9.4 Timer Channel Status and Control Registers . . . . . . . . . .266 15.9.5 Timer Channel Registers. . . . . . . . . . . . . . . . . . . . . . . . . .271 Advance Information 14 MC68HC(9)08PT48 — Rev. 2.0 Table of Contents MOTOROLA Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .275 16.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .275 16.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .275 16.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .276 16.5 Timebase Control Register Description . . . . . . . . . . . . . . . . .277 16.6 Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .279 16.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .279 16.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .279 16.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .279 Section 17. Input/Output (I/O) Ports 17.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .281 17.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .282 17.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .284 17.3.1 Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .284 17.3.2 Data Direction Register A . . . . . . . . . . . . . . . . . . . . . . . . .284 17.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .286 17.4.1 Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .286 17.4.2 Data Direction Register B . . . . . . . . . . . . . . . . . . . . . . . . .286 17.5 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .288 17.5.1 Port C Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .288 17.5.2 Data Direction Register C . . . . . . . . . . . . . . . . . . . . . . . . .288 17.6 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .290 17.6.1 Port D Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .290 17.6.2 Data Direction Register D . . . . . . . . . . . . . . . . . . . . . . . . .290 17.7 Port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .292 17.7.1 Port E Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .292 17.7.2 Data Direction Register E . . . . . . . . . . . . . . . . . . . . . . . . .292 17.8 Port F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294 17.8.1 Port F Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294 17.8.2 Data Direction Register F . . . . . . . . . . . . . . . . . . . . . . . . .294 MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Table of Contents 15 A G R E E M E N T 16.1 N O N - D I S C L O S U R E Section 16. Timebase Module (TIMTBX) R E Q U I R E D Table of Contents R E Q U I R E D Table of Contents 17.9 Port G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .296 17.9.1 Port G Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .296 17.9.2 Data Direction Register G . . . . . . . . . . . . . . . . . . . . . . . .296 A G R E E M E N T Section 18. Monitor ROM (MON) 18.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .299 18.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .299 18.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .299 18.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .300 18.4.1 Entering Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . .300 18.4.2 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .303 18.4.3 Echoing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .303 18.4.4 Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .304 18.4.5 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .304 18.4.6 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .308 N O N - D I S C L O S U R E Section 19. Break Module 19.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .309 19.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .309 19.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .310 19.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .310 19.4.1 Flag Protection During Break Interrupts . . . . . . . . . . . . . .312 19.4.2 CPU During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . .312 19.4.3 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .312 19.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . .312 19.4.5 COP During Break. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .312 19.5 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .313 19.5.1 Break Status and Control Register . . . . . . . . . . . . . . . . . .313 19.5.2 Break Address Registers. . . . . . . . . . . . . . . . . . . . . . . . . .314 19.6 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314 Advance Information 16 MC68HC(9)08PT48 — Rev. 2.0 Table of Contents MOTOROLA Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315 20.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315 20.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315 20.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .316 IRQ1 Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .319 20.4.1 20.4.2 IRQ2 Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .320 20.5 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . .321 20.6 IRQ Status and Control Register . . . . . . . . . . . . . . . . . . . . . .321 Section 21. Alert Output Generator (ALR) 21.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .325 21.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .325 21.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .325 21.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .326 21.4.1 Alert Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .327 21.4.2 Sound Pressure Level Circuit . . . . . . . . . . . . . . . . . . . . . .328 21.4.3 Alert Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .329 Section 22. Electrical Specifications 22.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .331 22.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .331 22.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . .332 22.4 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . .333 22.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .333 22.6 3.0-Volt DC Electrical Characteristics. . . . . . . . . . . . . . . . . . .334 22.7 2.0-Volt DC Electrical Characteristics. . . . . . . . . . . . . . . . . . .335 22.8 RAM Retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .336 22.9 3.0-Volt Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .336 22.10 2.0-Volt Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .336 MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Table of Contents 17 A G R E E M E N T 20.1 N O N - D I S C L O S U R E Section 20. External Interrupt Module (IRQ) R E Q U I R E D Table of Contents R E Q U I R E D Table of Contents 22.11 3.0-Volt SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . .337 22.12 2.0-Volt SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . .338 22.13 PLL2P12M Electrical Specifications . . . . . . . . . . . . . . . . . . . .341 22.14 PLL2P12M Component Specifications . . . . . . . . . . . . . . . . . .341 22.15 Bus Clock PLL Acquisition/Lock Time Specifications . . . . . . .342 22.16 2-K FLASH Memory Electrical Characteristics . . . . . . . . . . . .343 22.17 48-K FLASH Memory Electrical Characteristics . . . . . . . . . . .343 A G R E E M E N T 22.18 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .344 Section 23. Mechanical Data 23.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .345 23.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .345 23.3 80-Pin LQFP (Case 917-01) . . . . . . . . . . . . . . . . . . . . . . . . . .346 N O N - D I S C L O S U R E Section 24. Ordering Information 24.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347 24.2 MCU Ordering Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347 24.3 Application Program Media. . . . . . . . . . . . . . . . . . . . . . . . . . .348 24.4 ROM Program Verification . . . . . . . . . . . . . . . . . . . . . . . . . . .349 24.5 ROM Verification Units (RVUs). . . . . . . . . . . . . . . . . . . . . . . .350 24.6 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .350 Advance Information 18 MC68HC(9)08PT48 — Rev. 2.0 Table of Contents MOTOROLA Title 1-1 1-2 1-3 1-4 MC68HC(9)08PT48 Block Diagram . . . . . . . . . . . . . . . . . . .30 MC68HC(9)08PT48 Pinout (Top View) . . . . . . . . . . . . . . . .31 Power Supply Bypassing . . . . . . . . . . . . . . . . . . . . . . . . . . .32 Crystal Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 2-1 2-2 2-3 2-4 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 MC68HC(9)08PT48 Register Map . . . . . . . . . . . . . . . . . . . .40 Control, Status, and Data Registers. . . . . . . . . . . . . . . . . . .40 Vector Addresses in FLASH/ROM . . . . . . . . . . . . . . . . . . . .50 3-1 3-2 3-3 3-4 3-5 3-6 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54 Accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 Index Register (H:X). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 Stack Pointer (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 Program Counter (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 Condition Code Register (CCR) . . . . . . . . . . . . . . . . . . . . . .58 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 CGMB Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 CGMB External Connections . . . . . . . . . . . . . . . . . . . . . . . .82 CGMB I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . .86 PLL Control Register (PCTL) . . . . . . . . . . . . . . . . . . . . . . . .87 PLL Bandwidth Control Register (PBWC) . . . . . . . . . . . . . .90 PLL Multiplier Select Register High (PMSH) . . . . . . . . . . . .92 PLL Multiplier Select Register Low (PMSL) . . . . . . . . . . . . .93 PLL VCO Range Select Register (PVRS) . . . . . . . . . . . . . .94 PLL Reference Divider Select Register (PRDS) . . . . . . . . .95 5-1 5-2 COP Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104 COP Control Register (COPCTL). . . . . . . . . . . . . . . . . . . .106 MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Page Advance Information List of Figures 19 R E Q U I R E D Figure A G R E E M E N T List of Figures N O N - D I S C L O S U R E Advance Information — MC68HC(9)08PT48 R E Q U I R E D List of Figures N O N - D I S C L O S U R E A G R E E M E N T Figure Title 6-1 6-2 6-3 6-4 KBI Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 KBI Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . .110 Keyboard Status and Control Register (KBSCR) . . . . . . . .115 Keyboard Interrupt Enable Register (KBER) . . . . . . . . . . .116 7-1 7-2 7-3 7-4 7-5 7-6 7-7 7-8 7-9 7-10 7-11 7-12 7-13 7-14 7-15 7-16 7-17 7-18 7-19 SIM Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119 SIM I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . .120 CGM Clock Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121 External Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . .123 Internal Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124 Sources of Internal Reset. . . . . . . . . . . . . . . . . . . . . . . . . .124 POR Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 Interrupt Entry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129 Interrupt Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129 Interrupt Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130 Interrupt Recognition Example . . . . . . . . . . . . . . . . . . . . . .131 Wait Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . .133 Wait Recovery from Interrupt or Break . . . . . . . . . . . . . . . .134 Wait Recovery from Internal Reset . . . . . . . . . . . . . . . . . .134 Stop Mode Entry Timing. . . . . . . . . . . . . . . . . . . . . . . . . . .135 Stop Mode Recovery from Interrupt or Break. . . . . . . . . . .136 SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . .136 SIM Reset Status Register (SRSR) . . . . . . . . . . . . . . . . . .138 SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . .139 9-1 9-2 9-3 FLASH 3 Control Register (FL3CR) . . . . . . . . . . . . . . . . . .145 FLASH 3 Block Protect Register (FL3BPR) . . . . . . . . . . . .147 Page Program Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . .151 10-1 10-2 10-3 10-4 10-5 FLASH 1 Control Register (FL1CR) . . . . . . . . . . . . . . . . . .155 FLASH 2 Control Register (FL2CR) . . . . . . . . . . . . . . . . . .155 FLASH 1 Block Protect Register (FL1BPR) . . . . . . . . . . . .158 FLASH 2 Block Protect Register (FL2BPR) . . . . . . . . . . . .159 Page Program Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . .164 Advance Information 20 Page MC68HC(9)08PT48 — Rev. 2.0 List of Figures MOTOROLA 11-1 11-2 11-3 11-4 11-5 11-6 11-7 11-8 11-9 11-10 11-11 11-12 11-13 11-14 11-15 SPI Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . .167 SPI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . .168 Full-Duplex Master-Slave Connections . . . . . . . . . . . . . . .169 Transmission Format (CPHA = 0) . . . . . . . . . . . . . . . . . . .172 CPHA/SS Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172 Transmission Format (CPHA = 1) . . . . . . . . . . . . . . . . . . .174 Transmission Start Delay (Master) . . . . . . . . . . . . . . . . . . .175 SPRF/SPTE CPU Interrupt Timing. . . . . . . . . . . . . . . . . . .176 Missed Read of Overflow Condition . . . . . . . . . . . . . . . . . .178 Clearing SPRF When OVRF Interrupt Is Not Enabled . . . .179 SPI Interrupt Request Generation . . . . . . . . . . . . . . . . . . .183 CPHA/SS Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187 SPI Control Register (SPCR) . . . . . . . . . . . . . . . . . . . . . . .190 SPI Status and Control Register (SPSCR). . . . . . . . . . . . .192 SPI Data Register (SPDR) . . . . . . . . . . . . . . . . . . . . . . . . .195 12-1 12-2 12-3 12-4 12-5 12-6 12-7 12-8 12-9 12-10 12-11 12-12 12-13 12-14 12-15 SCI Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . .200 SCI I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . .201 SCI Data Formats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202 SCI Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203 SCI Receiver Block Diagram . . . . . . . . . . . . . . . . . . . . . . .207 Receiver Data Sampling. . . . . . . . . . . . . . . . . . . . . . . . . . .208 Slow Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211 Fast Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212 SCI Control Register 1 (SCC1) . . . . . . . . . . . . . . . . . . . . .217 SCI Control Register 2 (SCC2) . . . . . . . . . . . . . . . . . . . . .220 SCI Control Register 3 (SCC3) . . . . . . . . . . . . . . . . . . . . .223 SCI Status Register 1 (SCS1) . . . . . . . . . . . . . . . . . . . . . .225 SCI Status Register 2 (SCS2) . . . . . . . . . . . . . . . . . . . . . .228 SCI Data Register (SCDR). . . . . . . . . . . . . . . . . . . . . . . . .229 SCI Baud Rate Register (SCBR) . . . . . . . . . . . . . . . . . . . .229 13-1 13-2 13-3 13-4 ADC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235 ADC Status and Control Register (ADSCR). . . . . . . . . . . .238 ADC Data Register (ADR) . . . . . . . . . . . . . . . . . . . . . . . . .241 ADC Clock Register (ADCLKR) . . . . . . . . . . . . . . . . . . . . .241 MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Page Advance Information List of Figures 21 A G R E E M E N T Title N O N - D I S C L O S U R E Figure R E Q U I R E D List of Figures R E Q U I R E D List of Figures N O N - D I S C L O S U R E A G R E E M E N T Figure Title 14-1 14-2 Configuration Register (CONFIG) . . . . . . . . . . . . . . . . . . .244 Mask Option Register (MOR) . . . . . . . . . . . . . . . . . . . . . . .244 15-1 15-2 15-3 15-4 15-5 15-6 15-7 15-8 15-9 15-10 15-11 15-12 15-13 15-14 15-15 15-16 15-17 15-18 15-19 15-20 15-21 TIM Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249 Timer I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . .250 PWM Period and Pulse Width . . . . . . . . . . . . . . . . . . . . . .255 Timer Status and Control Register (TSC) . . . . . . . . . . . . .262 Timer Counter Register High (TCNTH) . . . . . . . . . . . . . . .264 Timer Counter Register Low (TCNTL) . . . . . . . . . . . . . . . .264 Timer Modulo Register High (TMODH) . . . . . . . . . . . . . . .265 Timer Modulo Register Low (TMODL) . . . . . . . . . . . . . . . .265 Timer Channel 0 Status and Control Register (TSC0) . . . .266 Timer Channel 1 Status and Control Register (TSC1) . . . .266 Timer Channel 2 Status and Control Register (TSC2) . . . .267 Timer Channel 3 Status and Control Register (TSC3) . . . .267 CHxMAX Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270 Timer Channel 0 Register High (TCH0H). . . . . . . . . . . . . .271 Timer Channel 0 Register Low (TCH0L) . . . . . . . . . . . . . .271 Timer Channel 1 Register High (TCH1H). . . . . . . . . . . . . .272 Timer Channel 1 Register Low (TCH1L) . . . . . . . . . . . . . .272 Timer Channel 2 Register High (TCH2H). . . . . . . . . . . . . .272 Timer Channel 2 Register Low (TCH2L) . . . . . . . . . . . . . .272 Timer Channel 3 Register High (TCH3H). . . . . . . . . . . . . .273 Timer Channel 3 Register Low (TCH3L) . . . . . . . . . . . . . .273 16-1 16-2 Timebase Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . .276 Timebase Control Register (TBXCR) . . . . . . . . . . . . . . . . .277 17-1 17-2 17-3 17-4 17-5 17-6 17-7 17-8 I/O Port Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .282 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . .284 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . .284 Port A I/O Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .285 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . .286 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . .286 Port B I/O Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .287 Port C Data Register (PTC) . . . . . . . . . . . . . . . . . . . . . . . .288 Advance Information 22 Page MC68HC(9)08PT48 — Rev. 2.0 List of Figures MOTOROLA 17-9 17-10 17-11 17-12 17-13 17-14 17-15 17-16 17-17 17-18 17-19 17-20 17-21 17-22 Data Direction Register C (DDRC) . . . . . . . . . . . . . . . . . . .288 Port C I/O Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289 Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . .290 Data Direction Register D (DDRD) . . . . . . . . . . . . . . . . . . .290 Port D I/O Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .291 Port E Data Register (PTE) . . . . . . . . . . . . . . . . . . . . . . . .292 Data Direction Register E (DDRE) . . . . . . . . . . . . . . . . . . .292 Port E I/O Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293 Port F Data Register (PTF) . . . . . . . . . . . . . . . . . . . . . . . .294 Data Direction Register F (DDRF) . . . . . . . . . . . . . . . . . . .294 Port F I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .295 Port G Data Register (PTG) . . . . . . . . . . . . . . . . . . . . . . . .296 Data Direction Register G (DDRG) . . . . . . . . . . . . . . . . . .296 Port G I/O Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .297 18-1 18-2 18-3 18-4 18-5 Monitor Mode Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . .301 Monitor Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . .303 Sample Monitor Waveforms . . . . . . . . . . . . . . . . . . . . . . . .303 Read Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .303 Break Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .304 19-1 19-2 19-3 19-4 19-5 Break Module Block Diagram. . . . . . . . . . . . . . . . . . . . . . .311 Break I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . .311 Break Status and Control Register (BRKSCR) . . . . . . . . .313 Break Address Register High (BRKH) . . . . . . . . . . . . . . . .314 Break Address Register Low (BRKL) . . . . . . . . . . . . . . . . .314 20-1 20-2 20-3 IRQ Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . .317 IRQ Interrupt Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . .318 IRQ Status and Control Register (ISCR) . . . . . . . . . . . . . .322 21-1 21-2 21-3 Alert Control Register (ALCR) . . . . . . . . . . . . . . . . . . . . . .327 Block Diagram of SPL Reduction Circuit . . . . . . . . . . . . . .328 Alert Data Register (ALDR) . . . . . . . . . . . . . . . . . . . . . . . .329 MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Page Advance Information List of Figures 23 A G R E E M E N T Title N O N - D I S C L O S U R E Figure R E Q U I R E D List of Figures R E Q U I R E D List of Figures Figure Page SPI Master Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .339 SPI Slave Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .340 N O N - D I S C L O S U R E A G R E E M E N T 22-1 22-2 Title Advance Information 24 MC68HC(9)08PT48 — Rev. 2.0 List of Figures MOTOROLA Title 3-1 3-2 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68 4-1 4-2 4-3 Numeric Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 PRE1 and PRE0 Programming . . . . . . . . . . . . . . . . . . . . . . .89 VPR1 and VPR0 Programming . . . . . . . . . . . . . . . . . . . . . . .89 7-1 7-2 7-3 Signal Name Convention . . . . . . . . . . . . . . . . . . . . . . . . . . .120 PIN Bit Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136 9-1 9-2 Erase Block Sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145 Charge Pump Clock Frequency . . . . . . . . . . . . . . . . . . . . . .149 10-1 10-2 10-3 32-Kbyte Erase Block Sizes . . . . . . . . . . . . . . . . . . . . . . . . .156 16-Kbyte Erase Block Sizes . . . . . . . . . . . . . . . . . . . . . . . . .156 Charge Pump Clock Frequency . . . . . . . . . . . . . . . . . . . . . .161 11-1 11-2 11-3 SPI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182 SPI Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188 SPI Master Baud Rate Selection . . . . . . . . . . . . . . . . . . . . .194 12-1 12-2 12-3 12-4 12-5 12-6 12-7 Start Bit Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209 Data Bit Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209 Stop Bit Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210 Character Format Selection . . . . . . . . . . . . . . . . . . . . . . . . .219 SCI Baud Rate Prescaling . . . . . . . . . . . . . . . . . . . . . . . . . .230 SCI Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . .230 SCI Baud Rate Selection Examples . . . . . . . . . . . . . . . . . . .232 MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Page Advance Information List of Tables 25 R E Q U I R E D Table A G R E E M E N T List of Tables N O N - D I S C L O S U R E Advance Information — MC68HC(9)08PT48 R E Q U I R E D List of Tables N O N - D I S C L O S U R E A G R E E M E N T Table Title 13-1 13-2 Mux Channel Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240 ADC Clock Divide Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . .242 15-1 15-2 Prescaler Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263 Mode, Edge, and Level Selection. . . . . . . . . . . . . . . . . . . . .269 16-1 16-2 Timebase Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . .277 Input Crystal Frequency Selection . . . . . . . . . . . . . . . . . . . .278 17-1 17-2 17-3 17-4 17-5 17-6 17-7 Port A Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .285 Port B Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .287 Port C Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289 Port D Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .291 Port E Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293 Port F Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .295 Port G Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .297 18-1 18-2 18-3 18-4 18-5 18-6 18-7 18-8 18-9 Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .300 Mode Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .302 READ (Read Memory) Command . . . . . . . . . . . . . . . . . . . .305 WRITE (Write Memory) Command. . . . . . . . . . . . . . . . . . . .305 READ (Indexed Read) Command . . . . . . . . . . . . . . . . . . . .306 IWRITE (Indexed Write) Command . . . . . . . . . . . . . . . . . . .306 READSP (Read Stack Pointer) Command. . . . . . . . . . . . . .307 RUN (Run User Program) Command. . . . . . . . . . . . . . . . . .307 Monitor Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . .308 21-1 21-2 21-3 Audio Alert Tone Generator divider Ratios. . . . . . . . . . . . . .326 Clock Divider and Modulator Selections . . . . . . . . . . . . . . .329 Duty Cycle Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .330 24-1 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .350 Advance Information 26 Page MC68HC(9)08PT48 — Rev. 2.0 List of Tables MOTOROLA 1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 1.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 1.4 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 1.5 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 1.6 Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 1.6.1 Power Supply Pins (VDD, VSS, EVDD1-4, EVSS1-4,VDDA1,2,VSSA1,2). . . . . . . . . . . . . . . . . . . . . . . .32 1.6.2 Oscillator Pins (OSC1 and OSC2) . . . . . . . . . . . . . . . . . . .33 1.6.3 External Reset Pin (RST) . . . . . . . . . . . . . . . . . . . . . . . . . .33 1.6.4 External Interrupt Pin (IRQ1). . . . . . . . . . . . . . . . . . . . . . . .34 1.6.5 External Interrupt Pin (IRQ2). . . . . . . . . . . . . . . . . . . . . . . .34 1.6.6 External Filter Capacitor Pins (PLLXFC). . . . . . . . . . . . . . .34 1.6.7 Port A I/O Pins (PTA7–PTA0) . . . . . . . . . . . . . . . . . . . . . . .34 1.6.8 Port B I/O Pins (PTB7–PTB0) . . . . . . . . . . . . . . . . . . . . . . .34 1.6.9 Port C I/O Pins (PTC7–PTC0). . . . . . . . . . . . . . . . . . . . . . .34 1.6.10 Port D I/O Pins (PTD7–PTD0). . . . . . . . . . . . . . . . . . . . . . .34 1.6.11 Port E I/O Pins (PTE7/AD3–PTE4/AD0 and PTE3/MISO-PTE0/SS) . . . . . . . . . . . . . . . . . . . . . .35 1.6.12 Port F I/O Pins (PTF7/KBD7–PTF0/KBD0) . . . . . . . . . . . . .35 1.6.13 Port G I/O Pins (PTG7/TCH3–PTG3/TCLK, PTG2/TxD, PTG1/RxD, and PTG0) . . . . . . . . . . . . . . . .35 1.6.14 Alert Generator Output (ALERT) . . . . . . . . . . . . . . . . . . . . .35 1.6.15 ADC Voltage Reference Pin (VRH) . . . . . . . . . . . . . . . . . . .35 MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information General Description 27 R E Q U I R E D 1.1 Contents A G R E E M E N T Section 1. General Description N O N - D I S C L O S U R E Advance Information — MC68HC(9)08PT48 1.2 Introduction The MC68HC(9)08PT48 is a member of the low-cost, low-power, highperformance M68HC08 Family of 8-bit microcontroller units (MCUs). The M68HC08 Family is based on the customer-specified integrated circuit (CSIC) design strategy. All MCUs in the family use the enhanced M68HC08 central processor unit (CPU08) and are available with a variety of modules, memory sizes and types, and package types. 1.3 Features Features of the MC68HC(9)08PT48 include: N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D General Description • High-performance M68HC08 architecture • Fully upward-compatible object code with M6805, M146805, and M68HC05 Families • On-chip FLASH/ROM of 48 Kbytes • On-chip FLASH of 2 Kbytes separate from program ROM/FLASH • ROM data security1 option (no security option for MC68HC908PT48) • Configuration register (CONFIG) • 2.5 Kbytes of on-chip MCU random-access memory (RAM) • 56 general-purpose input/output (I/O) pins • Programmable phase locked loop (PLL) for bus clock generation • Serial peripheral interface module (SPI) • Serial communications interface module (SCI) • Timebase module (TBM) with software selection of crystal clock source • Two external interrupt request pins • ALERT generator module (ALR) 1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or copying the FLASH difficult for unauthorized users. Advance Information 28 MC68HC(9)08PT48 — Rev. 2.0 General Description MOTOROLA 16-bit, 4-channel timer interface module (TIM) • Computer operating properly (COP) reset • 8-bit, 4-channel analog-to-digital converter (ADC) • System protection features: – Illegal opcode detect reset – Illegal address detect reset • Packaged in an 80-pin quad flat pack (LQFP) • Low-power design (fully static with stop and wait modes) • Master reset pin and power-on reset (POR) A G R E E M E N T • R E Q U I R E D General Description MCU Block Diagram • Enhanced HC05 programming model • Extensive loop control functions • 16 addressing modes (eight more than the HC05) • 16-bit index register and stack pointer • Fast 8 x 8 multiply instruction • Fast 16 ÷ 8 divide instruction • Binary coded decimal (BCD) instructions • Optimization for controller applications • High-level language (C language) support N O N - D I S C L O S U R E Features of the CPU08 include: 1.4 MCU Block Diagram Figure 1-1 shows the structure of the MC68HC(9)08PT48. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information General Description 29 R E Q U I R E D General Description 15 0 PTADDR PTA 0 PTB H:X 15 PTB7 PTB6 PTB5 PTB4 PTB3 PTB2 PTB1 PTB0 PTC 0 PTC7 PTC6 PTC5 PTC4 PTC3 PTC2 PTC1 PTC0 PTD 0 VRH 7 8 7 A 15 PTA7 PTA6 PTA5 PTA4 PTA3 PTA2 PTA1 PTA0 PTD7 PTD6 PTD5 PTD4 PTD3 PTD2 PTD1 PTD0 PTE DATA & ADDRESS BUS ARITHMETIC/ LOGIC UNIT (ALU) CPU CONTROL PTE7/AD3 PTE6/AD2 PTE5/AD1 PTE4/AD0 PTE3/MISO PTE2/MOSI PTE1/SPSCK PTE0/SS 7 V PC 0 H I N Z C CCR A G R E E M E N T CONTROL/STATUS REGISTERS 80 BYTES ANALOG TO DIGITAL CONVERTOR SYSTEM MANAGEMENT MODULE PTBDDR SP MONITOR ROM — 240 BYTES SYSTEM INTEGRATION MODULE RST IRQ1 IRQ2 EVSS EVDD VSSA VDDA VSS VDD 4 4 2 2 POWER SERIAL PERIPHERAL INTERFACE MODULE COMPUTER OPERATING PROPERLY MODULE PTEDDR CLOCK GENERATION MODULES PTF OSC1 OSC2 PLLXFC SCI MODULE PTFDDR N O N - D I S C L O S U R E USER FLASH/ROM VECTORS 44 BYTES PTDDDR TIMER MODULE PTF7/KBD7 PTF6/KBD6 PTF5/KBD5 PTF4/KBD4 PTF3/KBD3 PTF2/KBD2 PTF1/KBD1 PTF0/KBD0 PTG USER FLASH/ROM — 48,640 BYTES PTG7/TCH3 PTG6/TCH2 PTG5/TCH1 PTG4/TCH0 PTG3/TCLK PTG2/TxD PTG1/RxD PTG0 ALERT GENERATOR MODULE 2 2 KEYBOARD INTERRUPT MODULE PTGDDR FLASH PROM — 2 KBYTES TIME BASE MODULE PTCDDR RAM — 2.5 KBYTES ALERT Figure 1-1. MC68HC(9)08PT48 Block Diagram Advance Information 30 MC68HC(9)08PT48 — Rev. 2.0 General Description MOTOROLA 1.5 Pin Assignments VDDA1 ALERT IRQ2 RST IRQ1 EVSS1 EVDD1 PG7/TCH3 PG6/TCH2 PG5/TCH1 PG4/TCH0 PG3/TCLK PG2/TxD PG1/RxD PG0 PF7/KBD7 PF6/KBD6 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 PF4/KBD4 2 59 PF3/KBD3 EVDD4 3 58 PF2/KBD2 VDD 4 57 PF1/KBD1 PA0 5 56 PF0/KBD0 PA1 6 55 VSS PA2 7 54 VDD PA3 8 53 EVDD2 PA4 9 52 VDDA2 PA5 10 51 VRH PA6 11 50 PE7/AD3 PTA7 12 49 PE6/AD2 EVDD4 13 48 PE5/AD1 EVSS4 14 47 PE4/AD0 PB0 15 46 VSSA2 35 36 37 38 39 PD2 PD3 PD4 PD5 PD6 PB7 PB6 41 PE0/SS PD7 40 33 34 32 EVDD3 PD1 31 PD0 30 PC7 29 EVSS3 28 PC6 22 20 21 PB5 PC5 PE1/SPCLK 27 42 PC4 PB4 26 PE2/MOSI 25 43 19 PC3 18 PC2 PE3/MISO PB3 23 44 24 45 17 PC1 16 PB2 PC0 PB1 EVSS2 A G R E E M E N T 60 1 OSC2 N O N - D I S C L O S U R E OSC1 PF5/KBD5 PLLXFC VSSA1 80 79 Pin assignments for the MC68HC(9)08PT48 are shown in Figure 1-2. Figure 1-2. MC68HC(9)08PT48 Pinout (Top View) 1.6 Pin Functions Descriptions of the pin functions are provided here. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information General Description R E Q U I R E D General Description Pin Assignments 31 1.6.1 Power Supply Pins (VDD, VSS, EVDD1-4, EVSS1-4, VDDA1,2, VSSA1,2) VDD and VSS are power supply and ground pins for the digital sections of the MCU. The MCU operates from a single power supply ranging from 2 V ± 10% to 3 V ± 10%. The EVDD and EVSS pins are power supply and ground pins for the I/O section of the MCU. VDDA1 and VSSA1 are used for the analog portion of the bus clock PLL to reduce noise injected to the clocks. Very fast signal transitions on MCU pins place high, short-duration current demands on the power supply. To prevent noise problems, take special care to provide good power supply bypassing at the MCU as shown in Figure 1-3. Place the C1 bypass capacitor as close to the MCU as possible. Use a high-frequency response ceramic capacitor for C1. C2 is an optional bulk current bypass capacitor for use in applications that require the port pins to source high current levels. A G R E E M E N T R E Q U I R E D General Description N O N - D I S C L O S U R E EVSS2 pin is also the ground return pin for the serial clock in the serial peripheral interface module (SPI). It enables the user to implement a coplanar transmission line for the SPI clock on printed circuit boards (PCBs) with no ground plane. VSS can help reduce radiated radio frequency (RF) emissions by controlling trace impedance and minimizing radiating loop area. MCU VDD VSS C1 0.1 µF + C2 VDD Figure 1-3. Power Supply Bypassing NOTE: Component values shown represent typical applications. Advance Information 32 MC68HC(9)08PT48 — Rev. 2.0 General Description MOTOROLA The OSC1 and OSC2 pins are the crystal connections for the on-chip oscillator. Figure 1-4 shows a typical crystal oscillator circuit for a parallel resonant crystal. Follow the crystal supplier’s recommendations, as the crystal parameters determine the external component values required to provide reliable start up and maximum stability. The load capacitance values used in the oscillator circuit design should include all stray layout capacitances. To minimize output distortion and RF emissions, mount the crystal and capacitors as close as possible to the pins. MCU OSC1 C1 OSC2 XTAL C2 Figure 1-4. Crystal Connections NOTE: Follow the crystal manufacturer’s recommendations for component sizes. 1.6.3 External Reset Pin (RST) A logic 0 on the RST pin forces the MCU to a known startup state. RST is bidirectional, allowing a reset of the entire system. It is driven low when any internal reset source is asserted. See Section 7. System Integration Module (SIM) for more information. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information General Description 33 N O N - D I S C L O S U R E NOTE: A G R E E M E N T 1.6.2 Oscillator Pins (OSC1 and OSC2) R E Q U I R E D General Description Pin Functions N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D General Description 1.6.4 External Interrupt Pin (IRQ1) IRQ1 is an asynchronous external interrupt pin. See Section 20. External Interrupt Module (IRQ) for more information. 1.6.5 External Interrupt Pin (IRQ2) IRQ2 is an asynchronous external interrupt pin. See Section 20. External Interrupt Module (IRQ) for more information. 1.6.6 External Filter Capacitor Pins (PLLXFC) PLLXFC is the external filter capacitor connections for the PLL. See Section 17. Input/Output (I/O) Ports for more information. 1.6.7 Port A I/O Pins (PTA7–PTA0) PTA7–PTA0 are general-purpose bidirectional I/O port pins. See Section 17. Input/Output (I/O) Ports for more information. 1.6.8 Port B I/O Pins (PTB7–PTB0) PTB7–PTB0 are general-purpose bidirectional I/O port pins.See Section 17. Input/Output (I/O) Ports for more information. 1.6.9 Port C I/O Pins (PTC7–PTC0) PTC7–PTC0 are general-purpose bidirectional I/O port pins. See Section 17. Input/Output (I/O) Ports for more information. 1.6.10 Port D I/O Pins (PTD7–PTD0) PTD7–PTD0 are general-purpose bidirectional I/O port pins. See Section 17. Input/Output (I/O) Ports for more information. Advance Information 34 MC68HC(9)08PT48 — Rev. 2.0 General Description MOTOROLA 1.6.12 Port F I/O Pins (PTF7/KBD7–PTF0/KBD0) Port F is an 8-bit special function port that shares with the keyboard interrupts. 1.6.13 Port G I/O Pins (PTG7/TCH3–PTG3/TCLK, PTG2/TxD, PTG1/RxD, and PTG0) Port G is an 8-bit special function port that shares five of its pins with the timer and two of its pins with SCI. 1.6.14 Alert Generator Output (ALERT) ALERT is the output from the ALR. See 21.1 Contents for more information. 1.6.15 ADC Voltage Reference Pin (VRH) VRH is the power supply for setting the reference voltage VRH. Connect the VRH pin to a voltage potential ← VDDA2, not less than 1.5 V. It supplies the resistor legs. Ideally, route this to its own pad. It can be routed to VDDA. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information General Description 35 A G R E E M E N T Port E is an 8-bit special function port that shares four of its pins with the ADC and the other four pins with SPI. N O N - D I S C L O S U R E 1.6.11 Port E I/O Pins (PTE7/AD3–PTE4/AD0 and PTE3/MISO–PTE0/SS) R E Q U I R E D General Description Pin Functions N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D General Description Advance Information 36 MC68HC(9)08PT48 — Rev. 2.0 General Description MOTOROLA 2.1 Contents 2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 2.3 I/O Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 2.4 Random-Access Memory (RAM) . . . . . . . . . . . . . . . . . . . . . . .38 2.5 Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 2.6 User FLASH/ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 2.7 FLASH PROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 2.8 Monitor ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 2.2 Introduction • 48 Kbytes of low-voltage FLASH/ROM • 2.5 Kbytes of RAM • 2 Kbytes of low-voltage FLASH separate from ROM/emulation FLASH • 44 bytes of user-defined vectors • 240 bytes of monitor ROM MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA N O N - D I S C L O S U R E The CPU08 can address 64 Kbytes of memory space. The memory map, shown in Figure 2-1, includes: Advance Information Memory Map R E Q U I R E D Section 2. Memory Map A G R E E M E N T Advance Information — MC68HC(9)08PT48 37 2.3 I/O Section Addresses $0000–$004F, shown in Figure 2-1, contain most of the control, status, and data registers. Additional input/output (I/O) registers located in upper page memory are shown in Figure 2-2. 2.4 Random-Access Memory (RAM) The 2.5 Kbyte addresses from $0050–$0A4F are RAM locations. The location of the stack RAM is programmable. The 16-bit stack pointer allows the stack to be anywhere in RAM, allowing all page zero locations to be used for I/O control and user data or code. Within page zero there are 176 bytes of RAM. When the stack pointer is moved from its reset location at $00FF, direct addressing mode instructions can efficiently access all page zero RAM locations. Page zero RAM therefore provides ideal locations for frequently accessed global variables. N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Memory Map Before processing an interrupt, the CPU uses five bytes of the stack to save the contents of the CPU registers. For M6805 compatibility, the H register is not stacked. During a subroutine call, the CPU uses two bytes of the stack to store the return address. The stack pointer decrements during pushes and increments during pulls. NOTE: Be careful when using nested subroutines or multiple interrupt levels. The CPU may overwrite data in the RAM during a subroutine or during the interrupt stacking. 2.5 Memory Map See Figure 2-1, Figure 2-2, Figure 2-3, and Figure 2-4. Advance Information 38 MC68HC(9)08PT48 — Rev. 2.0 Memory Map MOTOROLA $004F $0050 $0A4F $0A50 $17FF $1800 $1FFF $2000 $FFDB $FFDC $FFFF $01 TIM Channel 1 Status/Control Register $29 Port C Data Register $02 TIM Channel 1 Register High $2A $2B Port D Data Register $03 TIM Channel 1 Register Low Port A Data Direction Register $04 TIM Channel 2 Status/Control Register $2C Port B Data Direction Register $05 TIM Channel 2 Register High $2D Port C Data Direction Register $06 TIM Channel 2 Register Low $2E Port D Data Direction Register $07 TIM Channel 3 Status/Control Register $2F Port E Data Register $08 TIM Channel 3 Register High $30 $09 TIM Channel 3 Register Low $31 $0A Unused $32 Unused $0B Keyboard Status/Control Register $33 Port E Data Direction Register $0C Keyboard Interrupt Enable Register $34 Port F Data Direction Register $0D Unused $35 Port G Data Direction Register $0E Alert Control Register $36 SPI Control Register $0F Alert Data Register $37 SPI Status Register $10 Timebase Control Register $38 FLASH 2048 Bytes SPI Data Register $11 Unused $39 Unused $12 Unused $3A Unused 8192 Bytes Unused $13 Unused $3B SCI Control Register 1 $14 Unused $3C SCI Control Register 2 $15 Unused $3D SCI Control Register 3 $16 Unused $3E SCI Status Register 1 $17 SCI Status Register 2 $18 SCI Data Register $19 Unused $41 SCI Baud Rate Register $1A Unused $42 Unused $1B Unused $43 Unused $1C Unused $44 $45 Stack 64 Bytes User RAM 2560 Bytes (Total) Unused 3504 Bytes User FLASH/ROM 48,640 Bytes $FEFF $FF00 Port B Data Register Port F Data Register $3FFF $4000 $FDFF $FE00 $FE10 $28 Port G Data Register Page 0 User RAM 176 Bytes $00FF $0100 TIM Channel 0 Register Low SIM Registers 16 Bytes Monitor ROM 240 Bytes Configuration Register $3F $40 Unused Unused 220 Bytes IRQ Status/Control Register $1D Unused User Vectors 36 Bytes 2-K FLASH Block Protect Register $1E PLL Control Register $46 *32-K FLASH Block Protect Register $1F PLL Bandwidth Control Register TIM Status and Control Register $20 PLL Multiplier Select High Register $47 $48 Unused *MC68HC908PT48 only $21 PLL Multiplier Select Low Register $49 TIM Counter Register High $22 PLL VCO Range Select Register $4A TIM Counter Register Low $23 PLL Reference Divider Select Register $4B TIM Counter Modulo Register High $24 A/D Status/Control Register $4C TIM Counter Modulo Register Low $25 A/D Data Register $4D $26 A/D Clock Register $4E *16-K FLASH Block Protect Register $4F TIM Channel 0 Status/Control Register TIM Channel 0 Register High $27 A G R E E M E N T I/O 80 Bytes $00 N O N - D I S C L O S U R E $0000 Port A Data Register R E Q U I R E D Memory Map Memory Map Figure 2-1. Memory Map MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Memory Map 39 R E Q U I R E D Memory Map A G R E E M E N T $FE00 $FE0F $FE00 SIM Reset Status Register $FE01 Reserved $FE02 SIM Break Flag Control Register $FE03 Reserved $FE04 Reserved $FE05 Reserved $FE06 Reserved for -K FLASH Test $FE07 2-K FLASH Control Register $FE08 Reserved for 16-K FLASH 1 Test $FE09 16-K FLASH 2 Control Register $FE0A Reserved for 32-K FLASH 2 Test $FE0B 32-K FLASH 1 Control Register $FE0C Break Address Register (High) $FE0D Break Address Register (Low) $FE0E Break Status and Control Register $FE0F Figure 2-2. MC68HC(9)08PT48 Register Map Addr. N O N - D I S C L O S U R E SIM Registers 16 Bytes SIM Break Status Register $0000 $0001 $0002 $0003 Register Name Bit 7 Read: PTA7 Port A Data Register Write: (PTA) Reset: Read: PTB7 Port B Data Register Write: (PTB) Reset: Read: PTC7 Port C Data Register Write: (PTC) Reset: Read: PTD7 Port D Data Register Write: (PTD) Reset: 6 5 4 3 2 1 Bit 0 PTA6 PTA5 PTA4 PTA3 PTA2 PTA1 PTA0 PTB2 PTB1 PTB0 PTC2 PTC1 PTC0 PTD2 PTD1 PTD0 Unaffected by reset PTB6 PTB5 PTB4 PTB3 Unaffected by reset PTC6 PTC5 PTC4 PTC3 Unaffected by reset PTD6 PTD5 PTD4 PTD3 Unaffected by reset = Unimplemented U = Undetermined X = Indeterminate Figure 2-3. Control, Status, and Data Registers (Sheet 1 of 10) Advance Information 40 MC68HC(9)08PT48 — Rev. 2.0 Memory Map MOTOROLA Bit 7 Read: DDRA7 Port A Data Direction Register $0004 Write: (DDRA) Reset: 0 Read: DDRB7 Port B Data Direction Register $0005 Write: (DDRB) Reset: 0 6 5 4 3 2 1 Bit 0 DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0 0 0 0 0 0 0 0 DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0 0 0 0 0 0 0 0 DDRC5 DDRC4 DDRC3 DDRC2 DDRC1 DDRC0 0 0 0 0 0 0 DDRD5 DDRD4 DDRD3 DDRD2 DDRD1 DDRD0 0 0 0 0 0 0 PTE5 PTE4 PTE3 PTE2 PTE1 PTE0 PTF2 PTF1 PTF0 PTG2 PTG1 PTG0 Read: DDRC7 DDRC6 Port C Data Direction Register $0006 Write: (DDRC) Reset: 0 0 Read: DDRD7 DDRD6 Port D Data Direction Register $0007 Write: (DDRD) Reset: 0 0 $0008 $0009 $000A Read: PTE7 Port E Data Register Write: (PTE) Reset: Read: PTF7 Port F Data Register Write: (PTF) Reset: Read: PTG7 Port G Data Register Write: (PTG) Reset: PTE6 Unaffected by reset PTF6 PTF5 PTF4 PTF3 Unaffected by reset PTG6 PTG5 PTG4 PTG3 Unaffected by reset $000B Unimplemented Read: DDRE7 Port E Data Direction Register $000C Write: (DDRE) Reset: 0 Read: DDRF7 Port F Data Direction Register $000D Write: (DDRF) Reset: 0 DDRE6 DDRE5 DDRE4 DDRE3 DDRE2 DDRE1 DDRE0 0 0 0 0 0 0 0 DDRF6 DDRF5 DDRF4 DDRF3 DDRF2 DDRF1 DDRF0 0 0 0 0 0 0 0 = Unimplemented U = Undetermined X = Indeterminate Figure 2-3. Control, Status, and Data Registers (Sheet 2 of 10) MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA A G R E E M E N T Register Name Advance Information Memory Map 41 N O N - D I S C L O S U R E Addr. R E Q U I R E D Memory Map Memory Map N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Memory Map Addr. Register Name Bit 7 6 5 4 3 2 DDRG5 DDRG4 DDRG3 DDRG2 0 0 0 0 0 0 DMAS SPMSTR CPOL CPHA SPWOM SPE SPTIE 0 1 0 1 0 0 0 OVRF MODF SPTE MODFEN SPR1 SPR0 0 0 0 1 0 0 0 R7 R6 R5 R4 R3 R2 R1 R0 T7 T6 T5 T4 T3 T2 T1 T0 Read: DDRG7 DDRG6 Port G Data Direction Register $000E Write: (DDRG) Reset: 0 0 $000F $0010 $0011 Read: SPRIE SPI Control Register Write: (SPCR) Reset: 0 Read: SPRF SPI Status and Control Write: Register (SPSCR) Reset: 0 Read: SPI Data Register Write: (SPDR) Reset: ERRIE Unimplemented $0013 Unimplemented $0015 $0016 $0017 Read: LOOPS SCI Control Register 1 Write: (SCC1) Reset: 0 Read: SCTIE SCI Control Register 2 Write: (SCC2) Reset: 0 Read: SCI Control Register 3 Write: (SCC3) Reset: Bit 0 DDRG1 DDRG0 Indeterminate after reset $0012 $0014 1 R8 U Read: SCTE SCI Status Register 1 Write: (SCS1) Reset: 1 ENSCI TXINV M WAKE ILTY PEN PTY 0 0 0 0 0 0 0 TCIE SCRIE ILIE TE RE RWU SBK 0 0 0 0 0 0 0 T8 DMARE DMATE ORIE NEIE FEIE PEIE U 0 0 0 0 0 0 TC SCRF IDLE OR NF FE PE 1 0 0 0 0 0 0 = Unimplemented U = Undetermined X = Indeterminate Figure 2-3. Control, Status, and Data Registers (Sheet 3 of 10) Advance Information 42 MC68HC(9)08PT48 — Rev. 2.0 Memory Map MOTOROLA Read: SCI Status Register 2 Write: (SCS2) Reset: $0018 Read: SCI Data Register Write: (SCDR) Reset: $0019 Read: SCI Baud Rate Register Write: (SCBR) Reset: $001A Bit 7 6 5 4 3 0 0 0 0 R7 R6 R5 R4 R3 R2 R1 R0 T7 T6 T5 T4 T3 T2 T1 T0 SCR2 SCR1 SCR0 0 0 0 Unaffected by reset 0 Read: IRQF2 IRQ Status and Control Write: Register (ISCR) Reset: 0 $001F $0020 Read: Timer Status and Control Write: Register (TSC) Reset: 0 SCP1 SCP0 0 0 X 0 ACK2 0 X IMASK2 MODE2 0 0 X 0 X IRQF1 0 ACK1 X TOF 0 0 X X TOIE TSTOP 0 1 0 0 0 BPR3 BPR2 BPR1 BPR0 1 1 1 1 X 1 0 0 TRST 0 IMASK1 MODE1 0 F1BPR3 $0021 $0022 RPF 0 Unimplemented Read: FLASH 1 Block Protect Write: Register (FL1BPR) Reset: BKF 0 $001C $001E Bit 0 0 Unimplemented Read: FLASH 3 Block Protect Write: Register (FL3BPR) Reset: 1 0 $001B $001D 2 0 F1BPR2 F1BPR1 F1BPR0 1 1 1 PS2 PS1 PS0 0 0 0 Unimplemented Read: Bit 15 Timer Counter Register High Write: (TCNTH) Reset: 0 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 0 0 0 0 0 0 0 0 = Unimplemented U = Undetermined X = Indeterminate Figure 2-3. Control, Status, and Data Registers (Sheet 4 of 10) MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Memory Map 43 A G R E E M E N T Register Name N O N - D I S C L O S U R E Addr. R E Q U I R E D Memory Map Memory Map N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Memory Map Addr. $0023 $0024 $0025 $0026 Register Name Read: Timer Counter Register Low Write: (TCNTL) Reset: Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 0 0 0 0 0 0 0 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 1 1 1 1 1 1 1 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 1 1 1 1 1 1 1 1 CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX 0 0 0 0 0 0 0 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 2 Bit 1 Bit 0 Read: Bit 15 Timer Modulo Register High Write: (TMODH) Reset: 1 Read: Timer Modulo Register Low Write: (TMODL) Reset: Read: CH0F Timer Channel 0 Status and Write: 0 Control Register (TSC0) Reset: 0 Read: Bit 15 Timer Channel 0 Register High $0027 Write: (TCH0H) Reset: Read: Timer Channel 0 Register Low Write: $0028 (TCH0L) Reset: $0029 Bit 7 Read: Bit 15 Timer Channel 1 Register High $002A Write: (TCH1H) Reset: $002C Bit 6 Bit 5 Bit 4 Bit 3 Indeterminate after reset Read: CH1F Timer Channel 1 Status and Write: 0 Control Register (TSC1) Reset: 0 Read: Timer Channel 1 Register Low $002B Write: (TCH1L) Reset: Indeterminate after reset Bit 7 Read: CH2F Timer Channel 2 Status and Write: 0 Control Register (TSC2) Reset: 0 CH1IE 0 MS1A ELS1B ELS1A TOV1 CH1MAX 0 0 0 0 0 0 0 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 2 Bit 1 Bit 0 Indeterminate after reset Bit 6 Bit 5 Bit 4 Bit 3 Unaffected by reset CH2IE MS2B MS2A ELS2B ELS2A TOV2 CH2MAX 0 0 0 0 0 0 0 = Unimplemented U = Undetermined X = Indeterminate Figure 2-3. Control, Status, and Data Registers (Sheet 5 of 10) Advance Information 44 MC68HC(9)08PT48 — Rev. 2.0 Memory Map MOTOROLA Bit 7 Read: Bit 15 Timer Channel 2 Register High $002D Write: (TCH2H) Reset: Read: Timer Channel 2 Register Low $002E Write: (TCH2L) Reset: $002F Bit 7 5 4 3 2 1 Bit 0 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 2 Bit 1 Bit 0 Unaffected by reset Bit 6 Bit 5 Read: Bit 15 Timer Channel 3 Register High $0030 Write: (TCH3H) Reset: Bit 7 CH3IE 0 $0034 Bit 3 MS3A ELS3B ELS3A TOV3 CH3MAX 0 0 0 0 0 0 0 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 2 Bit 1 Bit 0 Unaffected by reset Bit 6 Bit 5 Bit 4 Bit 3 Unaffected by reset $0032 $0033 Bit 4 Unaffected by reset Read: CH3F Timer Channel 3 Status and Write: 0 Control Register (TSC3) Reset: 0 Read: Timer Channel 3 Register Low $0031 Write: (TCH3L) Reset: 6 A G R E E M E N T Register Name Unimplemented Read: Keyboard Status and Control Write: Register (KBSCR) Reset: 0 0 0 KEYF 0 ACKK 0 Read: KBIE7 Keyboard Interrupt Enable Write: Register (KBIER) Reset: 0 IMASKK MODEK 0 0 0 0 0 0 0 KBIE6 KBIE5 KBIE4 KBIE3 KBIE2 KBIE1 KBIE0 0 0 0 0 0 0 0 AL3 AL2 AL1 AL0 0 0 0 0 $0035 $0036 0 Unimplemented Read: Alert Control Register Write: (ALCR) Reset: 0 0 0 0 0 0 0 0 = Unimplemented U = Undetermined X = Indeterminate Figure 2-3. Control, Status, and Data Registers (Sheet 6 of 10) MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Memory Map 45 N O N - D I S C L O S U R E Addr. R E Q U I R E D Memory Map Memory Map N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Memory Map Addr. $0037 $0038 Register Name Bit 7 Read: SPL7 Alert Data Register Write: (ALDR) Reset: 0 Read: TBXIF Timebase Control Register Write: (TBXCR) Reset: 0 6 5 4 3 2 1 Bit 0 SPL6 SPL5 SPL4 SPL3 SPL2 SPL1 SPL0 0 0 0 0 0 0 0 TBXIE TBXR1 TBXR0 0 0 0 0 0 Unimplemented $003A Unimplemented $003B Unimplemented $003C Unimplemented $003D Unimplemented $003E Unimplemented $003F $003F 0 0 0 0 0 0 Read: MC68HC08PT48 Mask Option Register Write: (MOR) Reset: 0 0 0 0 0 0 SSREC SCIBDSRC 0 1 SSREC SCIBDSRC X X $0040 Unimplemented $0041 Unimplemented = Unimplemented U = Undetermined XTALR1 XTALR0 0 $0039 Read: MC68HC908PT48 Configuration Register Write: (CONFIG) Reset: TBXON TACK 0 0 STOP COPD 0 0 0 SEC STOP COPD X X X 0 X = Indeterminate Figure 2-3. Control, Status, and Data Registers (Sheet 7 of 10) Advance Information 46 MC68HC(9)08PT48 — Rev. 2.0 Memory Map MOTOROLA Bit 7 6 5 4 3 $0042 Unimplemented $0043 Unimplemented $0044 Unimplemented $0045 Unimplemented $0046 $0047 $0048 $0049 $004C PLLF Read: AUTO PLL Bandwidth Control Write: Register (PBWC) Reset: 0 LOCK Read: PLL Multiplier Select Register Write: High (PMSH) Reset: Bit 0 PLLON BCS PRE1 PRE0 VPR1 VPR0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 MUL11 MUL10 MUL9 MUL8 ACQ COE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MUL6 MUL5 MUL4 MUL3 MUL2 MUL1 MUL0 0 0 0 0 0 0 0 VRS6 VRS5 VRS4 VRS3 VRS2 VRS1 VRS0 1 0 0 0 0 0 0 0 0 0 0 RDS3 RDS2 RDS1 RDS0 0 0 0 0 0 0 0 1 AIEN ADCO ADCH4 ADCH3 ADCH2 ADCH1 ADCH0 0 0 1 1 1 1 1 Read: VRS7 PLL VCO Range Select Write: Register (PVRS) Reset: 0 Read: PLL Reference Divider Select Write: Register (PRDS) Reset: 0 1 0 Read: MUL7 PLL Multiplier Select Register Write: Low (PMSL) Reset: 0 $004A $004B Read: PLLIE PLL Control Register Write: (PCTL) Reset: 0 2 Read: COCO/ Analog-to-Digital Status and Write: IDMAS Control Register (ADSCR) Reset: 0 = Unimplemented U = Undetermined X = Indeterminate Figure 2-3. Control, Status, and Data Registers (Sheet 8 of 10) MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Memory Map 47 A G R E E M E N T Register Name N O N - D I S C L O S U R E Addr. R E Q U I R E D Memory Map Memory Map N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Memory Map Addr. $004D $004E $004F Register Name Read: Analog-to-Digital Data Write: Register (ADR) Reset: Bit 7 6 5 4 3 2 1 Bit 0 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0 0 0 0 0 0 0 0 0 ADIV1 ADIV0 ADICLK 0 0 0 0 0 0 0 0 0 0 0 Read: ADIV2 Analog-to-Digital Clock Write: Register (ADCLKR) Reset: 0 Read: MC68HC908PT48 16 K-FLASH 2 Block Protect Write: Register (FL2BPR) Reset: F2BPR3 F2BPR2 F2BPR1 F2BPR0 X X X X 1 1 R R R R R R 1 1 ↓ $FE00 Read: SIM Break Status Register Write: (SBSR) Reset: SBSW Note 1 R 0 Note 1. Writing a logic 0 clears SBSW. $FE01 Read: SIM Reset Status Register Write: (SRSR) Reset: POR PIN COP ILOP ILAD 0 LVI 0 1 0 0 0 0 0 0 0 R R R R $FE02 $FE03 Reserved Read: BCFE SIM Break Flag Control Write: Register (SBFCR) Reset: 0 R R R $FE04 Reserved $FE05 Reserved $FE06 Reserved = Unimplemented U = Undetermined X = Indeterminate Figure 2-3. Control, Status, and Data Registers (Sheet 9 of 10) Advance Information 48 MC68HC(9)08PT48 — Rev. 2.0 Memory Map MOTOROLA Register Name Bit 7 6 5 4 $FE07 Read: F3DIV1 FLASH 3 Control Register Write: (FL3CR) Reset: 0 $FE0D $FE0E Bit 0 F3DIV0 F3BLK1 F3BLK0 HVEN MARG ERASE PGM 0 0 0 0 0 0 0 Reserved Read: F2DIV1 FLASH2 Control Register Write: (FL2CR) Reset: 0 F2DIV0 F2BLK1 F2BLK0 HVEN MARG ERASE PGM 0 0 0 0 0 0 0 $FE0B $FE0C 1 Reserved $FE09 $FE0A 2 Reserved Read: F1DIV1 FLASH 1 Control Register Write: (FL1CR) Reset: 0 F1DIV0 F1BLK1 F1BLK0 HVEN MARG ERASE PGM 0 0 0 0 0 0 0 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 0 0 0 0 0 0 0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Read: Bit 15 Break Address Register High Write: (BRKH) Reset: 0 Read: Break Address Register Low Write: (BRKL) Reset: Read: BRKE Break Status/Control Register $FE0F Write: (BRKSCR) Reset: 0 N O N - D I S C L O S U R E $FE08 3 BRKA 0 ↓ $FFFF Read: COP Control Register Write: (COPCTL) Reset: Low Byte of Reset Vector Clear COP Counter Unaffected by reset = Unimplemented U = Undetermined X = Indeterminate Figure 2-3. Control, Status, and Data Registers (Sheet 10 of 10) MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Memory Map A G R E E M E N T Addr. R E Q U I R E D Memory Map Memory Map 49 R E Q U I R E D Memory Map N O N - D I S C L O S U R E A G R E E M E N T Lowest Priority $FFDC Keyboard Vector (High) $FFDD Keyboard Vector (Low) $FFDE A/D Vector (High) $FFDF A/D Vector (Low) $FFE0 PLL Vector (High) $FFE1 PLL Vector (Low) $FFE2 SPI Transmit Vector (High) $FFE3 SPI Transmit Vector (Low) $FFE4 SPI Receive Vector (High) $FFE5 SPI Receive Vector (Low) $FFE6 SCI Transmit Vector (High) $FFE7 SCI Transmit Vector (Low) $FFE8 SCI Receive Vector (High) $FFE9 SCI Receive Vector (Low) $FFEA SCI Error Vector (High) $FFEB SCI Error Vector (Low) $FFEC Timebase Vector (High) $FFED Timebase Vector(Low) $FFEE TIM OverflowVector (High) $FFEF TIM Overflow Vector (Low) $FFF0 TIM Channel 3 Vector (High) $FFF1 TIM Channel 3 Vector (Low) $FFF2 TIM Channel 2 Vector (High) $FFF3 TIM Channel 2 Vector (Low) $FFF4 TIM Channel 1 Vector (High) $FFF5 TIM Channel 1 Vector (Low) $FFF6 TIM Channel 0 Vector (High) $FFF7 $FFF8 Highest Priority TIM Channel 0 Vector (Low) External IRQ2 Vector (High) $FFF9 External IRQ2 Vector (Low) $FFFA IRQ1 Vector (High) $FFFB IRQ1 Vector (Low) $FFFC SWI Vector (High) $FFFD SWI Vector (Low) $FFFE Reset Vector (High) $FFFF Reset Vector (Low) Figure 2-4. Vector Addresses in FLASH/ROM Advance Information 50 MC68HC(9)08PT48 — Rev. 2.0 Memory Map MOTOROLA 2.6 User FLASH/ROM The MCU has 48 Kbytes of FLASH (MC68HC908PT48) or mask programmable ROM (MC68HC08PT48). These addresses are user FLASH/ROM locations: • $4000–$FDFF • $FFDC–$FFFF; reserved for user-defined interrupt and reset vectors) 2.7 FLASH PROM The MCU has 2 Kbytes of FLASH separate from the main array. These addresses are FLASH locations: • $1800–$1FFF 2.8 Monitor ROM MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA N O N - D I S C L O S U R E The 240 bytes at addresses $FE10–$FEFF are reserved ROM addresses that contain the instructions for the monitor functions. For more information, see Section 18. Monitor ROM (MON). Advance Information Memory Map A G R E E M E N T R E Q U I R E D Memory Map User FLASH/ROM 51 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Memory Map Advance Information 52 MC68HC(9)08PT48 — Rev. 2.0 Memory Map MOTOROLA 3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 3.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54 3.4 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54 3.4.1 Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 3.4.2 Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 3.4.3 Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 3.4.4 Program Counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 3.4.5 Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . .58 3.5 Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . .60 3.6 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .60 3.7 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 3.8 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 3.2 Introduction This section describes the central processor unit (CPU8, Version A). The M68HC08 CPU is an enhanced and fully object-code-compatible version of the M68HC05 CPU. The CPU08 Reference Manual (Motorola document order number CPU08RM/AD) contains a description of the CPU instruction set, addressing modes, and architecture. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Central Processor Unit (CPU) 53 R E Q U I R E D 3.1 Contents A G R E E M E N T Section 3. Central Processor Unit (CPU) N O N - D I S C L O S U R E Advance Information — MC68HC(9)08PT48 3.3 Features Features of the CPU include: • Full upward, object-code compatibility with M68HC05 Family • 16-bit stack pointer with stack manipulation instructions • 16-bit index register with X-register manipulation instructions • 64-Kbyte program/data memory space • 16 addressing modes • Memory-to-memory data moves without using accumulator • Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions • Enhanced binary-coded decimal (BCD) data handling • Modular architecture with expandable internal bus definition for extension of addressing range beyond 64 Kbytes • Low-power stop and wait modes 3.4 CPU Registers Figure 3-1 shows the five CPU registers. CPU registers are not part of the memory map. N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Central Processor Unit (CPU) 7 0 ACCUMULATOR (A) 15 0 H X INDEX REGISTER (H:X) 0 15 STACK POINTER (SP) 0 15 PROGRAM COUNTER (PC) 7 0 V 1 1 H I N Z C CONDITION CODE REGISTER (CCR) CARRY/BORROW FLAG ZERO FLAG NEGATIVE FLAG INTERRUPT MASK HALF-CARRY FLAG TWOS COMPLEMENT OVERFLOW FLAG Figure 3-1. CPU Registers Advance Information 54 MC68HC(9)08PT48 — Rev. 2.0 Central Processor Unit (CPU) MOTOROLA 3.4.1 Accumulator The accumulator (A) is a general-purpose 8-bit register. The CPU uses the accumulator to hold operands and the results of arithmetic/logic operations. Bit 7 6 5 4 3 2 1 Bit 0 Read: R E Q U I R E D Central Processor Unit (CPU) CPU Registers Write: A G R E E M E N T Unaffected by reset Figure 3-2. Accumulator (A) 3.4.2 Index Register The 16-bit index register allows indexed addressing of a 64-Kbyte memory space. H is the upper byte of the index register, and X is the lower byte. H:X is the concatenated 16-bit index register. In the indexed addressing modes, the CPU uses the contents of the index register to determine the conditional address of the operand. The index register can serve also as a temporary data storage location. Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 X X X X X X X X Read: Write: Reset: X = Indeterminate Figure 3-3. Index Register (H:X) MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Central Processor Unit (CPU) 55 N O N - D I S C L O S U R E Reset: 3.4.3 Stack Pointer The stack pointer (SP) is a 16-bit register that contains the address of the next location on the stack. During a reset, the stack pointer is preset to $00FF. The reset stack pointer (RSP) instruction sets the least significant byte (LSB) to $FF and does not affect the most significant byte (MSB). The stack pointer decrements as data is pushed onto the stack and increments as data is pulled from the stack. In the stack pointer 8-bit offset and 16-bit offset addressing modes, the stack pointer can function as an index register to access data on the stack. The CPU uses the contents of the stack pointer to determine the conditional address of the operand. A G R E E M E N T R E Q U I R E D Central Processor Unit (CPU) Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 Read: Write: Reset: Figure 3-4. Stack Pointer (SP) N O N - D I S C L O S U R E NOTE: The location of the stack is arbitrary and may be relocated anywhere in RAM. Moving the SP out of page zero ($0000 to $00FF) frees direct address (page zero) space. For correct operation, the stack pointer must point to RAM locations only. Advance Information 56 MC68HC(9)08PT48 — Rev. 2.0 Central Processor Unit (CPU) MOTOROLA The program counter (PC) is a 16-bit register that contains the address of the next instruction or operand to be fetched. Normally, the program counter automatically increments to the next sequential memory location every time an instruction or operand is fetched. Jump, branch, and interrupt operations load the program counter with an address other than that of the next sequential location. During reset, the program counter is loaded with the reset vector address located at $FFFE and $FFFF. The vector address is the address of the first instruction to be executed after exiting the reset state. Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0 Read: Write: Reset: Loaded with Vector from $FFFE and $FFFF N O N - D I S C L O S U R E Figure 3-5. Program Counter (PC) A G R E E M E N T 3.4.4 Program Counter R E Q U I R E D Central Processor Unit (CPU) CPU Registers MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Central Processor Unit (CPU) 57 R E Q U I R E D Central Processor Unit (CPU) 3.4.5 Condition Code Register The 8-bit condition code register (CCR) contains the interrupt mask and five flags that indicate the results of the instruction just executed. Bits 6 and 5 are set permanently to logic 1. The following paragraphs describe the functions of the condition code register. Bit 7 6 5 4 3 2 1 Bit 0 V 1 1 H I N Z C X 1 1 X 1 X X X A G R E E M E N T Read: Write: Reset: X = Indeterminate Figure 3-6. Condition Code Register (CCR) V — Overflow Flag N O N - D I S C L O S U R E The CPU sets the overflow flag when a twos complement overflow occurs. The signed branch instructions BGT, BGE, BLE, and BLT use the overflow flag. 1 = Overflow 0 = No overflow H — Half-Carry Flag The CPU sets the half-carry flag when a carry occurs between accumulator bits 3 and 4 during an ADC (add with carry) or ADD (add without carry) operation. The half-carry flag is required for binarycoded decimal (BCD) arithmetic operations. The DAA (decimal adjust A) instruction uses the states of the H and C flags to determine the appropriate correction factor. 1 = Carry between bits 3 and 4 0 = No carry between bits 3 and 4 Advance Information 58 MC68HC(9)08PT48 — Rev. 2.0 Central Processor Unit (CPU) MOTOROLA I — Interrupt Mask When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU interrupts are enabled when the interrupt mask is cleared. When a CPU interrupt occurs, the interrupt mask is set automatically after the CPU registers are saved on the stack, but before the interrupt vector is fetched. 1 = Interrupts disabled 0 = Interrupts enabled NOTE: To maintain M6805 compatibility, the upper byte of the index register (H) is not stacked automatically. If the interrupt service routine modifies H, then the user must stack and unstack H using the PSHH and PULH instructions. After the I bit is cleared, the highest-priority interrupt request is serviced first. A return-from-interrupt (RTI) instruction pulls the CPU registers from the stack and restores the interrupt mask from the stack. After any reset, the interrupt mask is set and can be cleared only by the clear interrupt mask software instruction (CLI). A G R E E M E N T R E Q U I R E D Central Processor Unit (CPU) CPU Registers The CPU sets the negative flag when an arithmetic operation, logic operation, or data manipulation produces a negative result, setting bit 7 of the result. 1 = Negative result 0 = Non-negative result Z — Zero Flag The CPU sets the zero flag when an arithmetic operation, logic operation, or data manipulation produces a result of $00. 1 = Zero result 0 = Non-zero result MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Central Processor Unit (CPU) 59 N O N - D I S C L O S U R E N — Negative Flag C — Carry/Borrow Flag The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit 7 of the accumulator or when a subtraction operation requires a borrow. Some instructions — such as bit test and branch, shift, and rotate — also clear or set the carry/borrow flag. 1 = Carry out of bit 7 0 = No carry out of bit 7 3.5 Arithmetic/Logic Unit (ALU) The ALU performs the arithmetic and logic operations defined by the instruction set. Refer to the CPU08 Reference Manual (Motorola document order number CPU08RM/AD) for a description of the instructions and addressing modes and more detail about CPU architecture. 3.6 CPU During Break Interrupts If the break module is enabled, a break interrupt causes the CPU to execute the software interrupt instruction (SWI) at the completion of the current CPU instruction. (See Section 19. Break Module.) The program counter vectors to $FFFC–$FFFD ($FEFC–$FEFD in monitor mode). N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Central Processor Unit (CPU) A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU to normal operation if the break interrupt has been deasserted. Advance Information 60 MC68HC(9)08PT48 — Rev. 2.0 Central Processor Unit (CPU) MOTOROLA A ← (A) + (M) + (C) Add with Carry IMM DIR EXT ↕ ↕ – ↕ ↕ ↕ IX2 IX1 IX SP1 SP2 A9 B9 C9 D9 E9 F9 9EE9 9ED9 ii dd hh ll ee ff ff IMM DIR EXT ↕ ↕ – ↕ ↕ ↕ IX2 IX1 IX SP1 SP2 AB BB CB DB EB FB 9EEB 9EDB ii dd hh ll ee ff ff ADD #opr ADD opr ADD opr ADD opr,X ADD opr,X ADD ,X ADD opr,SP ADD opr,SP Add without Carry AIS #opr Add Immediate Value (Signed) to SP SP ← (SP) + (16 « M) – – – – – – IMM AIX #opr Add Immediate Value (Signed) to H:X H:X ← (H:X) + (16 « M) A ← (A) & (M) AND #opr AND opr AND opr AND opr,X AND opr,X AND ,X AND opr,SP AND opr,SP ASL opr ASLA ASLX ASL opr,X ASL ,X ASL opr,SP Arithmetic Shift Left (Same as LSL) C b7 ASR opr ASRA ASRX ASR opr,X ASR opr,X ASR opr,SP Arithmetic Shift Right BCC rel Branch if Carry Bit Clear ff ee ff A7 ii 2 – – – – – – IMM AF ii 2 IMM DIR EXT 0 – – ↕ ↕ – IX2 IX1 IX SP1 SP2 A4 B4 C4 D4 E4 F4 9EE4 9ED4 ii dd hh ll ee ff ff 2 3 4 4 3 2 4 5 0 DIR INH ↕ – – ↕ ↕ ↕ INH IX1 IX SP1 38 dd 48 58 68 ff 78 9E68 ff 4 1 1 4 3 5 C DIR INH ↕ – – ↕ ↕ ↕ INH IX1 IX SP1 37 dd 47 57 67 ff 77 9E67 ff 4 1 1 4 3 5 b0 b7 2 3 4 4 3 2 4 5 2 3 4 4 3 2 4 5 A ← (A) + (M) Logical AND ff ee ff Cycles V H I N Z C Operand Description b0 PC ← (PC) + 2 + rel ? (C) = 0 Mn ← 0 ff ee ff – – – – – – REL 24 rr 3 DIR (b0) DIR (b1) DIR (b2) (b3) – – – – – – DIR DIR (b4) DIR (b5) DIR (b6) DIR (b7) 11 13 15 17 19 1B 1D 1F dd dd dd dd dd dd dd dd 4 4 4 4 4 4 4 4 BCLR n, opr Clear Bit n in M BCS rel Branch if Carry Bit Set (Same as BLO) PC ← (PC) + 2 + rel ? (C) = 1 – – – – – – REL 25 rr 3 BEQ rel Branch if Equal PC ← (PC) + 2 + rel ? (Z) = 1 – – – – – – REL 27 rr 3 BGE opr Branch if Greater Than or Equal To (Signed Operands) PC ← (PC) + 2 + rel ? (N ⊕ V) = 0 – – – – – – REL 90 rr 3 MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Central Processor Unit (CPU) 61 A G R E E M E N T ADC #opr ADC opr ADC opr ADC opr,X ADC opr,X ADC ,X ADC opr,SP ADC opr,SP Operation Effect on CCR Opcode Source Form Address Mode Table 3-1. Instruction Set Summary N O N - D I S C L O S U R E 3.7 Instruction Set Summary R E Q U I R E D Central Processor Unit (CPU) Instruction Set Summary N O N - D I S C L O S U R E A G R E E M E N T Description V H I N Z C PC ← (PC) + 2 + rel ? (Z) | (N ⊕ V) = 0 – – – – – – REL BGT opr Branch if Greater Than (Signed Operands) BHCC rel Branch if Half Carry Bit Clear PC ← (PC) + 2 + rel ? (H) = 0 BHCS rel Branch if Half Carry Bit Set BHI rel Branch if Higher BHS rel Cycles Operation Effect on CCR Opcode Source Form Operand Table 3-1. Instruction Set Summary (Continued) Address Mode R E Q U I R E D Central Processor Unit (CPU) 92 rr 3 – – – – – – REL 28 rr 3 PC ← (PC) + 2 + rel ? (H) = 1 – – – – – – REL 29 rr PC ← (PC) + 2 + rel ? (C) | (Z) = 0 – – – – – – REL 22 rr 3 Branch if Higher or Same (Same as BCC) PC ← (PC) + 2 + rel ? (C) = 0 – – – – – – REL 24 rr 3 BIH rel Branch if IRQ Pin High PC ← (PC) + 2 + rel ? IRQ = 1 – – – – – – REL 2F rr 3 BIL rel Branch if IRQ Pin Low PC ← (PC) + 2 + rel ? IRQ = 0 – – – – – – REL 2E rr 3 (A) & (M) IMM DIR EXT 0 – – ↕ ↕ – IX2 IX1 IX SP1 SP2 A5 B5 C5 D5 E5 F5 9EE5 9ED5 ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 93 rr 3 BIT #opr BIT opr BIT opr BIT opr,X BIT opr,X BIT ,X BIT opr,SP BIT opr,SP Bit Test BLE opr Branch if Less Than or Equal To (Signed Operands) BLO rel Branch if Lower (Same as BCS) BLS rel PC ← (PC) + 2 + rel ? (Z) | (N ⊕ V) = 1 – – – – – – REL 3 PC ← (PC) + 2 + rel ? (C) = 1 – – – – – – REL 25 rr 3 Branch if Lower or Same PC ← (PC) + 2 + rel ? (C) | (Z) = 1 – – – – – – REL 23 rr 3 BLT opr Branch if Less Than (Signed Operands) PC ← (PC) + 2 + rel ? (N ⊕ V) =1 – – – – – – REL 91 rr 3 BMC rel Branch if Interrupt Mask Clear PC ← (PC) + 2 + rel ? (I) = 0 – – – – – – REL 2C rr 3 BMI rel Branch if Minus PC ← (PC) + 2 + rel ? (N) = 1 – – – – – – REL 2B rr 3 BMS rel Branch if Interrupt Mask Set PC ← (PC) + 2 + rel ? (I) = 1 – – – – – – REL 2D rr 3 BNE rel Branch if Not Equal PC ← (PC) + 2 + rel ? (Z) = 0 – – – – – – REL 26 rr 3 BPL rel Branch if Plus PC ← (PC) + 2 + rel ? (N) = 0 – – – – – – REL 2A rr 3 BRA rel Branch Always PC ← (PC) + 2 + rel – – – – – – REL 20 rr 3 DIR (b0) DIR (b1) DIR (b2) (b3) – – – – – ↕ DIR DIR (b4) DIR (b5) DIR (b6) DIR (b7) 01 03 05 07 09 0B 0D 0F dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr 5 5 5 5 5 5 5 5 – – – – – – REL 21 rr 3 DIR (b0) DIR (b1) DIR (b2) (b3) – – – – – ↕ DIR DIR (b4) DIR (b5) DIR (b6) DIR (b7) 00 02 04 06 08 0A 0C 0E dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr 5 5 5 5 5 5 5 5 BRCLR n,opr,rel Branch if Bit n in M Clear BRN rel Branch Never BRSET n,opr,rel Branch if Bit n in M Set PC ← (PC) + 3 + rel ? (Mn) = 0 PC ← (PC) + 2 PC ← (PC) + 3 + rel ? (Mn) = 1 Advance Information 62 MC68HC(9)08PT48 — Rev. 2.0 Central Processor Unit (CPU) MOTOROLA Set Bit n in M BSR rel Branch to Subroutine 10 12 14 16 18 1A 1C 1E dd dd dd dd dd dd dd dd 4 4 4 4 4 4 4 4 PC ← (PC) + 2; push (PCL) SP ← (SP) – 1; push (PCH) SP ← (SP) – 1 PC ← (PC) + rel – – – – – – REL AD rr 4 PC ← (PC) + 3 + rel ? (A) – (M) = $00 PC ← (PC) + 3 + rel ? (A) – (M) = $00 PC ← (PC) + 3 + rel ? (X) – (M) = $00 PC ← (PC) + 3 + rel ? (A) – (M) = $00 PC ← (PC) + 2 + rel ? (A) – (M) = $00 PC ← (PC) + 4 + rel ? (A) – (M) = $00 DIR IMM – – – – – – IMM IX1+ IX+ SP1 31 41 51 61 71 9E61 dd rr ii rr ii rr ff rr rr ff rr 5 4 4 5 4 6 Mn ← 1 CBEQ opr,rel CBEQA #opr,rel CBEQX #opr,rel Compare and Branch if Equal CBEQ opr,X+,rel CBEQ X+,rel CBEQ opr,SP,rel CLC Clear Carry Bit C←0 – – – – – 0 INH 98 1 CLI Clear Interrupt Mask I←0 – – 0 – – – INH 9A 2 M ← $00 A ← $00 X ← $00 H ← $00 M ← $00 M ← $00 M ← $00 DIR INH INH 0 – – 0 1 – INH IX1 IX SP1 3F dd 4F 5F 8C 6F ff 7F 9E6F ff 3 1 1 1 3 2 4 (A) – (M) IMM DIR EXT ↕ – – ↕ ↕ ↕ IX2 IX1 IX SP1 SP2 A1 B1 C1 D1 E1 F1 9EE1 9ED1 2 3 4 4 3 2 4 5 M ← (M) = $FF – (M) A ← (A) = $FF – (M) X ← (X) = $FF – (M) M ← (M) = $FF – (M) M ← (M) = $FF – (M) M ← (M) = $FF – (M) DIR INH 0 – – ↕ ↕ 1 INH IX1 IX SP1 33 dd 43 53 63 ff 73 9E63 ff (H:X) – (M:M + 1) ↕ – – ↕ ↕ ↕ IMM DIR 65 75 ii ii+1 dd 3 4 (X) – (M) IMM DIR EXT ↕ – – ↕ ↕ ↕ IX2 IX1 IX SP1 SP2 A3 B3 C3 D3 E3 F3 9EE3 9ED3 ii dd hh ll ee ff ff 2 3 4 4 3 2 4 5 U – – ↕ ↕ ↕ INH 72 CLR opr CLRA CLRX CLRH CLR opr,X CLR ,X CLR opr,SP CMP #opr CMP opr CMP opr CMP opr,X CMP opr,X CMP ,X CMP opr,SP CMP opr,SP Clear Compare A with M COM opr COMA COMX COM opr,X COM ,X COM opr,SP Complement (One’s Complement) CPHX #opr CPHX opr Compare H:X with M CPX #opr CPX opr CPX opr CPX ,X CPX opr,X CPX opr,X CPX opr,SP CPX opr,SP Compare X with M DAA Decimal Adjust A (A)10 MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA ii dd hh ll ee ff ff ff ee ff ff ee ff 4 1 1 4 3 5 2 Advance Information Central Processor Unit (CPU) 63 A G R E E M E N T BSET n,opr DIR (b0) DIR (b1) DIR (b2) (b3) – – – – – – DIR DIR (b4) DIR (b5) DIR (b6) DIR (b7) N O N - D I S C L O S U R E V H I N Z C Cycles Description Operand Operation Effect on CCR Opcode Source Form Address Mode Table 3-1. Instruction Set Summary (Continued) R E Q U I R E D Central Processor Unit (CPU) Instruction Set Summary N O N - D I S C L O S U R E A G R E E M E N T Description V H I N Z C DBNZ opr,rel DBNZA rel DBNZX rel Decrement and Branch if Not Zero DBNZ opr,X,rel DBNZ X,rel DBNZ opr,SP,rel DEC opr DECA DECX DEC opr,X DEC ,X DEC opr,SP Decrement DIV Divide EOR #opr EOR opr EOR opr EOR opr,X EOR opr,X EOR ,X EOR opr,SP EOR opr,SP INC opr INCA INCX INC opr,X INC ,X INC opr,SP JMP opr JMP opr JMP opr,X JMP opr,X JMP ,X JSR opr JSR opr JSR opr,X JSR opr,X JSR ,X Exclusive OR M with A Increment Jump Jump to Subroutine LDA #opr LDA opr LDA opr LDA opr,X LDA opr,X LDA ,X LDA opr,SP LDA opr,SP Load A from M LDHX #opr LDHX opr Load H:X from M LDX #opr LDX opr LDX opr LDX opr,X LDX opr,X LDX ,X LDX opr,SP LDX opr,SP Load X from M A ← (A) – 1 or M ← (M) – 1 or X ← (X) – 1 PC ← (PC) + 3 + rel ? (result) ≠ 0 DIR PC ← (PC) + 2 + rel ? (result) ≠ 0 INH PC ← (PC) + 2 + rel ? (result) ≠ 0 – – – – – – INH PC ← (PC) + 3 + rel ? (result) ≠ 0 IX1 PC ← (PC) + 2 + rel ? (result) ≠ 0 IX PC ← (PC) + 4 + rel ? (result) ≠ 0 SP1 3B 4B 5B 6B 7B 9E6B dd rr rr rr ff rr rr ff rr 5 3 3 5 4 6 M ← (M) – 1 A ← (A) – 1 X ← (X) – 1 M ← (M) – 1 M ← (M) – 1 M ← (M) – 1 DIR INH ↕ – – ↕ ↕ – INH IX1 IX SP1 A ← (H:A)/(X) H ← Remainder – – – – ↕ ↕ INH 52 A ← (A ⊕ M) IMM DIR EXT 0 – – ↕ ↕ – IX2 IX1 IX SP1 SP2 A8 B8 C8 D8 E8 F8 9EE8 9ED8 M ← (M) + 1 A ← (A) + 1 X ← (X) + 1 M ← (M) + 1 M ← (M) + 1 M ← (M) + 1 DIR INH ↕ – – ↕ ↕ – INH IX1 IX SP1 3C dd 4C 5C 6C ff 7C 9E6C ff PC ← Jump Address DIR EXT – – – – – – IX2 IX1 IX BC CC DC EC FC dd hh ll ee ff ff 2 3 4 3 2 PC ← (PC) + n (n = 1, 2, or 3) Push (PCL); SP ← (SP) – 1 Push (PCH); SP ← (SP) – 1 PC ← Unconditional Address DIR EXT – – – – – – IX2 IX1 IX BD CD DD ED FD dd hh ll ee ff ff 4 5 6 5 4 A ← (M) IMM DIR EXT 0 – – ↕ ↕ – IX2 IX1 IX SP1 SP2 A6 B6 C6 D6 E6 F6 9EE6 9ED6 ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 H:X ← (M:M + 1) 0 – – ↕ ↕ – IMM DIR 45 55 ii jj dd 3 4 X ← (M) IMM DIR EXT 0 – – ↕ ↕ – IX2 IX1 IX SP1 SP2 AE BE CE DE EE FE 9EEE 9EDE ii dd hh ll ee ff ff 2 3 4 4 3 2 4 5 Advance Information 64 Cycles Operation Effect on CCR Operand Source Form Opcode Table 3-1. Instruction Set Summary (Continued) Address Mode R E Q U I R E D Central Processor Unit (CPU) 3A dd 4A 5A 6A ff 7A 9E6A ff 4 1 1 4 3 5 7 ii dd hh ll ee ff ff ff ee ff ff ee ff 2 3 4 4 3 2 4 5 4 1 1 4 3 5 MC68HC(9)08PT48 — Rev. 2.0 Central Processor Unit (CPU) MOTOROLA LSR opr LSRA LSRX LSR opr,X LSR ,X LSR opr,SP Logical Shift Right MOV opr,opr MOV opr,X+ MOV #opr,opr MOV X+,opr Move MUL Unsigned multiply C b7 0 DIR INH ↕ – – ↕ ↕ ↕ INH IX1 IX SP1 38 dd 48 58 68 ff 78 9E68 ff 4 1 1 4 3 5 C DIR INH ↕ – – 0 ↕ ↕ INH IX1 IX SP1 34 dd 44 54 64 ff 74 9E64 ff 4 1 1 4 3 5 b0 0 b7 b0 H:X ← (H:X) + 1 (IX+D, DIX+) DD 0 – – ↕ ↕ – DIX+ IMD IX+D 4E 5E 6E 7E X:A ← (X) × (A) – 0 – – – 0 INH 42 M ← –(M) = $00 – (M) A ← –(A) = $00 – (A) X ← –(X) = $00 – (X) M ← –(M) = $00 – (M) M ← –(M) = $00 – (M) DIR INH ↕ – – ↕ ↕ ↕ INH IX1 IX SP1 (M)Destination ← (M)Source dd dd dd ii dd dd 5 4 4 4 5 NEG opr NEGA NEGX NEG opr,X NEG ,X NEG opr,SP Negate (Two’s Complement) NOP No Operation None – – – – – – INH 9D 1 NSA Nibble Swap A A ← (A[3:0]:A[7:4]) – – – – – – INH 62 3 A ← (A) | (M) IMM DIR EXT 0 – – ↕ ↕ – IX2 IX1 IX SP1 SP2 AA BA CA DA EA FA 9EEA 9EDA 30 dd 40 50 60 ff 70 9E60 ff 4 1 1 4 3 5 ORA #opr ORA opr ORA opr ORA opr,X ORA opr,X ORA ,X ORA opr,SP ORA opr,SP Inclusive OR A and M PSHA Push A onto Stack Push (A); SP ← (SP) – 1 – – – – – – INH 87 2 PSHH Push H onto Stack Push (H); SP ← (SP) – 1 – – – – – – INH 8B 2 PSHX Push X onto Stack Push (X); SP ← (SP) – 1 – – – – – – INH 89 2 PULA Pull A from Stack SP ← (SP + 1); Pull (A) – – – – – – INH 86 2 PULH Pull H from Stack SP ← (SP + 1); Pull (H) – – – – – – INH 8A 2 PULX Pull X from Stack SP ← (SP + 1); Pull (X) – – – – – – INH 88 2 C DIR INH ↕ – – ↕ ↕ ↕ INH IX1 IX SP1 39 dd 49 59 69 ff 79 9E69 ff 4 1 1 4 3 5 DIR INH ↕ – – ↕ ↕ ↕ INH IX1 IX SP1 36 dd 46 56 66 ff 76 9E66 ff 4 1 1 4 3 5 ROL opr ROLA ROLX ROL opr,X ROL ,X ROL opr,SP ROR opr RORA RORX ROR opr,X ROR ,X ROR opr,SP Rotate Left through Carry b7 b0 C Rotate Right through Carry b7 b0 MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 Advance Information Central Processor Unit (CPU) 65 A G R E E M E N T Logical Shift Left (Same as ASL) Cycles V H I N Z C Operand Description N O N - D I S C L O S U R E LSL opr LSLA LSLX LSL opr,X LSL ,X LSL opr,SP Operation Effect on CCR Opcode Source Form Address Mode Table 3-1. Instruction Set Summary (Continued) R E Q U I R E D Central Processor Unit (CPU) Instruction Set Summary N O N - D I S C L O S U R E A G R E E M E N T Description V H I N Z C Cycles Operation Effect on CCR Operand Source Form Opcode Table 3-1. Instruction Set Summary (Continued) Address Mode R E Q U I R E D Central Processor Unit (CPU) Reset Stack Pointer SP ← $FF – – – – – – INH 9C 1 RTI Return from Interrupt SP ← (SP) + 1; Pull (CCR) SP ← (SP) + 1; Pull (A) SP ← (SP) + 1; Pull (X) SP ← (SP) + 1; Pull (PCH) SP ← (SP) + 1; Pull (PCL) ↕ ↕ ↕ ↕ ↕ ↕ INH 80 7 RTS Return from Subroutine SP ← SP + 1; Pull (PCH) SP ← SP + 1; Pull (PCL) – – – – – – INH 81 4 A ← (A) – (M) – (C) IMM DIR EXT IX2 ↕ – – ↕ ↕ ↕ IX1 IX SP1 SP2 A2 B2 C2 D2 E2 F2 9EE2 9ED2 RSP SBC #opr SBC opr SBC opr SBC opr,X SBC opr,X SBC ,X SBC opr,SP SBC opr,SP Subtract with Carry SEC Set Carry Bit C←1 – – – – – 1 INH 99 1 SEI Set Interrupt Mask I←1 – – 1 – – – INH 9B 2 M ← (A) DIR EXT IX2 0 – – ↕ ↕ – IX1 IX SP1 SP2 B7 C7 D7 E7 F7 9EE7 9ED7 (M:M + 1) ← (H:X) 0 – – ↕ ↕ – DIR 35 I ← 0; Stop Oscillator – – 0 – – – INH 8E M ← (X) DIR EXT IX2 0 – – ↕ ↕ – IX1 IX SP1 SP2 BF CF DF EF FF 9EEF 9EDF dd hh ll ee ff ff IMM DIR EXT ↕ – – ↕ ↕ ↕ IX2 IX1 IX SP1 SP2 A0 B0 C0 D0 E0 F0 9EE0 9ED0 ii dd hh ll ee ff ff – – 1 – – – INH 83 9 STA opr STA opr STA opr,X STA opr,X STA ,X STA opr,SP STA opr,SP Store A in M STHX opr Store H:X in M STOP Enable IRQ Pin; Stop Oscillator STX opr STX opr STX opr,X STX opr,X STX ,X STX opr,SP STX opr,SP SUB #opr SUB opr SUB opr SUB opr,X SUB opr,X SUB ,X SUB opr,SP SUB opr,SP Store X in M Subtract A ← (A) – (M) ii dd hh ll ee ff ff ff ee ff dd hh ll ee ff ff 2 3 4 4 3 2 4 5 ff ee ff 3 4 4 3 2 4 5 dd 4 1 ff ee ff ff ee ff 3 4 4 3 2 4 5 2 3 4 4 3 2 4 5 SWI Software Interrupt PC ← (PC) + 1; Push (PCL) SP ← (SP) – 1; Push (PCH) SP ← (SP) – 1; Push (X) SP ← (SP) – 1; Push (A) SP ← (SP) – 1; Push (CCR) SP ← (SP) – 1; I ← 1 PCH ← Interrupt Vector High Byte PCL ← Interrupt Vector Low Byte TAP Transfer A to CCR CCR ← (A) ↕ ↕ ↕ ↕ ↕ ↕ INH 84 2 TAX Transfer A to X X ← (A) – – – – – – INH 97 1 TPA Transfer CCR to A A ← (CCR) – – – – – – INH 85 1 Advance Information 66 MC68HC(9)08PT48 — Rev. 2.0 Central Processor Unit (CPU) MOTOROLA Transfer SP to H:X TXA Transfer X to A TXS Transfer H:X to SP H:X ← (SP) + 1 – – – – – – INH 95 2 A ← (X) – – – – – – INH 9F 1 (SP) ← (H:X) – 1 – – – – – – INH 94 2 Accumulator Carry/borrow bit Condition code register Direct address of operand Direct address of operand and relative offset of branch instruction Direct to direct addressing mode Direct addressing mode Direct to indexed with post increment addressing mode High and low bytes of offset in indexed, 16-bit offset addressing Extended addressing mode Offset byte in indexed, 8-bit offset addressing Half-carry bit Index register high byte High and low bytes of operand address in extended addressing Interrupt mask Immediate operand byte Immediate source to direct destination addressing mode Immediate addressing mode Inherent addressing mode Indexed, no offset addressing mode Indexed, no offset, post increment addressing mode Indexed with post increment to direct addressing mode Indexed, 8-bit offset addressing mode Indexed, 8-bit offset, post increment addressing mode Indexed, 16-bit offset addressing mode Memory location Negative bit n opr PC PCH PCL REL rel rr SP1 SP2 SP U V X Z & | ⊕ () –( ) # « ← ? : ↕ — 3 1 1 3 2 4 Any bit Operand (one or two bytes) Program counter Program counter high byte Program counter low byte Relative addressing mode Relative program counter offset byte Relative program counter offset byte Stack pointer, 8-bit offset addressing mode Stack pointer 16-bit offset addressing mode Stack pointer Undefined Overflow bit Index register low byte Zero bit Logical AND Logical OR Logical EXCLUSIVE OR Contents of Negation (twos complement) Immediate value Sign extend Loaded with If Concatenated with Set or cleared Not affected 3.8 Opcode Map See Table 3-2. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Central Processor Unit (CPU) A G R E E M E N T TSX (A) – $00 or (X) – $00 or (M) – $00 DIR INH 0 – – ↕ ↕ – INH IX1 IX SP1 N O N - D I S C L O S U R E Test for Negative or Zero 3D dd 4D 5D 6D ff 7D 9E6D ff Cycles V H I N Z C TST opr TSTA TSTX TST opr,X TST ,X TST opr,SP A C CCR dd dd rr DD DIR DIX+ ee ff EXT ff H H hh ll I ii IMD IMM INH IX IX+ IX+D IX1 IX1+ IX2 M N Description Operand Operation Effect on CCR Opcode Source Form Address Mode Table 3-1. Instruction Set Summary (Continued) R E Q U I R E D Central Processor Unit (CPU) Opcode Map 67 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D MSB Branch REL DIR INH 3 4 0 2 3 4 5 6 7 8 9 A B C MOTOROLA MC68HC(9)08PT48 — Rev. 2.0 1 2 5 BRSET0 3 DIR 5 BRCLR0 3 DIR 5 BRSET1 3 DIR 5 BRCLR1 3 DIR 5 BRSET2 3 DIR 5 BRCLR2 3 DIR 5 BRSET3 3 DIR 5 BRCLR3 3 DIR 5 BRSET4 3 DIR 5 BRCLR4 3 DIR 5 BRSET5 3 DIR 5 BRCLR5 3 DIR 5 BRSET6 3 DIR 5 BRCLR6 3 DIR 5 BRSET7 3 DIR 5 BRCLR7 3 DIR 4 BSET0 2 DIR 4 BCLR0 2 DIR 4 BSET1 2 DIR 4 BCLR1 2 DIR 4 BSET2 2 DIR 4 BCLR2 2 DIR 4 BSET3 2 DIR 4 BCLR3 2 DIR 4 BSET4 2 DIR 4 BCLR4 2 DIR 4 BSET5 2 DIR 4 BCLR5 2 DIR 4 BSET6 2 DIR 4 BCLR6 2 DIR 4 BSET7 2 DIR 4 BCLR7 2 DIR 3 BRA REL 3 BRN 2 REL 3 BHI 2 REL 3 BLS 2 REL 3 BCC 2 REL 3 BCS 2 REL 3 BNE 2 REL 3 BEQ 2 REL 3 BHCC 2 REL 3 BHCS 2 REL 3 BPL 2 REL 3 BMI 2 REL 3 BMC 2 REL 3 BMS 2 REL 3 BIL 2 REL 3 BIH 2 REL 5 6 1 NEGX 1 INH 4 CBEQX 3 IMM 7 DIV 1 INH 1 COMX 1 INH 1 LSRX 1 INH 4 LDHX 2 DIR 1 RORX 1 INH 1 ASRX 1 INH 1 LSLX 1 INH 1 ROLX 1 INH 1 DECX 1 INH 3 DBNZX 2 INH 1 INCX 1 INH 1 TSTX 1 INH 4 MOV 2 DIX+ 1 CLRX 1 INH 4 NEG IX1 5 CBEQ 3 IX1+ 3 NSA 1 INH 4 COM 2 IX1 4 LSR 2 IX1 3 CPHX 3 IMM 4 ROR 2 IX1 4 ASR 2 IX1 4 LSL 2 IX1 4 ROL 2 IX1 4 DEC 2 IX1 5 DBNZ 3 IX1 4 INC 2 IX1 3 TST 2 IX1 4 MOV 3 IMD 3 CLR 2 IX1 SP1 IX 9E6 7 Control INH INH 8 Register/Memory IX2 SP2 IMM DIR EXT A B C D 2 SUB IMM 2 CMP 2 IMM 2 SBC 2 IMM 2 CPX 2 IMM 2 AND 2 IMM 2 BIT 2 IMM 2 LDA 2 IMM 2 AIS 2 IMM 2 EOR 2 IMM 2 ADC 2 IMM 2 ORA 2 IMM 2 ADD 2 IMM 3 SUB DIR 3 CMP 2 DIR 3 SBC 2 DIR 3 CPX 2 DIR 3 AND 2 DIR 3 BIT 2 DIR 3 LDA 2 DIR 3 STA 2 DIR 3 EOR 2 DIR 3 ADC 2 DIR 3 ORA 2 DIR 3 ADD 2 DIR 2 JMP 2 DIR 4 JSR 2 DIR 3 LDX 2 DIR 3 STX 2 DIR 4 SUB EXT 4 CMP 3 EXT 4 SBC 3 EXT 4 CPX 3 EXT 4 AND 3 EXT 4 BIT 3 EXT 4 LDA 3 EXT 4 STA 3 EXT 4 EOR 3 EXT 4 ADC 3 EXT 4 ORA 3 EXT 4 ADD 3 EXT 3 JMP 3 EXT 5 JSR 3 EXT 4 LDX 3 EXT 4 STX 3 EXT 4 SUB IX2 4 CMP 3 IX2 4 SBC 3 IX2 4 CPX 3 IX2 4 AND 3 IX2 4 BIT 3 IX2 4 LDA 3 IX2 4 STA 3 IX2 4 EOR 3 IX2 4 ADC 3 IX2 4 ORA 3 IX2 4 ADD 3 IX2 4 JMP 3 IX2 6 JSR 3 IX2 4 LDX 3 IX2 4 STX 3 IX2 9 IX1 SP1 IX 9ED E 9EE F 5 SUB SP2 5 CMP 4 SP2 5 SBC 4 SP2 5 CPX 4 SP2 5 AND 4 SP2 5 BIT 4 SP2 5 LDA 4 SP2 5 STA 4 SP2 5 EOR 4 SP2 5 ADC 4 SP2 5 ORA 4 SP2 5 ADD 4 SP2 3 SUB IX1 3 CMP 2 IX1 3 SBC 2 IX1 3 CPX 2 IX1 3 AND 2 IX1 3 BIT 2 IX1 3 LDA 2 IX1 3 STA 2 IX1 3 EOR 2 IX1 3 ADC 2 IX1 3 ORA 2 IX1 3 ADD 2 IX1 3 JMP 2 IX1 5 JSR 2 IX1 3 LDX 2 IX1 3 STX 2 IX1 4 SUB SP1 4 CMP 3 SP1 4 SBC 3 SP1 4 CPX 3 SP1 4 AND 3 SP1 4 BIT 3 SP1 4 LDA 3 SP1 4 STA 3 SP1 4 EOR 3 SP1 4 ADC 3 SP1 4 ORA 3 SP1 4 ADD 3 SP1 2 SUB IX 2 CMP 1 IX 2 SBC 1 IX 2 CPX 1 IX 2 AND 1 IX 2 BIT 1 IX 2 LDA 1 IX 2 STA 1 IX 2 EOR 1 IX 2 ADC 1 IX 2 ORA 1 IX 2 ADD 1 IX 2 JMP 1 IX 4 JSR 1 IX 2 LDX 1 IX 2 STX 1 IX LSB 1 Central Processor Unit (CPU) 0 Read-Modify-Write INH IX1 D E F 2 4 1 NEG NEGA DIR 1 INH 5 4 CBEQ CBEQA 3 DIR 3 IMM 5 MUL 1 INH 4 1 COM COMA 2 DIR 1 INH 4 1 LSR LSRA 2 DIR 1 INH 4 3 STHX LDHX 2 DIR 3 IMM 4 1 ROR RORA 2 DIR 1 INH 4 1 ASR ASRA 2 DIR 1 INH 4 1 LSL LSLA 2 DIR 1 INH 4 1 ROL ROLA 2 DIR 1 INH 4 1 DEC DECA 2 DIR 1 INH 5 3 DBNZ DBNZA 3 DIR 2 INH 4 1 INC INCA 2 DIR 1 INH 3 1 TST TSTA 2 DIR 1 INH 5 MOV 3 DD 3 1 CLR CLRA 2 DIR 1 INH 2 INH Inherent REL Relative IMM Immediate IX Indexed, No Offset DIR Direct IX1 Indexed, 8-Bit Offset EXT Extended IX2 Indexed, 16-Bit Offset DD Direct-Direct IMD Immediate-Direct IX+D Indexed-Direct DIX+ Direct-Indexed *Pre-byte for stack pointer indexed instructions 2 5 3 NEG NEG SP1 1 IX 6 4 CBEQ CBEQ 4 SP1 2 IX+ 2 DAA 1 INH 5 3 COM COM 3 SP1 1 IX 5 3 LSR LSR 3 SP1 1 IX 4 CPHX 2 DIR 5 3 ROR ROR 3 SP1 1 IX 5 3 ASR ASR 3 SP1 1 IX 5 3 LSL LSL 3 SP1 1 IX 5 3 ROL ROL 3 SP1 1 IX 5 3 DEC DEC 3 SP1 1 IX 6 4 DBNZ DBNZ 4 SP1 2 IX 5 3 INC INC 3 SP1 1 IX 4 2 TST TST 3 SP1 1 IX 4 MOV 2 IX+D 4 2 CLR CLR 3 SP1 1 IX 3 SP1 Stack Pointer, 8-Bit Offset SP2 Stack Pointer, 16-Bit Offset IX+ Indexed, No Offset with Post Increment IX1+ Indexed, 1-Byte Offset with Post Increment 7 3 RTI BGE INH 2 REL 4 3 RTS BLT 1 INH 2 REL 3 BGT 2 REL 9 3 SWI BLE 1 INH 2 REL 2 2 TAP TXS 1 INH 1 INH 1 2 TPA TSX 1 INH 1 INH 2 PULA 1 INH 2 1 PSHA TAX 1 INH 1 INH 2 1 PULX CLC 1 INH 1 INH 2 1 PSHX SEC 1 INH 1 INH 2 2 PULH CLI 1 INH 1 INH 2 2 PSHH SEI 1 INH 1 INH 1 1 CLRH RSP 1 INH 1 INH 1 NOP 1 INH 1 STOP * 1 INH 1 1 WAIT TXA 1 INH 1 INH 1 2 4 BSR REL 2 LDX 2 IMM 2 AIX 2 IMM 2 2 MSB 3 0 3 4 5 LDX 4 SP2 5 STX 4 SP2 2 3 4 LDX 3 SP1 4 STX 3 SP1 High Byte of Opcode in Hexadecimal LSB Low Byte of Opcode in Hexadecimal 0 5 Cycles BRSET0 Opcode Mnemonic 3 DIR Number of Bytes / Addressing Mode 1 Central Processor Unit (CPU) Advance Information 68 Table 3-2. Opcode Map Bit Manipulation DIR DIR 4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 4.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 4.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 4.4.1 Crystal Oscillator Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . .73 4.4.2 Phase-Locked Loop Circuit (PLL) . . . . . . . . . . . . . . . . . . . .73 4.4.2.1 PLL Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 4.4.2.2 Acquisition and Tracking Modes . . . . . . . . . . . . . . . . . . .75 4.4.2.3 Manual and Automatic PLL Bandwidth Modes . . . . . . . .75 4.4.2.4 Programming the PLL . . . . . . . . . . . . . . . . . . . . . . . . . . .77 4.4.2.5 Special Programming Exceptions . . . . . . . . . . . . . . . . . .80 4.4.3 Base Clock Selector Circuit. . . . . . . . . . . . . . . . . . . . . . . . .80 4.4.4 CGMB External Connections . . . . . . . . . . . . . . . . . . . . . . .81 4.5 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82 4.5.1 Crystal Amplifier Input Pin (OSC1) . . . . . . . . . . . . . . . . . . .82 4.5.2 Crystal Amplifier Output Pin (OSC2) . . . . . . . . . . . . . . . . . .82 4.5.3 External Filter Capacitor Pin (CGMXFC). . . . . . . . . . . . . . .83 4.5.4 PLL Analog Power Pin (VDDA1) . . . . . . . . . . . . . . . . . . . . . .83 4.5.5 PLL Analog Ground Pin (VSSA1) . . . . . . . . . . . . . . . . . . . . .83 4.5.6 Buffered Crystal Clock Output (CGMVOUT) . . . . . . . . . . . .83 4.5.7 CGMVSEL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83 4.5.8 Oscillator Enable Signal (SIMOSCEN) . . . . . . . . . . . . . . . .84 4.5.9 Crystal Output Frequency Signal (CGMXCLK) . . . . . . . . . .84 4.5.10 CGMB Base Clock Output (CGMOUT) . . . . . . . . . . . . . . . .84 4.5.11 CGMB CPU Interrupt (CGMINT) . . . . . . . . . . . . . . . . . . . . .84 4.6 CGMB Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 4.6.1 PLL Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87 4.6.2 PLL Bandwidth Control Register . . . . . . . . . . . . . . . . . . . . .90 4.6.3 PLL Multiplier Select Register High. . . . . . . . . . . . . . . . . . .92 4.6.4 PLL Multiplier Select Register Low . . . . . . . . . . . . . . . . . . .93 MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Clock Generator Module (CGMB) 69 R E Q U I R E D 4.1 Contents A G R E E M E N T Section 4. Clock Generator Module (CGMB) N O N - D I S C L O S U R E Advance Information — MC68HC(9)08PT48 4.6.5 4.6.6 4.7 PLL VCO Range Select Register . . . . . . . . . . . . . . . . . . . .94 PLL Reference Divider Select Register. . . . . . . . . . . . . . . .95 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 4.8 Special Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 4.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 4.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97 4.9 CGMB During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . .97 4.10 Acquisition/Lock Time Specifications . . . . . . . . . . . . . . . . . . . .98 4.10.1 Acquisition/Lock Time Definitions . . . . . . . . . . . . . . . . . . . .98 4.10.2 Parametric Influences on Reaction Time . . . . . . . . . . . . . .99 4.10.3 Choosing a Filter Capacitor. . . . . . . . . . . . . . . . . . . . . . . .100 4.10.4 Reaction Time Calculation . . . . . . . . . . . . . . . . . . . . . . . .101 4.2 Introduction This section describes the clock generator module (CGM, version B). The CGM generates the crystal clock signal, CGMXCLK, which operates at the frequency of the crystal. The CGM also generates the base clock signal, CGMOUT, from which the system integration module (SIM) derives the system clocks. CGMOUT is based on either the crystal clock divided by two or the phase-locked loop (PLL) clock, CGMVCLK, divided by two. The PLL is a fully functional frequency generator designed for use with crystals or ceramic resonators. The PLL can generate a 4-MHz bus frequency without using a 16-MHz crystal. N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Clock Generator Module (CGMB) Advance Information 70 MC68HC(9)08PT48 — Rev. 2.0 Clock Generator Module (CGMB) MOTOROLA • Phase-locked loop with output frequency in integer multiples of an integer dividend of the crystal reference • Low -requency crystal operation with low-power operation and high-output frequency resolution • Programmable reference divider for even greater resolution • Programmable prescaler for power-of-two increases in frequency • Programmable hardware voltage-controlled oscillator (VCO) for low-jitter operation • Automatic bandwidth control mode for low-jitter operation • Automatic frequency lock detector • CPU interrupt on entry or exit from locked condition • Fast stop recovery mode for exiting stop mode even without a stable crystal 4.4 Functional Description The CGMB consists of three major submodules: 1. Crystal oscillator circuit — The crystal oscillator circuit generates the constant crystal frequency clock, CGMXCLK. 2. Phase-locked loop (PLL) — The PLL generates the programmable VCO frequency clock CGMVCLK. 3. Base clock selector circuit — This software-controlled circuit selects either CGMXCLK divided by two or the VCO clock, CGMVCLK, divided by two as the base clock, CGMOUT. The SIM derives the system clocks from CGMOUT. Figure 4-1 shows the structure of the CGM. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Clock Generator Module (CGMB) 71 A G R E E M E N T Features of the CGMB include: N O N - D I S C L O S U R E 4.3 Features R E Q U I R E D Clock Generator Module (CGMB) Features R E Q U I R E D Clock Generator Module (CGMB) CRYSTAL OSCILLATOR OSC2 CGMXCLK OSC1 SIMOSCEN A G R E E M E N T CGMRDV CLOCK SELECT CIRCUIT BCS ÷2 CGMOUT CGMRCLK REFERENCE DIVIDER RDS[3:0] VDDA1 PLLXFC VSSA1 VRS[7:0] VPR[1:0] PHASE DETECTOR VOLTAGE CONTROLLED OSCILLATOR LOOP FILTER N O N - D I S C L O S U R E PLL ANALOG LOCK DETECTOR LOCK CGMVDV AUTOMATIC MODE CONTROL AUTO ACQ INTERRUPT CONTROL PLLIE MUL[11:0] PRE[1:0] FREQUENCY DIVIDER FREQUENCY DIVIDER CGMINT PLLF CGMVCLK Figure 4-1. CGMB Block Diagram Advance Information 72 MC68HC(9)08PT48 — Rev. 2.0 Clock Generator Module (CGMB) MOTOROLA The CGMXCLK signal is the output of the crystal oscillator circuit and runs at a rate equal to the crystal frequency. CGMXCLK is then buffered to produce CGMRCLK, the PLL reference clock. CGMXCLK can be used by other modules which require precise timing for operation. The duty cycle of CGMXCLK is not guaranteed to be 50% and depends on external factors, including the crystal and related external components. An externally generated clock also can feed the OSC1 pin of the crystal oscillator circuit. Connect the external clock to the OSC1 pin and let the OSC2 pin float. 4.4.2 Phase-Locked Loop Circuit (PLL) The PLL is a frequency generator that can operate in either acquisition mode or tracking mode, depending on the accuracy of the output frequency. The PLL can change between acquisition and tracking modes either automatically or manually. 4.4.2.1 PLL Circuits The PLL consists of these circuits: • Voltage-controlled oscillator (VCO) • Reference divider • Frequency prescaler • Modulo VCO frequency divider • Phase detector • Loop filter • Lock detector MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Clock Generator Module (CGMB) 73 A G R E E M E N T The crystal oscillator circuit consists of an inverting amplifier and an external crystal. The OSC1 pin is the input to the amplifier and the OSC2 pin is the output. The SIMOSCEN signal from the system integration module (SIM) enables the crystal oscillator circuit. N O N - D I S C L O S U R E 4.4.1 Crystal Oscillator Circuit R E Q U I R E D Clock Generator Module (CGMB) Functional Description R E Q U I R E D Clock Generator Module (CGMB) The operating range of the VCO is programmable for a wide range of frequencies and for maximum immunity to external noise, including supply and CGMXFC noise. The VCO frequency is bound to a range from roughly one-half to twice the center-of-range frequency, fVRS. Modulating the voltage on the CGMXFC pin changes the frequency within this range. By design, fVRS is equal to the nominal center-of-range frequency, fNOM, (38.4 kHz) times a linear factor, L, and a power-of-two factor, E, or (L × 2E)fNOM. A G R E E M E N T CGMRCLK is the PLL reference clock, a buffered version of CGMXCLK. CGMRCLK runs at a frequency, fRCLK, and is fed to the PLL through a programmable modulo reference divider, which divides fRCLK by a factor R. This feature allows frequency steps of higher resolution. The divider’s output is the final reference clock, CGMRDV, running at a frequency fRDV = fRCLK/R. N O N - D I S C L O S U R E The VCO’s output clock, CGMVCLK, running at a frequency fVCLK, is fed back through a programmable prescale divider and a programmable modulo divider. The prescaler divides the VCO clock by a power-of-two factor P and the modulo divider reduces the VCO clock by a factor, N. The dividers’ output is the VCO feedback clock, CGMVDV, running at a frequency, fVDV = fVCLK/(N × 2P). (See 4.4.2.4 Programming the PLL for more information.) The phase detector then compares the VCO feedback clock, CGMVDV, with the final reference clock, CGMRDV. A correction pulse is generated based on the phase difference between the two signals. The loop filter then slightly alters the DC voltage on the external capacitor connected to CGMXFC based on the width and direction of the correction pulse. The filter can make fast or slow corrections depending on its mode, described in 4.4.2.2 Acquisition and Tracking Modes. The value of the external capacitor and the reference frequency determines the speed of the corrections and the stability of the PLL. The lock detector compares the frequencies of the VCO feedback clock, CGMVDV, and the final reference clock, CGMRDV. Therefore, the speed of the lock detector is directly proportional to the final reference frequency fRDV. The circuit determines the mode of the PLL and the lock condition based on this comparison. Advance Information 74 MC68HC(9)08PT48 — Rev. 2.0 Clock Generator Module (CGMB) MOTOROLA • Acquisition mode — In acquisition mode, the filter can make large frequency corrections to the VCO. This mode is used at PLL startup or when the PLL has suffered a severe noise hit and the VCO frequency is far off the desired frequency. When in acquisition mode, the ACQ bit is clear in the PLL bandwidth control register. (See 4.6.2 PLL Bandwidth Control Register.) • Tracking mode — In tracking mode, the filter makes only small corrections to the frequency of the VCO. PLL jitter is much lower in tracking mode, but the response to noise is also slower. The PLL enters tracking mode when the VCO frequency is nearly correct, such as when the PLL is selected as the base clock source. (See 4.4.3 Base Clock Selector Circuit.) The PLL is automatically in tracking mode when not in acquisition mode or when the ACQ bit is set. 4.4.2.3 Manual and Automatic PLL Bandwidth Modes The PLL can change the bandwidth or operational mode of the loop filter manually or automatically. In automatic bandwidth control mode (AUTO = 1), the lock detector automatically switches between acquisition and tracking modes. Automatic bandwidth control mode also is used to determine when the VCO clock, CGMVCLK, is safe to use as the source for the base clock, CGMOUT. (See 4.6.2 PLL Bandwidth Control Register.) If PLL interrupts are enabled, the software can wait for a PLL interrupt request and then check the LOCK bit. If interrupts are disabled, software can poll the LOCK bit continuously (during PLL startup, usually) or at periodic intervals. In either case, when the LOCK bit is set, the VCO clock is safe to use as the source for the base clock. (See 4.4.3 Base Clock Selector Circuit.) If the VCO is selected as the source for the base clock and the LOCK bit is clear, the PLL has suffered a severe noise hit and the software must take appropriate action, depending on the application. (See 4.7 Interrupts for information and precautions on using interrupts.) MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Clock Generator Module (CGMB) 75 A G R E E M E N T The PLL filter is manually or automatically configurable into one of two operating modes: N O N - D I S C L O S U R E 4.4.2.2 Acquisition and Tracking Modes R E Q U I R E D Clock Generator Module (CGMB) Functional Description R E Q U I R E D Clock Generator Module (CGMB) A G R E E M E N T The following conditions apply when the PLL is in automatic bandwidth control mode: • The ACQ bit (see 4.6.2 PLL Bandwidth Control Register) is a read-only indicator of the mode of the filter. (See 4.4.2.2 Acquisition and Tracking Modes.) • The ACQ bit is set when the VCO frequency is within a certain tolerance, ∆TRK, and is cleared when the VCO frequency is out of a certain tolerance, ∆UNT. (See 4.10 Acquisition/Lock Time Specifications for more information.) • The LOCK bit is a read-only indicator of the locked state of the PLL. • The LOCK bit is set when the VCO frequency is within a certain tolerance, ∆LOCK, and is cleared when the VCO frequency is out of a certain tolerance, ∆UNL. (See 4.10 Acquisition/Lock Time Specifications for more information.) • CPU interrupts can occur if enabled (PLLIE = 1) when the PLL’s lock condition changes, toggling the LOCK bit. (See 4.6.1 PLL Control Register.) N O N - D I S C L O S U R E The PLL also may operate in manual mode (AUTO = 0). Manual mode is used by systems that do not require an indicator of the lock condition for proper operation. Such systems typically operate well below fBUSMAX and require fast startup. The following conditions apply when in manual mode: • ACQ is a writable control bit that controls the mode of the filter. Before turning on the PLL in manual mode, the ACQ bit must be clear. • Before entering tracking mode (ACQ = 1), software must wait a given time, tACQ (see 4.10 Acquisition/Lock Time Specifications), after turning on the PLL by setting PLLON in the PLL control register (PCTL). • Software must wait a given time, tAL, after entering tracking mode before selecting the PLL as the clock source to CGMOUT (BCS = 1). • The LOCK bit is disabled. • CPU interrupts from the CGMB are disabled. Advance Information 76 MC68HC(9)08PT48 — Rev. 2.0 Clock Generator Module (CGMB) MOTOROLA R E Q U I R E D Clock Generator Module (CGMB) Functional Description 4.4.2.4 Programming the PLL The following procedure shows how to program the PLL. The round function in the following equations means that the real number should be rounded to the nearest integer number. 1. Choose the desired bus frequency, fBUSDES. A G R E E M E N T 2. Calculate the desired VCO frequency (four times the desired bus frequency). f VCLKDES = 4 × f BUSDES 3. Choose a practical PLL reference frequency, fRCLK. 4. Select the prescaler power-of-two multiplier, P. PMAX × f VCLKDES 2 log ----------------------------------------------- f VCLKMAX P = integer -------------------------------------------------------------- + 1 log ( 2 ) 5. Select the reference divider based on the resolution desired. For maximum resolution, use this formula. However, higher degrees of resolution slow down the final reference frequency, which may cause acquisition time to increase and may affect the value of the external capacitor. For more information, see 4.10 Acquisition/Lock Time Specifications. f VCLKDES f VCLKDES R = round R MAX × -------------------------– integer - -------------------------P 2 P × f RCLK 2 × f RCLK Select a VCO frequency multiplier, N. R × f VCLKDES N = round ---------------------------------- 2 P × f RCLK MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Clock Generator Module (CGMB) 77 N O N - D I S C L O S U R E NOTE: R E Q U I R E D Clock Generator Module (CGMB) 6. For fastest acquisition time, reduce N/R until R is the smallest value possible. For example, if N = 6 and R = 4, N reduces to 3 and R reduces to 2. 7. Calculate and verify the adequacy of the VCO and bus frequencies fVCLK and fBUS. f VCLK = N × f RCLK P f VCLK = ( 2 × N ⁄ R ) × f RCLK A G R E E M E N T f BUS = ( f VCLK ) ⁄ 4 8. Select the VCO’s power-of-two range multiplier E. Higher values of E should be used at higher frequencies. EMAX × f VCLK 2 log ------------------------------------- f VRSMAX E = integer ---------------------------------------------------- + 1 log ( 2 ) N O N - D I S C L O S U R E Select a VCO linear range multiplier, L, where fNOM = 38.4 KHz f VCLK L = round ------------------------ 2 E × f NOM 9. Calculate and verify the adequacy of the VCO programmed center-of-range frequency fVRS. fVRS = (L × 2E)fNOM 10. Verify the choice of P, R, N, E, and L by comparing fVCLK to fVRS and fVCLKDES. For proper operation, fVCLK must be within the application’s tolerance of fVCLKDES, and fVRS must be as close as possible to fVCLK. NOTE: Exceeding the recommended maximum bus frequency or VCO frequency can crash the MCU. Advance Information 78 MC68HC(9)08PT48 — Rev. 2.0 Clock Generator Module (CGMB) MOTOROLA Table 4-1 provides a numeric example with numbers in hexadecimal notation. Bus Frequency E P N L R 307,200 Hz 1 1 10 10 1 614,400 Hz 1 1 20 20 1 652,800 Hz 2 2 11 11 1 691,200 Hz 2 2 12 12 1 729,600 Hz 2 2 13 13 1 768,000 Hz 2 2 14 14 1 806,400 Hz 2 2 15 15 1 998,400 Hz 2 2 1a 1a 1 MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA N O N - D I S C L O S U R E Table 4-1. Numeric Example Advance Information Clock Generator Module (CGMB) A G R E E M E N T 11. Program the PLL registers accordingly: a. In the PRE bits of the PLL Control Register, program the binary equivalent of P. b. In the VPR bits of the PLL Control Register, program the binary equivalent of E. c. In the PLL Multiplier Select Register Low and the PLL Multiplier Select Register High, program the binary equivalent of N. d. In the PLL VCO Range Select Register, program the binary coded equivalent of L. e. In the PLL Reference Divider Select Register, program the binary coded equivalent of R. R E Q U I R E D Clock Generator Module (CGMB) Functional Description 79 4.4.2.5 Special Programming Exceptions The programming method described in 4.4.2.4 Programming the PLL does not account for three possible exceptions. A value of zero for R, N, or L is meaningless when used in the equations given. To account for these exceptions: • A 0 value for R or N is interpreted exactly the same as a value of 1. at the minimum frequency and the VCO range power-of-two bits.This mode is currently disabled in MT2. • A 0 value for L disables the PLL and prevents its selection as the source for the base clock. (See 4.4.3 Base Clock Selector Circuit.) 4.4.3 Base Clock Selector Circuit This circuit is used to select either the crystal clock, CGMXCLK, or the VCO clock, CGMVCLK, as the source of the base clock, CGMOUT. The two input clocks go through a transition control circuit that waits up to three CGMXCLK cycles and three CGMVCLK cycles to change from one clock source to the other. During this time, CGMOUT is held in stasis. The output of the transition control circuit is then divided by two to correct the duty cycle. Therefore, the bus clock frequency, which is one-half of the base clock frequency, is one-fourth the frequency of the selected clock (CGMXCLK or CGMVCLK). N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Clock Generator Module (CGMB) The BCS bit in the PLL control register (PCTL) selects which clock drives CGMOUT. The VCO clock cannot be selected as the base clock source if the PLL is not turned on. The PLL cannot be turned off if the VCO clock is selected. The PLL cannot be turned on or off simultaneously with the selection or deselection of the VCO clock. The VCO clock also cannot be selected as the base clock source if the factor L is programmed to a 0. This value would set up a condition inconsistent with the operation of the PLL, so that the PLL would be disabled and the crystal clock would be forced as the source of the base clock. Advance Information 80 MC68HC(9)08PT48 — Rev. 2.0 Clock Generator Module (CGMB) MOTOROLA The crystal oscillator is normally connected in a Pierce oscillator configuration, as shown in Figure 4-2. Figure 4-2 shows only the logical representation of the internal components and may not represent actual circuitry. The oscillator configuration uses five components: • Crystal, X1 • Fixed capacitor, C1 • Tuning capacitor, C2; can also be a fixed capacitor • Feedback resistor, RB • Series resistor, RS; optional The series resistor (RS) is included in the diagram to follow strict Pierce oscillator guidelines and may not be required for all ranges of operation, especially with high frequency crystals. Refer to the crystal manufacturer’s data for more information. Figure 4-2 also shows the external components for the PLL: • Bypass capacitor, CBYP • Filter capacitor, CF Routing should be done with great care to minimize signal cross talk and noise. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Clock Generator Module (CGMB) 81 A G R E E M E N T In its typical configuration, the CGMB requires seven external components. Five of these are for the crystal oscillator and two are for the PLL. N O N - D I S C L O S U R E 4.4.4 CGMB External Connections R E Q U I R E D Clock Generator Module (CGMB) Functional Description R E Q U I R E D Clock Generator Module (CGMB) SIMOSCEN CGMXCLK OSC1 OSC2 VSS RS* CGMXFC VDDA1 VDD CF CBYP RB N O N - D I S C L O S U R E A G R E E M E N T X1 C1 C2 *Rs can be 0 (shorted) when used with higher-frequency crystals. Refer to manufacturer’s data. Figure 4-2. CGMB External Connections 4.5 I/O Signals The following paragraphs describe the CGMB I/O (input/output) signals. The CGM may also have up to four additional inputs, if enabled in MT2. 4.5.1 Crystal Amplifier Input Pin (OSC1) The OSC1 pin is an input to the crystal oscillator amplifier. 4.5.2 Crystal Amplifier Output Pin (OSC2) The OSC2 pin is the output of the crystal oscillator inverting amplifier. Advance Information 82 MC68HC(9)08PT48 — Rev. 2.0 Clock Generator Module (CGMB) MOTOROLA The CGMXFC pin is required by the loop filter to filter out phase corrections. A small external capacitor is connected to this pin. NOTE: To prevent noise problems, CF should be placed as close to the CGMXFC pin as possible, with minimum routing distances and no routing of other signals across the CF connection. 4.5.4 PLL Analog Power Pin (VDD1) VDDA1 is a power pin used by the analog portions of the PLL. Connect the VDDA1 pin to the same voltage potential as the VDD pin. NOTE: Route VDDA1 carefully for maximum noise immunity and place bypass capacitors as close as possible to the package. 4.5.5 PLL Analog Ground Pin (VSSA1) VSSA1 is a ground pin used by the analog portions of the PLL. Connect the VSSA1 pin to the same voltage potential as the VSS pin. NOTE: Route VSSA1 carefully for maximum noise immunity and place bypass capacitors as close as possible to the package. 4.5.6 Buffered Crystal Clock Output (CGMVOUT) CGMVOUT buffers the OSC1 clock for external use. 4.5.7 CGMVSEL CGMVSEL must be tied low or floated. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Clock Generator Module (CGMB) 83 N O N - D I S C L O S U R E 4.5.3 External Filter Capacitor Pin (CGMXFC) A G R E E M E N T R E Q U I R E D Clock Generator Module (CGMB) I/O Signals N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Clock Generator Module (CGMB) 4.5.8 Oscillator Enable Signal (SIMOSCEN) The SIMOSCEN signal comes from the system integration module (SIM) and enables the oscillator and PLL. 4.5.9 Crystal Output Frequency Signal (CGMXCLK) CGMXCLK is the crystal oscillator output signal. It runs at the full speed of the crystal (fXCLK) and comes directly from the crystal oscillator circuit. Figure 4-2 shows only the logical relation of CGMXCLK to OSC1 and OSC2 and may not represent the actual circuitry. The duty cycle of CGMXCLK is unknown and may depend on the crystal and other external factors. Also, the frequency and amplitude of CGMXCLK can be unstable at startup. 4.5.10 CGMB Base Clock Output (CGMOUT) CGMOUT is the clock output of the CGMB. This signal goes to the SIM, which generates the MCU clocks. CGMOUT is a 50 percent duty cycle clock running at twice the bus frequency. CGMOUT is software programmable to be either the oscillator output, CGMXCLK, divided by two or the VCO clock, CGMVCLK, divided by two. 4.5.11 CGMB CPU Interrupt (CGMINT) CGMINT is the interrupt signal generated by the PLL lock detector. Advance Information 84 MC68HC(9)08PT48 — Rev. 2.0 Clock Generator Module (CGMB) MOTOROLA R E Q U I R E D Clock Generator Module (CGMB) CGMB Registers 4.6 CGMB Registers • PLL control register (PCTL) See 4.6.1 PLL Control Register. • PLL bandwidth control register (PBWC) See 4.6.2 PLL Bandwidth Control Register. • PLL multiplier select register high (PMSH) See 4.6.3 PLL Multiplier Select Register High. • PLL multiplier select register low (PMSL) See 4.6.4 PLL Multiplier Select Register Low. • PLL VCO range select register See 4.6.5 PLL VCO Range Select Register. • PLL reference divider select register (PRDS) See 4.6.6 PLL Reference Divider Select Register. A G R E E M E N T The following registers control and monitor operation of the CGMB: N O N - D I S C L O S U R E Figure 4-3 is a summary of the CGMB registers. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Clock Generator Module (CGMB) 85 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Clock Generator Module (CGMB) Addr. $0046 $0047 $0048 $0049 $004A $004B Register Name Bit 7 6 Read: PLLIE PLL Control Register Write: (PCTL) Reset: 0 PLLF Read: AUTO PLL Bandwidth Control Write: Register (PBWC) Reset: 0 LOCK Read: PLL Multiplier Select Register Write: High (PMSH) Reset: 0 0 Read: MUL7 PLL Multiplier Select Register Write: Low (PMSL) Reset: 0 Read: VRS7 PLL VCO Range Select Write: Register (PVRS) Reset: 0 Read: PLL Reference Divider Select Write: Register (PRDS) Reset: 0 0 0 5 4 3 2 1 Bit 0 PLLON BCS PRE1 PRE0 VPR1 VPR0 1 0 1 1 1 1 0 0 0 0 ACQ COE 0 0 0 0 0 0 0 0 0 0 MUL11 MUL10 MUL9 MUL8 0 0 0 0 0 0 0 MUL6 MUL5 MUL4 MUL3 MUL2 MUL1 MUL0 0 0 0 0 0 0 0 VRS6 VRS5 VRS4 VRS3 VRS2 VRS1 VRS0 1 0 0 0 0 0 0 0 0 0 RDS3 RDS2 RDS1 RDS0 0 0 0 1 0 0 0 = Unimplemented Notes: 1. When AUTO = 0, PLLIE is forced clear and is read only. 2. When AUTO = 0, PLLF and LOCK read as clear. 3. When AUTO = 1, ACQ is read-only. 4. When PLLON = 0 or VRS7:VRS0 = $0, BCS is forced clear and is read only. 5. When PLLON = 1, the PLL programming register is read only. 6. When BCS = 1, PLLON is forced set and is read only. Figure 4-3. CGMB I/O Register Summary Advance Information 86 MC68HC(9)08PT48 — Rev. 2.0 Clock Generator Module (CGMB) MOTOROLA 4.6.1 PLL Control Register The PLL control register contains the interrupt enable and flag bits, the on/off switch, the base clock selector bit, the prescaler bits, and the VCO power-of-two range selector bits. $0046 Bit 7 5 4 3 2 1 Bit 0 PLLON BCS PRE1 PRE0 VPR1 VPR0 1 0 1 1 1 1 PLLF PLLIE Write: Reset: 0 0 = Unimplemented Figure 4-4. PLL Control Register (PCTL) PLLIE — PLL Interrupt Enable Bit This read/write bit enables the PLL to generate an interrupt request when the LOCK bit toggles, setting the PLL flag, PLLF. When the AUTO bit in the PLL bandwidth control register (PBWC) is clear, PLLIE cannot be written and reads as logic 0. Reset clears the PLLIE bit. 1 = PLL interrupts enabled 0 = PLL interrupts disabled PLLF — PLL Interrupt Flag Bit This read-only bit is set whenever the LOCK bit toggles. PLLF generates an interrupt request if the PLLIE bit also is set. PLLF always reads as logic 0 when the AUTO bit in the PLL bandwidth control register (PBWC) is clear. Clear the PLLF bit by reading the PLL control register. Reset clears the PLLF bit. 1 = Change in lock condition 0 = No change in lock condition NOTE: Do not inadvertently clear the PLLF bit. Any read or read-modify-write operation on the PLL control register clears the PLLF bit. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Clock Generator Module (CGMB) 87 A G R E E M E N T Read: 6 N O N - D I S C L O S U R E Address: R E Q U I R E D Clock Generator Module (CGMB) CGMB Registers R E Q U I R E D Clock Generator Module (CGMB) PLLON — PLL On Bit This read/write bit activates the PLL and enables the VCO clock, CGMVCLK. PLLON cannot be cleared if the VCO clock is driving the base clock, CGMOUT (BCS = 1). (See 4.4.3 Base Clock Selector Circuit.) Reset sets this bit so that the loop can stabilize as the MCU is powering up. 1 = PLL on 0 = PLL off A G R E E M E N T BCS — Base Clock Select Bit This read/write bit selects either the crystal oscillator output, CGMXCLK, or the VCO clock, CGMVCLK, as the source of the CGM output, CGMOUT. CGMOUT frequency is one-half the frequency of the selected clock. BCS cannot be set while the PLLON bit is clear. After toggling BCS, it may take up to three CGMXCLK and three CGMVCLK cycles to complete the transition from one source clock to the other. During the transition, CGMOUT is held in stasis. (See 4.4.3 Base Clock Selector Circuit.) Reset clear the BCS bit. 1 = CGMVCLK divided by two drives CGMOUT 0 = CGMXCLK divided by two drives CGMOUT N O N - D I S C L O S U R E NOTE: PLLON and BCS have built-in protection that prevents the base clock selector circuit from selecting the VCO clock as the source of the base clock if the PLL is off. Therefore, PLLON cannot be cleared when BCS is set, and BCS cannot be set when PLLON is clear. If the PLL is off (PLLON = 0), selecting CGMVCLK requires two writes to the PLL control register. (See 4.4.3 Base Clock Selector Circuit.) PRE1 and PRE0 — Prescaler Program Bits These read/write bits control a prescaler that selects the prescaler power-of-two multiplier P. (See 4.4.2.1 PLL Circuits and 4.4.2.4 Programming the PLL.) PRE1 and PRE0 cannot be written when the PLLON bit is set. Reset clears these bits. (See Table 4-2.) Advance Information 88 MC68HC(9)08PT48 — Rev. 2.0 Clock Generator Module (CGMB) MOTOROLA Table 4-2. PRE1 and PRE0 Programming PRE1 and PRE0 P Prescaler Multiplier 00 0 1 01 1 2 10 2 4 11 3 8 VPR1 and VPR0 — VCO Power-of-Two Range Select Bits These read/write bits control the VCO’s hardware power-of-two range multiplier E that, in conjunction with L (See 4.4.2.1 PLL Circuits, 4.4.2.4 Programming the PLL, and 4.6.5 PLL VCO Range Select Register.) controls the hardware center-of-range frequency fVRS. VPR1:VPR0 cannot be written when the PLLON bit is set. Reset clears these bits. (See Table 4-3.) VPR1 and VPR0 E VCO Power-of-Two Range Multiplier 00 0 1 01 1 2 10 2 4 11 3 8 MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA N O N - D I S C L O S U R E Table 4-3. VPR1 and VPR0 Programming Advance Information Clock Generator Module (CGMB) A G R E E M E N T R E Q U I R E D Clock Generator Module (CGMB) CGMB Registers 89 4.6.2 PLL Bandwidth Control Register The PLL bandwidth control register: A G R E E M E N T R E Q U I R E D Clock Generator Module (CGMB) • Selects automatic or manual (software-controlled) bandwidth control mode • Indicates when the PLL is locked • In automatic bandwidth control mode, indicates when the PLL is in acquisition or tracking mode • In manual operation, forces the PLL into acquisition or tracking mode Address: $0047 Bit 7 Read: 6 5 LOCK AUTO 4 3 2 1 0 0 0 0 Bit 0 ACQ COE Write: Reset: 0 0 0 0 0 0 0 0 = Unimplemented N O N - D I S C L O S U R E Figure 4-5. PLL Bandwidth Control Register (PBWC) AUTO — Automatic Bandwidth Control Bit This read/write bit selects automatic or manual bandwidth control. When initializing the PLL for manual operation (AUTO = 0), clear the ACQ bit before turning on the PLL. Reset clears the AUTO bit. 1 = Automatic bandwidth control 0 = Manual bandwidth control LOCK — Lock Indicator Bit When the AUTO bit is set, LOCK is a read-only bit that becomes set when the VCO clock, CGMVCLK, is locked (running at the programmed frequency). When the AUTO bit is clear, LOCK reads as logic 0 and has no meaning. The write function of this bit is reserved for test, so this bit must always be written a 0. Reset clears the LOCK bit. 1 = VCO frequency correct or locked 0 = VCO frequency incorrect or unlocked Advance Information 90 MC68HC(9)08PT48 — Rev. 2.0 Clock Generator Module (CGMB) MOTOROLA When the AUTO bit is set, ACQ is a read-only bit that indicates whether the PLL is in acquisition mode or tracking mode. When the AUTO bit is clear, ACQ is a read/write bit that controls whether the PLL is in acquisition or tracking mode. In automatic bandwidth control mode (AUTO = 1), the last-written value from manual operation is stored in a temporary location and is recovered when manual operation resumes. Reset clears this bit, enabling acquisition mode. 1 = Tracking mode 0 = Acquisition mode COE— Clock Out Enable N O N - D I S C L O S U R E When the COE bit is cleared, a buffered version of OSC1 is present on the CGMVOUT pin. When the COE bit is set, the CGMVOUT pin will be driven low. 1 = CGMVOUT driven low 0 = CGMVOUT is buffered OSC1 A G R E E M E N T ACQ — Acquisition Mode Bit R E Q U I R E D Clock Generator Module (CGMB) CGMB Registers MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Clock Generator Module (CGMB) 91 4.6.3 PLL Multiplier Select Register High The PLL multiplier select register high contains the programming information for the high byte of the modulo feedback divider. Address: Read: $0048 Bit 7 6 5 4 0 0 0 0 3 2 1 Bit 0 MUL11 MUL10 MUL9 MUL8 0 0 0 0 Write: A G R E E M E N T R E Q U I R E D Clock Generator Module (CGMB) Reset: 0 0 0 0 = Unimplemented Figure 4-6. PLL Multiplier Select Register High (PMSH) MUL[11:8] — Multiplier Select Bits N O N - D I S C L O S U R E These read/write bits control the high byte of the modulo feedback divider that selects the VCO frequency multiplier N. (See 4.4.2.1 PLL Circuits and 4.4.2.4 Programming the PLL.) A value of $0000 in the multiplier select registers configures the modulo feedback divider the same as a value of $0001. Reset initializes the registers to $0040 for a default multiply value of 64. NOTE: The multiplier select bits have built-in protection such that they cannot be written when the PLL is on (PLLON = 1). Advance Information 92 MC68HC(9)08PT48 — Rev. 2.0 Clock Generator Module (CGMB) MOTOROLA R E Q U I R E D Clock Generator Module (CGMB) CGMB Registers 4.6.4 PLL Multiplier Select Register Low The PLL multiplier select register low contains the programming information for the low byte of the modulo feedback divider. Address: $0049 Bit 7 6 5 4 3 2 1 Bit 0 MUL7 MUL6 MUL5 MUL4 MUL3 MUL2 MUL1 MUL0 0 0 0 0 0 0 0 0 Read: Figure 4-7. PLL Multiplier Select Register Low (PMSL) MUL[7:0] — Multiplier Select Bits These read/write bits control the low byte of the modulo feedback divider that selects the VCO frequency multiplier, N. (See 4.4.2.1 PLL Circuits and 4.4.2.4 Programming the PLL.) MUL[7:0] cannot be written when the PLLON bit in the PCTL is set. A value of $0000 in the multiplier select registers configures the modulo feedback divider the same as a value of $0001. Reset initializes the register to $40 for a default multiply value of 64. NOTE: The multiplier select bits have built-in protection such that they cannot be written when the PLL is on (PLLON = 1). MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Clock Generator Module (CGMB) 93 N O N - D I S C L O S U R E Reset: A G R E E M E N T Write: 4.6.5 PLL VCO Range Select Register The PLL VCO range select register contains the programming information required for the hardware configuration of the VCO. Address: $004A Bit 7 6 5 4 3 2 1 Bit 0 VRS7 VRS6 VRS5 VRS4 VRS3 VRS2 VRS1 VRS0 0 1 0 0 0 0 0 0 Read: Write: A G R E E M E N T R E Q U I R E D Clock Generator Module (CGMB) Reset: Figure 4-8. PLL VCO Range Select Register (PVRS) VRS[7:0] — VCO Range Select Bits These read/write bits control the hardware center-of-range linear multiplier L which, in conjunction with E (see 4.4.2.1 PLL Circuits, 4.4.2.4 Programming the PLL, and 4.6.1 PLL Control Register), controls the hardware center-of-range frequency, fVRS. VRS[7:0] N O N - D I S C L O S U R E cannot be written when the PLLON bit in the PCTL is set. (See 4.4.2.5 Special Programming Exceptions. ) A value of $00 in the VCO Range Select Register disables the PLL and clears the BCS bit in the PLL Control Register. (See 4.4.3 Base Clock Selector Circuit and 4.4.2.5 Special Programming Exceptions.) Reset initializes the register to $40 for a default range multiply value of 64. NOTE: The VCO range select bits have built in protection such that they cannot be written when the PLL is on (PLLON = 1) and such that the VCO clock cannot be selected as the source of the base clock (BCS = 1) if the VCO range select bits are all clear. The PLL VCO range select register must be programmed correctly. Incorrect programming may result in failure of the PLL to achieve lock. Advance Information 94 MC68HC(9)08PT48 — Rev. 2.0 Clock Generator Module (CGMB) MOTOROLA R E Q U I R E D Clock Generator Module (CGMB) CGMB Registers 4.6.6 PLL Reference Divider Select Register The PLL reference divider select register contains the programming information for the modulo reference divider. Address: Read: $004B Bit 7 6 5 4 0 0 0 0 3 2 1 Bit 0 RDS3 RDS2 RDS1 RDS0 0 0 0 1 0 0 0 0 = Unimplemented Figure 4-9. PLL Reference Divider Select Register (PRDS) RDS[3:0] — Reference Divider Select Bits These read/write bits control the modulo reference divider that selects the reference division factor R. (See 4.4.2.1 PLL Circuits and 4.4.2.4 Programming the PLL.) RDS[7:0] cannot be written when the PLLON bit in the PCTL is set. A value of $00 in the reference divider select register configures the reference divider the same as a value of $01. (See 4.4.2.5 Special Programming Exceptions.) Reset initializes the register to $01 for a default divide value of 1. NOTE: The reference divider select bits have built-in protection such that they cannot be written when the PLL is on (PLLON = 1). PRDS[7:4] — Unimplemented Bits These bits have no function and always read as logic 0s. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Clock Generator Module (CGMB) 95 N O N - D I S C L O S U R E Reset: A G R E E M E N T Write: 4.7 Interrupts When the AUTO bit is set in the PLL bandwidth control register (PBWC), the PLL can generate a CPU interrupt request every time the LOCK bit changes state. The PLLIE bit in the PLL control register (PCTL) enables CPU interrupts from the PLL. PLLF, the interrupt flag in the PCTL, becomes set whether interrupts are enabled or not. When the AUTO bit is clear, CPU interrupts from the PLL are disabled and PLLF reads as logic 0. N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Clock Generator Module (CGMB) Software should read the LOCK bit after a PLL interrupt request to see if the request was due to an entry into lock or an exit from lock. When the PLL enters lock, the VCO clock, CGMVCLK, divided by two can be selected as the CGMOUT source by setting BCS in the PCTL. When the PLL exits lock, the VCO clock frequency is corrupt and appropriate precautions should be taken. If the application is not frequency sensitive, interrupts should be disabled to prevent PLL interrupt service routines from impeding software performance or from exceeding stack limitations. NOTE: Software can select the CGMVCLK divided by two as the CGMOUT source even if the PLL is not locked (LOCK = 0). Therefore, software should make sure the PLL is locked before setting the BCS bit. 4.8 Special Modes The WAIT and STOP instructions put the MCU in low powerconsumption standby mode. 4.8.1 Wait Mode The WAIT instruction does not affect the CGMB. Before entering wait mode, software can disengage and turn off the PLL by clearing the BCS and PLLON bits in the PLL control register (PCTL). Less power-sensitive applications can disengage the PLL without turning it off. Applications that require the PLL to wake the MCU from wait mode also can deselect the PLL output without turning off the PLL. Advance Information 96 MC68HC(9)08PT48 — Rev. 2.0 Clock Generator Module (CGMB) MOTOROLA If the STOP instruction is executed with the VCO clock, CGMVCLK, divided by two driving CGMOUT, the PLL automatically clears the BCS bit in the PLL control register (PCTL), thereby selecting the crystal clock, CGMXCLK, divided by two as the source of CGMOUT. When the MCU recovers from STOP, the crystal clock divided by two drives CGMOUT and BCS remains clear. 4.9 CGMB During Break Interrupts The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state. (See 7.8.3 SIM Break Flag Control Register.) To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state. To protect the PLLF bit during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), software can read and write the PLL control register during the break state without affecting the PLLF bit. If this mode is desired during reset, the reset conditions of BCS and PLLON must be set. If this mode is desired for use in applications where no crystal is used, the BCS and PLLON bits must not be clearable. During a large frequency change, the software must allow a stabilization time. The CGMXCLK signal will always reflect the crystal clock, so the value of CGMXCLK upon removing the crystal will reflect the value of the OSC1 pin. If OSC1 is floating, the module could consume significant power and the output of the CGMXCLK signal would be indeterminate. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Clock Generator Module (CGMB) 97 A G R E E M E N T The STOP instruction disables the CGMB and holds low all CGMB outputs (CGMXCLK, CGMOUT, and CGMINT). N O N - D I S C L O S U R E 4.8.2 Stop Mode R E Q U I R E D Clock Generator Module (CGMB) CGMB During Break Interrupts 4.10 Acquisition/Lock Time Specifications The acquisition and lock times of the PLL are, in many applications, the most critical PLL design parameters. Proper design and use of the PLL ensures the highest stability and lowest acquisition/lock times. 4.10.1 Acquisition/Lock Time Definitions Typical control systems refer to the acquisition time or lock time as the reaction time, within specified tolerances, of the system to a step input. In a PLL, the step input occurs when the PLL is turned on or when it suffers a noise hit. The tolerance is usually specified as a percent of the step input or when the output settles to the desired value plus or minus a percent of the frequency change. Therefore, the reaction time is constant in this definition, regardless of the size of the step input. For example, consider a system with a 5 percent acquisition time tolerance. If a command instructs the system to change from 0 Hz to 1 MHz, the acquisition time is the time taken for the frequency to reach 1 MHz ±50 kHz. Fifty kHz = 5% of the 1-MHz step input. If the system is operating at 1 MHz and suffers a –100-kHz noise hit, the acquisition time is the time taken to return from 900 kHz to 1 MHz ±5 kHz. Five kHz = 5% of the 100-kHz step input. N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Clock Generator Module (CGMB) Other systems refer to acquisition and lock times as the time the system takes to reduce the error between the actual output and the desired output to within specified tolerances. Therefore, the acquisition or lock time varies according to the original error in the output. Minor errors may not even be registered. Typical PLL applications prefer to use this definition because the system requires the output frequency to be within a certain tolerance of the desired frequency regardless of the size of the initial error. The discrepancy in these definitions makes it difficult to specify an acquisition or lock time for a typical PLL. Therefore, the definitions for acquisition and lock times for this module are: • Acquisition time, tACQ, is the time the PLL takes to reduce the error between the actual output frequency and the desired output frequency to less than the tracking mode entry tolerance, ∆TRK. Advance Information 98 MC68HC(9)08PT48 — Rev. 2.0 Clock Generator Module (CGMB) MOTOROLA Lock time, tLOCK, is the time the PLL takes to reduce the error between the actual output frequency and the desired output frequency to less than the lock mode entry tolerance, ∆LOCK. Lock time is based on an initial frequency error, (fDES – fORIG)/fDES, of not more than ±100 percent. In automatic bandwidth control mode, lock time expires when the LOCK bit becomes set in the PLL bandwidth control register (PBWC). (See 4.4.2.3 Manual and Automatic PLL Bandwidth Modes.) Obviously, the acquisition and lock times can vary according to how large the frequency error is and may be shorter or longer in many cases. 4.10.2 Parametric Influences on Reaction Time Acquisition and lock times are designed to be as short as possible while still providing the highest possible stability. These reaction times are not constant, however. Many factors directly and indirectly affect the acquisition time. The most critical parameter which affects the reaction times of the PLL is the reference frequency, fRDV. This frequency is the input to the phase detector and controls how often the PLL makes corrections. For stability, the corrections must be small compared to the desired frequency, so several corrections are required to reduce the frequency error. Therefore, the slower the reference the longer it takes to make these corrections. This parameter is also under user control via the choice of crystal frequency fXCLK and the R value programmed in the reference divider. (See 4.4.2.1 PLL Circuits, 4.4.2.4 Programming the PLL, and 4.6.6 PLL Reference Divider Select Register). Another critical parameter is the external filter capacitor. The PLL modifies the voltage on the VCO by adding or subtracting charge from this capacitor. Therefore, the rate at which the voltage changes for a MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Clock Generator Module (CGMB) 99 A G R E E M E N T • N O N - D I S C L O S U R E Acquisition time is based on an initial frequency error, (fDES – fORIG)/fDES, of not more than ±100 percent. In automatic bandwidth control mode (see 4.4.2.3 Manual and Automatic PLL Bandwidth Modes), acquisition time expires when the ACQ bit becomes set in the PLL bandwidth control register (PBWC). R E Q U I R E D Clock Generator Module (CGMB) Acquisition/Lock Time Specifications R E Q U I R E D Clock Generator Module (CGMB) given frequency error (thus change in charge) is proportional to the capacitor size. The size of the capacitor also is related to the stability of the PLL. If the capacitor is too small, the PLL cannot make small enough adjustments to the voltage and the system cannot lock. If the capacitor is too large, the PLL may not be able to adjust the voltage in a reasonable time. (See 4.10.3 Choosing a Filter Capacitor.) N O N - D I S C L O S U R E A G R E E M E N T Also important is the operating voltage potential applied to VDDA1. The power supply potential alters the characteristics of the PLL. A fixed value is best. Variable supplies, such as batteries, are acceptable if they vary within a known range at very slow speeds. Noise on the power supply is not acceptable, because it causes small frequency errors which continually change the acquisition time of the PLL. Temperature and processing also can affect acquisition time because the electrical characteristics of the PLL change. The part operates as specified as long as these influences stay within the specified limits. External factors, however, can cause drastic changes in the operation of the PLL. These factors include noise injected into the PLL through the filter capacitor, filter capacitor leakage, stray impedances on the circuit board, and even humidity or circuit board contamination. 4.10.3 Choosing a Filter Capacitor As described in 4.10.2 Parametric Influences on Reaction Time, the external filter capacitor, CF, is critical to the stability and reaction time of the PLL. The PLL is also dependent on reference frequency and supply voltage. The value of the capacitor must, therefore, be chosen with supply potential and reference frequency in mind. For proper operation, the external filter capacitor must be chosen according to this equation: V DDA C F = C FACT ----------- f RDV- For acceptable values of CFACT, see 4.10 Acquisition/Lock Time Specifications. For the value of VDDA1, choose the voltage potential at which the MCU is operating. If the power supply is variable, choose a value near the middle of the range of possible supply values. Advance Information 100 MC68HC(9)08PT48 — Rev. 2.0 Clock Generator Module (CGMB) MOTOROLA The actual acquisition and lock times can be calculated using the equations in this section. These equations yield nominal values under the following conditions: • Correct selection of filter capacitor, CF (See 4.10.3 Choosing a Filter Capacitor.) • Room temperature operation • Negligible external leakage on CGMXFC • Negligible noise The K factor in the equations is derived from internal PLL parameters. KACQ is the K factor when the PLL is configured in acquisition mode, and KTRK is the K factor when the PLL is configured in tracking mode. (See 4.4.2.2 Acquisition and Tracking Modes.) V DDA 8 t ACQ = -------------- -------------- f RDV K ACQ V DDA 4 t AL = -------------- ------------- f RDV K TRK t LOCK = NOTE:T t ACQ + t AL he inverse proportionality between the lock time and the reference frequency. In automatic bandwidth control mode the acquisition and lock times are quantized into units based on the reference frequency. (See 4.4.2.3 Manual and Automatic PLL Bandwidth Modes.) A certain number of MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Clock Generator Module (CGMB) 101 A G R E E M E N T 4.10.4 Reaction Time Calculation N O N - D I S C L O S U R E This equation does not always yield a commonly available capacitor size, so round to the nearest available size. If the value is between two different sizes, choose the higher value for better stability. Choosing the lower size may seem attractive for acquisition time improvement, but the PLL may become unstable. Also, always choose a capacitor with a tight tolerance (±20 percent or better) and low dissipation. R E Q U I R E D Clock Generator Module (CGMB) Acquisition/Lock Time Specifications R E Q U I R E D Clock Generator Module (CGMB) A G R E E M E N T clock cycles, nACQ, is required to ascertain that the PLL is within the tracking mode entry tolerance, ∆TRK, before exiting acquisition mode. A certain number of clock cycles, nTRK, is required to ascertain that the PLL is within the lock mode entry tolerance, ∆LOCK. Therefore, the acquisition time, tACQ, is an integer multiple of nACQ/fRDV, and the acquisition to lock time, tAL, is an integer multiple of nTRK/fRDV. Also, since the average frequency over the entire measurement period must be within the specified tolerance, the total time usually is longer than tLOCK as calculated earlier. N O N - D I S C L O S U R E In manual mode, it is usually necessary to wait considerably longer than tLOCK before selecting the PLL clock (see 4.4.3 Base Clock Selector Circuit) because the factors described in 4.10.2 Parametric Influences on Reaction Time may slow the lock time considerably. Advance Information 102 MC68HC(9)08PT48 — Rev. 2.0 Clock Generator Module (CGMB) MOTOROLA 5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103 5.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104 5.4 I/O Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 5.4.1 CGMXCLK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 5.4.2 STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 5.4.3 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 5.4.4 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 5.4.5 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 5.4.6 Reset Vetor Fetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 5.4.7 COPD (COP Disable) . . . . . . . . . . . . . . . . . . . . . . . . . . . .106 5.5 COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106 5.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106 5.7 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106 5.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106 5.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107 5.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107 5.9 COP Module During Break Interrupts . . . . . . . . . . . . . . . . . . .107 5.2 Introduction This section describes the computer operating properly module (COP, version B10), a free-running counter that generates a reset if allowed to overflow. The COP module helps software recover from runaway code. Prevent a COP reset by periodically clearing the COP counter. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Computer Operating Properly (COP) Module 103 R E Q U I R E D 5.1 Contents A G R E E M E N T Section 5. Computer Operating Properly (COP) Module N O N - D I S C L O S U R E Advance Information — MC68HC(9)08PT48 5.3 Functional Description SIM CGMXCLK SIM RESET CIRCUIT 12-BIT SIM COUNTER SIM RESET STATUS REGISTER STOP INSTRUCTION INTERNAL RESET RESET VECTOR FETCH A G R E E M E N T R E Q U I R E D Computer Operating Properly (COP) Module COPCTL WRITE COP COPEN (FROM SIM) COPD (FROM MOR) 6-BIT COP COUNTER RESET COPCTL WRITE N O N - D I S C L O S U R E Figure 5-1. COP Block Diagram The COP counter uses a free-running 6-bit counter preceded by the 13bit system integration module (SIM) counter. If not cleared by software, the COP counter overflows and generates an asynchronous reset after 218–24 CGMXCLK cycles. With a 38.4-kHz crystal, the COP timeout period is 6.83 seconds. Writing any value to location $FFFF before overflow occurs clears the COP counter and prevents reset. A COP reset pulls the RST pin low for 32 CGMXCLK cycles and sets the COP bit in the SIM reset status register (SRSR). Clear the COP immediately before entering or after exiting stop mode to assure a full COP timeout period after entering or exiting stop mode. A CPU interrupt routine or a DMA service routine can be used to clear the COP. NOTE: Place COP clearing instructions in the main program and not in an interrupt subroutine. Such an interrupt subroutine could keep the COP from generating a reset even while the main program is not working properly. Advance Information 104 MC68HC(9)08PT48 — Rev. 2.0 Computer Operating Properly (COP) Module MOTOROLA This section describes the signals shown in Figure 5-1. 5.4.1 CGMXCLK CGMXCLK is the crystal oscillator output signal. CGMXCLK frequency is equal to the crystal frequency. 5.4.2 STOP Instruction The STOP instruction clears the SIM counter. 5.4.3 COPCTL Write Writing any value to the COP control register (COPCTL) clears the COP counter and clears bits 12 through 4 of the SIM counter. Reading the COP control register returns the reset vector. A G R E E M E N T 5.4 I/O Signals R E Q U I R E D Computer Operating Properly (COP) Module I/O Signals The power-on reset (POR) circuit in the SIM clears the SIM counter 4096 CGMXCLK cycles after power-up. 5.4.5 Internal Reset An internal reset clears the SIM counter and the COP counter. 5.4.6 Reset Vetor Fetch A reset vector fetch occurs when the vector address appears on the data bus. A reset vector fetch clears the SIM counter. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Computer Operating Properly (COP) Module 105 N O N - D I S C L O S U R E 5.4.4 Power-On Reset 5.4.7 COPD The COPD (COP disable) signal refects the state of the COP disable bit (COPD) in the mask option register (MOR). 5.5 COP Control Register The COP control register (COPCTL) is located at address $FFFF and overlaps the reset vector. Writing any value to $FFFF clears the COP counter and starts a new timeout period. Reading location $FFFF returns the low byte of the reset vector. N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Computer Operating Properly (COP) Module Address: $FFFF Bit 7 6 5 4 3 2 Read: Low Byte of Reset Vector Write: Clear COP Counter Reset: Unaffected by reset 1 Bit 0 Figure 5-2. COP Control Register (COPCTL) 5.6 Interrupts The COP does not generate CPU interrupt requests or DMA service requests. 5.7 Monitor Mode The COP is disabled in monitor mode when VDD +VHI is present on the IRQ1/VPP pin or on the RST pin. 5.8 Low-Power Modes The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. Advance Information 106 MC68HC(9)08PT48 — Rev. 2.0 Computer Operating Properly (COP) Module MOTOROLA The COP continues to operate during wait mode. To prevent a COP reset during wait mode, periodically clear the COP counter in a CPU interrupt routine or a DMA service routine. 5.8.2 Stop Mode Stop mode turns off the CGMXCLK input to the COP and clears the SIM counter. Service the COP immediately before entering or after exiting stop mode to ensure a full COP timeout period after entering or exiting stop mode. The STOP bit in the mask option register (MOR) enables the STOP instruction. To prevent inadvertently turning off the COP with a STOP instruction, disable the STOP instruction by programming the STOP bits to logic 0. 5.9 COP Module During Break Interrupts N O N - D I S C L O S U R E The COP is disabled during a break interrupt when VDD = VHI is present on the RST pin. A G R E E M E N T 5.8.1 Wait Mode R E Q U I R E D Computer Operating Properly (COP) Module COP Module During Break Interrupts MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Computer Operating Properly (COP) Module 107 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Computer Operating Properly (COP) Module Advance Information 108 MC68HC(9)08PT48 — Rev. 2.0 Computer Operating Properly (COP) Module MOTOROLA 6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109 6.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109 6.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111 6.5 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 6.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 6.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 6.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 6.7 KBI During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .114 6.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114 6.8.1 Keyboard Status and Control Register . . . . . . . . . . . . . . .114 6.8.2 Keyboard Interrupt Enable Register . . . . . . . . . . . . . . . . .116 6.2 Introduction The keyboard interrupt (KBI) module provides eight independently maskable external interrupt pins. 6.3 Features The KBI features include: • Eight keyboard interrupt pins with separate keyboard interrupt enable bits and one keyboard interrupt mask • Hysteresis buffers • Programmable edge-only or edge- and level-interrupt sensitivity • Automatic interrupt acknowledge • Exit from low-power modes MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Keyboard Interrupt (KBI) Module 109 R E Q U I R E D 6.1 Contents A G R E E M E N T Section 6. Keyboard Interrupt (KBI) Module N O N - D I S C L O S U R E Advance Information — MC68HC(9)08PT48 R E Q U I R E D Keyboard Interrupt (KBI) Module INTERNAL BUS KBD0 ACKK VDD VECTOR FETCH DECODER KEYF RESET TO PULLUP ENABLE . D CLR Q KEYBOARD INTERRUPT REQUEST SYNCHRONIZER . CK KB0IE A G R E E M E N T . TO PULLUP ENABLE IMASKK MODEK KB7IE Figure 6-1. KBI Block Diagram Addr. $0033 N O N - D I S C L O S U R E KEYBOARD INTERRUPT FF KBD7 $0034 Register Name Read: Keyboard Status and Control Write: Register (KBSCR) Reset: Bit 7 6 5 4 3 2 0 0 0 0 KEYF 0 1 Bit 0 IMASKK MODEK ACKK 0 Read: KBIE7 Keyboard Interrupt Enable Write: Register (KBICR) Reset: 0 0 0 0 0 0 0 0 KBIE6 KBIE5 KBIE4 KBIE3 KBIE2 KBIE1 KBIE0 0 0 0 0 0 0 0 = Unimplemented U = Undetermined X = Indeterminate Figure 6-2. KBI Register Summary Advance Information 110 MC68HC(9)08PT48 — Rev. 2.0 Keyboard Interrupt (KBI) Module MOTOROLA A keyboard interrupt request is latched when one or more keyboard pins goes low after all were high. The MODEK bit in the keyboard status and control register controls the triggering sensitivity of the keyboard interrupt pins. • If the keyboard interrupt pins are edge-sensitive only, a falling edge on a keyboard pin does not latch an interrupt request if another keyboard pin is already low. To prevent losing an interrupt request on one pin because another pin is still low, software can disable the latter pin while it is low. • If the keyboard interrupt pins are falling edge- and low levelsensitive, an interrupt request is present as long as any keyboard pin is low. If the MODEK bit is set, the keyboard interrupt pins are both falling edgeand low level-sensitive, and both of the following actions must occur to clear a keyboard interrupt request: • Vector fetch or software clear — A vector fetch generates an interrupt acknowledge signal to clear the interrupt request. Software can generate the interrupt acknowledge signal by writing a logic 1 to the ACKK bit in the keyboard status and control register. The ACKK bit is useful in applications that poll the keyboard interrupt pins and require software to clear the keyboard interrupt request. Writing to the ACKK bit in an interrupt service routine can also prevent spurious interrupts due to noise. Setting ACKK does not affect subsequent transitions on the keyboard interrupt pins. A falling edge that occurs after writing to the ACKK bit latches another interrupt request. If the keyboard interrupt mask bit, IMASKK, is clear, the CPU loads the program counter with the vector address at locations $FFDC and $FFDD. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Keyboard Interrupt (KBI) Module 111 A G R E E M E N T Writing to the KBIE7–KBIE0 bits in the keyboard interrupt enable register independently enables or disables each port F pin as a keyboard interrupt pin. Enabling a keyboard interrupt pin also enables its internal pullup device. A logic 0 applied to an enabled keyboard interrupt pin latches a keyboard interrupt request. N O N - D I S C L O S U R E 6.4 Functional Description R E Q U I R E D Keyboard Interrupt (KBI) Module Functional Description R E Q U I R E D Keyboard Interrupt (KBI) Module • The vector fetch or software clear and the return of all enabled keyboard interrupt pins to logic 1 may occur in any order. A G R E E M E N T If the MODEK bit is clear, the keyboard interrupt pin is falling-edge sensitive only. With MODEK clear, a vector fetch or software clear immediately clears the keyboard interrupt request. Reset clears the keyboard interrupt request and the MODEK bit, clearing the interrupt request even if a keyboard interrupt pin stays at logic 0. The keyboard flag bit (KEYF) in the keyboard status and control register can be used to see if a pending interrupt exists. The KEYF bit is not affected by the keyboard interrupt mask bit (IMASKK) which makes it useful in applications where polling is preferred. To determine the logic level on a keyboard interrupt pin, use the data direction register to configure the pin as an input and read the data register. NOTE: N O N - D I S C L O S U R E Return of all enabled keyboard interrupt pins to logic 1 — As long as any enabled keyboard interrupt pin is at logic 0, the keyboard interrupt request remains set. Setting a keyboard interrupt enable bit (KBxIE) forces the corresponding keyboard interrupt pin to be an input, overriding the data direction register. However, the data direction register bit must be a logic 0 for software to read the pin. 6.5 Initialization When a keyboard interrupt pin is enabled, it takes time for the internal pullup to reach a logic 1. Therefore, a false interrupt can occur as soon as the pin is enabled. To prevent a false interrupt on keyboard initialization: 1. Mask keyboard interrupts by setting the IMASKK bit in the keyboard status and control register. 2. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register. Advance Information 112 MC68HC(9)08PT48 — Rev. 2.0 Keyboard Interrupt (KBI) Module MOTOROLA 3. Write to the ACKK bit in the keyboard status and control register to clear any false interrupts. 4. Clear the IMASKK bit. An interrupt signal on an edge-triggered pin can be acknowledged immediately after enabling the pin. An interrupt signal on an edge- and level-triggered interrupt pin must be acknowledged after a delay that depends on the external load. R E Q U I R E D Keyboard Interrupt (KBI) Module Low-Power Modes 2. Write logic 1s to the appropriate port F data register bits. 3. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register. 6.6 Low-Power Modes The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. 6.6.1 Wait Mode The keyboard interrupt module remains active in wait mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of wait mode. 6.6.2 Stop Mode The keyboard module remains active in stop mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of stop mode. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Keyboard Interrupt (KBI) Module 113 N O N - D I S C L O S U R E 1. Configure the keyboard pins as outputs by setting the appropriate DDRF bits. A G R E E M E N T Another way to avoid a false interrupt: N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Keyboard Interrupt (KBI) Module 6.7 KBI During Break Interrupts The BCFE bit in the break flag control register (BFCR) enables software to clear status bits during the break state. (See 7.8.3 SIM Break Flag Control Register.) To allow software to clear the KEYF bit during a break interrupt, write a logic 1 to the BCFE bit. If KEYF is cleared during the break state, it remains cleared when the MCU exits the break state. To protect the KEYF bit during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0, writing to the keyboard acknowledge bit (ACKK) in the keyboard status and control register during the break state has no effect. (See 6.8.1 Keyboard Status and Control Register.) 6.8 I/O Registers These control and monitor operation of the keyboard interrupt module: • Keyboard status and control register (KBSCR) • Keyboard interrupt enable register (KBIER) 6.8.1 Keyboard Status and Control Register The keyboard status and control register: • Flags keyboard interrupt requests • Acknowledges keyboard interrupt requests • Masks keyboard interrupt requests • Controls keyboard interrupt triggering sensitivity Advance Information 114 MC68HC(9)08PT48 — Rev. 2.0 Keyboard Interrupt (KBI) Module MOTOROLA Bit 7 6 5 4 3 2 0 0 0 0 KEYF 0 Write: Reset: 1 Bit 0 IMASKK MODEK 0 0 ACKK 0 0 0 0 0 0 = Unimplemented Figure 6-3. Keyboard Status and Control Register (KBSCR) Bits 7–4 — Not used These read-only bits always read as logic 0s. KEYF — Keyboard Flag Bit This read-only bit is set when a keyboard interrupt is pending. Reset clears the KEYF bit. 1 = Keyboard interrupt pending 0 = No keyboard interrupt pending ACKK — Keyboard Acknowledge Bit Writing a logic 1 to this write-only bit clears the keyboard interrupt request. ACKK always reads as logic 0. Reset clears ACKK. IMASKK — Keyboard Interrupt Mask Bit Writing a logic 1 to this read/write bit prevents the output of the keyboard interrupt mask from generating interrupt requests. Reset clears the IMASKK bit. 1 = Keyboard interrupt requests masked 0 = Keyboard interrupt requests not masked MODEK — Keyboard Triggering Sensitivity Bit This read/write bit controls the triggering sensitivity of the keyboard interrupt pins. Reset clears MODEK. 1 = Keyboard interrupt requests on falling edges and low levels 0 = Keyboard interrupt requests on falling edges only MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Keyboard Interrupt (KBI) Module 115 A G R E E M E N T Read: $0033 N O N - D I S C L O S U R E Address: R E Q U I R E D Keyboard Interrupt (KBI) Module I/O Registers 6.8.2 Keyboard Interrupt Enable Register The keyboard interrupt enable register enables or disables each port F pin to operate as a keyboard interrupt pin. Address: $0034 Bit 7 6 5 4 3 2 1 Bit 0 KBIE7 KBIE6 KBIE5 KBIE4 KBIE3 KBIE2 KBIE1 KBIE0 0 0 0 0 0 0 0 0 Read: Write: A G R E E M E N T R E Q U I R E D Keyboard Interrupt (KBI) Module Reset: Figure 6-4. Keyboard Interrupt Enable Register (KBIER) KBIE7–KBIE0 — Keyboard Interrupt Enable Bits N O N - D I S C L O S U R E Each of these read/write bits enables the corresponding keyboard interrupt pin to latch interrupt requests. Reset clears the keyboard interrupt enable register. 1 = PFx pin enabled as keyboard interrupt pin 0 = PFx pin not enabled as keyboard interrupt pin Advance Information 116 MC68HC(9)08PT48 — Rev. 2.0 Keyboard Interrupt (KBI) Module MOTOROLA 7.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117 7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118 7.3 SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . .121 7.3.1 Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121 7.3.2 Clock Start-Up from POR or LVI Reset . . . . . . . . . . . . . . .121 7.3.3 Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . .122 7.4 Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . .122 7.4.1 External Pin Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123 7.4.2 Active Resets from Internal Sources . . . . . . . . . . . . . . . . .124 7.4.2.1 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 7.4.2.2 Computer Operating Properly (COP) Reset. . . . . . . . . .126 7.4.2.3 Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . .126 7.4.2.4 Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . .126 7.4.2.5 Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . .127 7.5 SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127 7.5.1 SIM Counter During Power-On Reset . . . . . . . . . . . . . . . .127 7.5.2 SIM Counter During Stop Mode Recovery . . . . . . . . . . . .128 7.5.3 SIM Counter and Reset States . . . . . . . . . . . . . . . . . . . . .128 7.6 Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128 7.6.1 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129 7.6.1.1 Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . .131 7.6.1.2 SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132 7.6.2 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132 7.6.3 Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132 7.6.4 Status Flag Protection in Break Mode. . . . . . . . . . . . . . . .132 7.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133 7.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133 7.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135 MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information System Integration Module (SIM) 117 R E Q U I R E D 7.1 Contents A G R E E M E N T Section 7. System Integration Module (SIM) N O N - D I S C L O S U R E Advance Information — MC68HC(9)08PT48 7.8 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136 7.8.1 SIM Break Status Register . . . . . . . . . . . . . . . . . . . . . . . .136 7.8.2 SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . .138 7.8.3 SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . .139 7.2 Introduction This section describes the system integration module (SIM24, version E), which supports up to 24 external and/or internal interrupts. Together with the CPU, the SIM controls all MCU activities. A block diagram of the SIM is shown in Figure 7-1. Figure 7-2 is a summary of the SIM input/output (I/O) registers. The SIM is a system state controller that coordinates CPU and exception timing. A G R E E M E N T R E Q U I R E D System Integration Module (SIM) N O N - D I S C L O S U R E The SIM is responsible for: NOTE: • Controlling mode selection • Bus clock generation and control for CPU and peripherals – Stop/wait/reset/break entry and recovery – Internal clock control • Master reset control, including power-on reset (POR) and COP timeout • Interrupt control: – Acknowledge timing – Arbitration control timing – Vector address generation • CPU clock control with DMA transfer and low-power modes • Slow memory read/write timing • CPU enable/disable timing • Modular architecture expandable to 128 interrupt sources All references to LVI and DMA operation in this section should be ignored. Table 7-1 shows the internal signal names used in this section. Advance Information 118 MC68HC(9)08PT48 — Rev. 2.0 System Integration Module (SIM) MOTOROLA R E Q U I R E D System Integration Module (SIM) Introduction MODULE STOP MODULE WAIT CPU STOP (FROM CPU) CPU WAIT (FROM CPU) STOP/WAIT CONTROL SIMOSCEN (TO CGM) SIM COUNTER COP CLOCK CGMXCLK (FROM CGM) CGMOUT (FROM CGM) CLOCK CONTROL RESET PIN LOGIC CLOCK GENERATORS A G R E E M E N T ÷2 INTERNAL CLOCKS LVI (FROM LVI MODULE) POR CONTROL MASTER RESET CONTROL RESET PIN CONTROL SIM RESET STATUS REGISTER ILLEGAL OPCODE (FROM CPU) ILLEGAL ADDRESS (FROM ADDRESS MAP DECODERS) COP (FROM COP MODULE) INTERRUPT CONTROL AND PRIORITY DECODE N O N - D I S C L O S U R E RESET INTERRUPT SOURCES CPU INTERFACE Figure 7-1. SIM Block Diagram MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information System Integration Module (SIM) 119 R E Q U I R E D System Integration Module (SIM) Addr. Bit 7 6 5 4 3 2 R R R R R R Read: $FE00 SIM Break Status Register Write: (SBSR) Reset: 1 Bit 0 SBSW R Note 1 0 Note 1. Writing a logic 0 clears SBSW. Read: $FE01 A G R E E M E N T Register Name SIM Reset Status Register Write: (SRSR) Reset: POR PIN COP ILOP ILAD 0 LVI 0 1 0 0 0 0 0 0 0 R R R R R R R Read: $FE03 BCFE SIM Break Flag Control Write: Register (SBFCR) Reset: 0 R = Unimplemented = Reserved Figure 7-2. SIM I/O Register Summary N O N - D I S C L O S U R E Table 7-1. Signal Name Conventions Signal Name Description CGMXCLK Buffered version of OSC1 from clock generator module (CGM) CGMVCLK PLL output CGMOUT PLL-based or OSC1-based clock output from CGM module (bus clock = CGMOUT divided by two) IAB Internal address bus IDB Internal data bus PORRST Signal from the power-on reset module to the SIM IRST Internal reset signal R/W Read/write signal Advance Information 120 MC68HC(9)08PT48 — Rev. 2.0 System Integration Module (SIM) MOTOROLA 7.3 SIM Bus Clock Control and Generation CGMXCLK OSC1 CLOCK SELECT CIRCUIT CGMVCLK ÷2 A CGMOUT B S* *When S = 1, CGMOUT = B SIM COUNTER ÷2 BUS CLOCK GENERATORS SIM BCS PLL A G R E E M E N T The bus clock generator provides system clock signals for the CPU and peripherals on the MCU. The system clocks are generated from an incoming clock, CGMOUT, as shown in Figure 7-3. This clock can come from either an external oscillator or from the on-chip PLL. For additional information, refer to Section 4. Clock Generator Module (CGMB). R E Q U I R E D System Integration Module (SIM) SIM Bus Clock Control and Generation PTC3 MONITOR MODE USER MODE CGM 7.3.1 Bus Timing In user mode, the internal bus frequency is either the crystal oscillator output (CGMXCLK) divided by four or the PLL output (CGMVCLK) divided by four. For additional information, refer to Section 4. Clock Generator Module (CGMB). 7.3.2 Clock Startup from POR or LVI Reset When the power-on reset (POR) module or the low-voltage inhibit (LVI) module generates a reset, the clocks to the CPU and peripherals are inactive and held in an inactive phase until after the 4096 CGMXCLK cycle POR timeout has completed. The RST pin is driven low by the SIM during this entire period. The IBUS clocks start upon completion of the timeout. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information System Integration Module (SIM) 121 N O N - D I S C L O S U R E Figure 7-3. CGM Clock Signals 7.3.3 Clocks in Stop Mode and Wait Mode Upon exit from stop mode (by an interrupt, break, or reset), the SIM allows CGMXCLK to clock the SIM counter. The CPU and peripheral clocks do not become active until after the stop delay timeout. This timeout is selectable as 4096 or 32 CGMXCLK cycles. (See 7.7.2 Stop Mode.) In wait mode, the CPU clocks are inactive. The SIM also produces two sets of clocks for other modules. Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode. 7.4 Reset and System Initialization The MCU has the following reset sources: N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D System Integration Module (SIM) • Power-on reset module (POR) • External reset pin (RST) • Computer operating properly module (COP) • Low-voltage inhibit module (LVI) • Illegal opcode • Illegal address All of these resets produce the vector $FFFE–FFFF ($FEFE–FEFF in monitor mode) and assert the internal reset signal (IRST). IRST causes all registers to be returned to their default values and all modules to be returned to their reset states. An internal reset clears the SIM counter (see 7.5 SIM Counter), but an external reset does not. Each of the resets sets a corresponding bit in the SIM reset status register (SRSR). (See 7.8 SIM Registers.) Advance Information 122 MC68HC(9)08PT48 — Rev. 2.0 System Integration Module (SIM) MOTOROLA 7.4.1 External Pin Reset Pulling the asynchronous RST pin low halts all processing. The PIN bit of the SIM reset status register (SRSR) is set as long as RST is held low for a minimum of 67 CGMXCLK cycles, assuming that neither the POR nor the LVI was the source of the reset. See Table 7-2 for details. Figure 7-4 shows the relative timing. Reset Type Number of Cycles Required to Set PIN POR/LVI 4163 (4096 + 64 + 3) All others 67 (64 + 3) A G R E E M E N T Table 7-2. PIN Bit Set Timing CGMOUT RST IAB VECT H PC R E Q U I R E D System Integration Module (SIM) Reset and System Initialization VECT L N O N - D I S C L O S U R E Figure 7-4. External Reset Timing MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information System Integration Module (SIM) 123 7.4.2 Active Resets from Internal Sources All internal reset sources actively pull the RST pin low for 32 CGMXCLK cycles to allow resetting of external peripherals. The internal reset signal IRST continues to be asserted for an additional 32 cycles. (See Figure 7-5.) An internal reset can be caused by an illegal address, illegal opcode, COP timeout, module reset, LVI, or POR. (See Figure 7-6.) NOTE: A G R E E M E N T R E Q U I R E D System Integration Module (SIM) For LVI or POR resets, the SIM cycles through 4096 CGMXCLK cycles during which the SIM forces the RST pin low. The internal reset signal then follows the sequence from the falling edge of RST shown in Figure 7-5. IRST RST RST PULLED LOW BY MCU 32 CYCLES 32 CYCLES CGMXCLK IAB VECTOR HIGH N O N - D I S C L O S U R E Figure 7-5. Internal Reset Timing The COP reset is asynchronous to the bus clock. ILLEGAL ADDRESS RST ILLEGAL OPCODE RST COPRST LVI POR INTERNAL RESET Figure 7-6. Sources of Internal Reset The active reset feature allows the part to issue a reset to peripherals and other chips within a system built around the MCU. Advance Information 124 MC68HC(9)08PT48 — Rev. 2.0 System Integration Module (SIM) MOTOROLA 7.4.2.1 Power-On Reset When power is first applied to the MCU, the power-on reset module (POR) generates a pulse to indicate that power-on has occurred. The external reset pin (RST) is held low while the SIM counter counts out 4096 CGMXCLK cycles. Sixty-four CGMXCLK cycles later, the CPU and memories are released from reset to allow the reset vector sequence to occur. R E Q U I R E D System Integration Module (SIM) Reset and System Initialization • A POR pulse is generated. • The internal reset signal is asserted. • The SIM enables CGMOUT. • Internal clocks to the CPU and modules are held inactive for 4096 CGMXCLK cycles to allow stabilization of the oscillator. • The RST pin is driven low during the oscillator stabilization time. • The POR bit of the SIM reset status register (SRSR) is set and all other bits in the register are cleared. N O N - D I S C L O S U R E OSC1 PORRST 4096 CYCLES 32 CYCLES 32 CYCLES CGMXCLK CGMOUT RST IAB $FFFE $FFFF Figure 7-7. POR Recovery MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information System Integration Module (SIM) A G R E E M E N T At power-on, the following events occur: 125 7.4.2.2 Computer Operating Properly (COP) Reset An input to the SIM is reserved for the COP reset signal. The overflow of the COP counter causes an internal reset and sets the COP bit in the SIM reset status register (SRSR). The SIM actively pulls down the RST pin for all internal reset sources. To prevent a COP module timeout, write any value to location $FFFF. Writing to location $FFFF clears the COP counter and bits 12 through 4 of the SIM counter. The SIM counter output, which occurs at least every 213 – 24 CGMXCLK cycles, drives the COP counter. The COP should be serviced as soon as possible out of reset to guarantee the maximum amount of time before the first timeout. A G R E E M E N T R E Q U I R E D System Integration Module (SIM) The COP module is disabled if the RST pin or the IRQ1/VPP pin is held at VDD + VHI while the MCU is in monitor mode. The COP module can be disabled only through combinational logic conditioned with the high voltage signal on the RST or the IRQ1/VPP pin. This prevents the COP from becoming disabled as a result of external noise. During a break state, VDD + VHI on the RST pin disables the COP module. N O N - D I S C L O S U R E 7.4.2.3 Illegal Opcode Reset The SIM decodes signals from the CPU to detect illegal instructions. An illegal instruction sets the ILOP bit in the SIM reset status register (SRSR) and causes a reset. If the stop enable bit, STOP, in the mask option register is logic 0, the SIM treats the STOP instruction as an illegal opcode and causes an illegal opcode reset. The SIM actively pulls down the RST pin for all internal reset sources. 7.4.2.4 Illegal Address Reset An opcode fetch from an unmapped address generates an illegal address reset. The SIM verifies that the CPU is fetching an opcode prior to asserting the ILAD bit in the SIM reset status register (SRSR) and resetting the MCU. A data fetch from an unmapped address does not generate a reset. The SIM actively pulls down the RST pin for all internal reset sources. Advance Information 126 MC68HC(9)08PT48 — Rev. 2.0 System Integration Module (SIM) MOTOROLA 7.5 SIM Counter The SIM counter is used by the power-on reset module (POR) and in stop mode recovery to allow the oscillator time to stabilize before enabling the internal bus (IBUS) clocks. Reset recovery control logic and real time interrupt models also use taps from the SIM counter. The SIM counter also serves as a prescaler for the computer operating properly module (COP). The SIM counter overflow supplies the clock for the COP module. The SIM counter is 13 bits long and is clocked by the falling edge of CGMXCLK. 7.5.1 SIM Counter During Power-On Reset The power-on reset module (POR) detects power applied to the MCU. At power-on, the POR circuit asserts the signal PORRST. Once the SIM is initialized, it enables the clock generation module (CGM) to drive the bus clock state machine. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information System Integration Module (SIM) 127 A G R E E M E N T The low-voltage inhibit module (LVI) asserts its output to the SIM when the VDD voltage falls to the LVITRIPF voltage. The LVI bit in the SIM reset status register (SRSR) is set and the external reset pin (RST) is held low while the SIM counter counts out 4096 CGMXCLK cycles. Sixty-four CGMXCLK cycles later, the CPU is released from reset to allow the reset vector sequence to occur. The SIM actively pulls down the RST pin for all internal reset sources. N O N - D I S C L O S U R E 7.4.2.5 Low-Voltage Inhibit (LVI) Reset R E Q U I R E D System Integration Module (SIM) SIM Counter 7.5.2 SIM Counter During Stop Mode Recovery The SIM counter also is used for stop mode recovery. The STOP instruction clears the SIM counter. After an interrupt, break, or reset, the SIM senses the state of the short stop recovery bit, SSREC, in the mask option register. If the SSREC bit is a logic one, then the stop recovery is reduced from the normal delay of 4096 CGMXCLK cycles down to 32 CGMXCLK cycles. This is ideal for applications using canned oscillators that do not require long startup times from stop mode. External crystal applications should use the full stop recovery time, that is, with SSREC cleared (grounded). 7.5.3 SIM Counter and Reset States External reset has no effect on the SIM counter. (See 7.7.2 Stop Mode for details.) The SIM counter is free-running after all reset states. (See 7.4.2 Active Resets from Internal Sources for counter control and internal reset recovery sequences.) 7.6 Exception Control N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D System Integration Module (SIM) Normal, sequential program execution can be changed in three different ways: • Interrupts – Maskable hardware CPU interrupts – Non-maskable software interrupt instruction (SWI) • Reset • Break interrupts Advance Information 128 MC68HC(9)08PT48 — Rev. 2.0 System Integration Module (SIM) MOTOROLA 7.6.1 Interrupts At the beginning of an interrupt, the CPU saves the CPU register contents on the stack and sets the interrupt mask (I bit) to prevent additional interrupts. At the end of an interrupt, the RTI instruction recovers the CPU register contents from the stack so that normal processing can resume. Figure 7-8 shows interrupt entry timing. Figure 7-9 shows interrupt recovery timing. Interrupts are latched and arbitration is performed in the SIM at the start of interrupt processing. The arbitration result is a constant that the CPU uses to determine which vector to fetch. Once an interrupt is latched by the SIM, no other interrupt may take precedence, regardless of priority, until the latched interrupt is serviced (or the I bit is cleared). (See Figure 7-10.) MODULE INTERRUPT I BIT IDB DUMMY SP DUMMY SP – 1 PC – 1[7:0] SP – 2 PC–1[15:8] SP – 3 X SP – 4 A VECT H CCR VECT L V DATA H START ADDR V DATA L OPCODE N O N - D I S C L O S U R E IAB R/W Figure 7-8. Interrupt Entry MODULE INTERRUPT I BIT IAB SP – 4 IDB SP – 3 CCR SP – 2 A SP – 1 X PC – 1[7:0] SP PC PC–1[15:8] PC + 1 OPCODE OPERAND R/W Figure 7-9. Interrupt Recovery MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information System Integration Module (SIM) A G R E E M E N T R E Q U I R E D System Integration Module (SIM) Exception Control 129 R E Q U I R E D System Integration Module (SIM) FROM RESET BREAK INTERRUPT? I BIT SET? YES NO A G R E E M E N T YES I BIT SET? NO IRQ0 INTERRUPT? YES NO IRQ1 INTERRUPT? YES NO STACK CPU REGISTERS SET I BIT LOAD PC WITH INTERRUPT VECTOR N O N - D I S C L O S U R E AS MANY INTERRUPTS AS EXIST ON CHIP FETCH NEXT INSTRUCTION SWI INSTRUCTION? YES NO RTI INSTRUCTION? YES UNSTACK CPU REGISTERS NO EXECUTE INSTRUCTION Figure 7-10. Interrupt Processing Advance Information 130 MC68HC(9)08PT48 — Rev. 2.0 System Integration Module (SIM) MOTOROLA A hardware interrupt does not stop the current instruction. Processing of a hardware interrupt begins after completion of the current instruction. When the current instruction is complete, the SIM checks all pending hardware interrupts. If interrupts are not masked (I bit clear in the condition code register), and if the corresponding interrupt enable bit is set, the SIM proceeds with interrupt processing; otherwise, the next instruction is fetched and executed. If more than one interrupt is pending at the end of an instruction execution, the highest priority interrupt is serviced first. Figure 7-11 demonstrates what happens when two interrupts are pending. If an interrupt is pending upon exit from the original interrupt service routine, the pending interrupt is serviced before the LDA instruction is executed. CLI BACKGROUND ROUTINE LDA #$FF INT1 PSHH A G R E E M E N T 7.6.1.1 Hardware Interrupts R E Q U I R E D System Integration Module (SIM) Exception Control PULH RTI INT2 PSHH INT2 INTERRUPT SERVICE ROUTINE PULH RTI Figure 7-11. Interrupt Recognition Example The LDA opcode is prefetched by both the INT1 and INT2 RTI instructions. However, in the case of the INT1 RTI prefetch, this is a redundant operation. NOTE: To maintain compatibility with the M6805 Family, the H register is not pushed on the stack during interrupt entry. If the interrupt service routine MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information System Integration Module (SIM) 131 N O N - D I S C L O S U R E INT1 INTERRUPT SERVICE ROUTINE N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D System Integration Module (SIM) modifies the H register or uses the indexed addressing mode, software should save the H register and then restore it prior to exiting the routine. 7.6.1.2 SWI Instruction The SWI instruction is a non-maskable instruction that causes an interrupt regardless of the state of the interrupt mask (I bit) in the condition code register. NOTE: A software interrupt pushes PC onto the stack. A software interrupt does not push PC – 1, as a hardware interrupt does. 7.6.2 Reset All reset sources always have equal and highest priority and cannot be arbitrated. 7.6.3 Break Interrupts The break module can stop normal program flow at a softwareprogrammable break point by asserting its break interrupt output. (See Section 19. Break Module.) The SIM puts the CPU into the break state by forcing it to the SWI vector location. Refer to the break interrupt subsection of each module to see how each module is affected by the break state. 7.6.4 Status Flag Protection in Break Mode The SIM controls whether status flags contained in other modules can be cleared during break mode. The user can select whether flags are protected from being cleared by properly initializing the break clear flag enable bit (BCFE) in the SIM break flag control register (SBFCR). Protecting flags in break mode ensures that set flags will not be cleared while in break mode. This protection allows registers to be freely read and written during break mode without losing status flag information. Advance Information 132 MC68HC(9)08PT48 — Rev. 2.0 System Integration Module (SIM) MOTOROLA Setting the BCFE bit enables the clearing mechanisms. Once cleared in break mode, a flag remains cleared even when break mode is exited. Status flags with a 2-step clearing mechanism — for example, a read of one register followed by the read or write of another — are protected, even when the first step is accomplished prior to entering break mode. Upon leaving break mode, execution of the second step will clear the flag as normal. R E Q U I R E D System Integration Module (SIM) Low-Power Modes 7.7.1 Wait Mode In wait mode, the CPU clocks are inactive while the peripheral clocks continue to run. Figure 7-12 shows the timing for wait mode entry. IAB IDB WAIT ADDR WAIT ADDR + 1 PREVIOUS DATA NEXT OPCODE SAME SAME SAME SAME R/W NOTE: Previous data can be operand data or the WAIT opcode, depending on the last instruction. Figure 7-12. Wait Mode Entry Timing A module that is active during wait mode can wake up the CPU with an interrupt if the interrupt is enabled. Stacking for the interrupt begins one cycle after the WAIT instruction during which the interrupt occurred. In wait mode, the CPU clocks are inactive. Refer to the wait mode subsection of each module to see if the module is active or inactive in MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information System Integration Module (SIM) 133 N O N - D I S C L O S U R E Executing the WAIT or STOP instruction puts the MCU in a low powerconsumption mode for standby situations. The SIM holds the CPU in a non-clocked state. The operation of each of these modes is described in the subsections that follow. Both STOP and WAIT clear the interrupt mask (I) in the condition code register, allowing interrupts to occur. A G R E E M E N T 7.7 Low-Power Modes R E Q U I R E D System Integration Module (SIM) wait mode. Some modules can be programmed to be active in wait mode. Wait mode can also be exited by a reset or break. A break interrupt during wait mode sets the SIM break stop/wait bit, SBSW, in the SIM break status register (SBSR). If the COP disable bit, COPD, in the mask option register is logic 0, then the computer operating properly module (COP) is enabled and remains active in wait mode. A G R E E M E N T Figure 7-13 and Figure 7-14 show the timing for WAIT recovery. IAB IDB $6E0B $A6 $A6 $6E0C $A6 $01 $00FF $0B $00FE $00FD $00FC $6E EXITSTOPWAIT Note: EXITSTOPWAIT = RST pin OR CPU interrupt OR break interrupt N O N - D I S C L O S U R E Figure 7-13. Wait Recovery from Interrupt or Break 32 Cycles IAB IDB 32 Cycles $6E0B $A6 $A6 RSTVCTH RSTVCTL $A6 RST CGMXCLK Figure 7-14. Wait Recovery from Internal Reset Advance Information 134 MC68HC(9)08PT48 — Rev. 2.0 System Integration Module (SIM) MOTOROLA The SIM disables the clock generator module outputs (CGMOUT and CGMXCLK) in stop mode, stopping the CPU and peripherals. Stop recovery time is selectable using the SSREC bit in the mask option register (MOR). If SSREC is set, stop recovery is reduced from the normal delay of 4096 CGMXCLK cycles down to 32. This is ideal for applications using canned oscillators that do not require long start-up times from stop mode. NOTE: External crystal applications should use the full stop recovery time by clearing the SSREC bit. A break interrupt during stop mode sets the SIM break stop/wait bit (SBSW) in the SIM break status register (SBSR). The SIM counter is held in reset from the execution of the STOP instruction until the beginning of stop recovery. It is then used to time the recovery period. Figure 7-15 shows stop mode entry timing and Figure 7-16 shows stop mode recovery timing from interrupt or break. CPUSTOP IAB IDB STOP ADDR STOP ADDR + 1 PREVIOUS DATA NEXT OPCODE SAME SAME SAME SAME R/W Note: Previous data can be operand data or the STOP opcode, depending on the last instruction. Figure 7-15. Stop Mode Entry Timing MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information System Integration Module (SIM) 135 A G R E E M E N T In stop mode, the SIM counter is reset and the system clocks are disabled. An interrupt request from a module can cause an exit from stop mode. Stacking for interrupts begins after the selected stop recovery time has elapsed. Reset or break also causes an exit from stop mode. N O N - D I S C L O S U R E 7.7.2 Stop Mode R E Q U I R E D System Integration Module (SIM) Low-Power Modes R E Q U I R E D System Integration Module (SIM) STOP RECOVERY PERIOD CGMXCLK INT/BREAK IAB STOP + 2 STOP +1 STOP + 2 SP SP – 1 SP – 2 SP – 3 N O N - D I S C L O S U R E A G R E E M E N T Figure 7-16. Stop Mode Recovery from Interrupt or Break 7.8 SIM Registers The SIM has three memory mapped registers. Table 7-3 shows the mapping of these registers. Table 7-3. SIM Registers Address Register Access Mode $FE00 SBSR User $FE01 SRSR User $FE03 SBFCR User 7.8.1 SIM Break Status Register The SIM break status register contains a flag to indicate that a break caused an exit from stop or wait mode. Address: $FE00 Bit 7 6 5 4 3 2 R R R R R R Read: 1 Bit 0 SBSW R Write: Note 1 Reset: 0 R = Reserved Note 1. Writing a logic 0 clears SBSW. Figure 7-17. SIM Break Status Register (SBSR) Advance Information 136 MC68HC(9)08PT48 — Rev. 2.0 System Integration Module (SIM) MOTOROLA This status bit is useful in applications requiring a return to wait or stop mode after exiting from a break interrupt. Clear SBSW by writing a logic 0 to it. Reset clears SBSW. 1 = Stop mode or wait mode was exited by break interrupt 0 = Stop mode or wait mode was not exited by break interrupt SBSW can be read within the break state SWI routine. The user can modify the return address on the stack by subtracting one from it. The following code is an example of this. Writing 0 to the SBSW bit clears it. ; This code works if the H register has been pushed onto the stack in the break ; service routine software. This code should be executed at the end of the ; break service routine software. HIBYTE EQU 5 LOBYTE EQU 6 ; If not SBSW, do RTI SBSW,SBSR, RETURN ; See if wait mode or stop mode was exited ; by break. TST LOBYTE,SP ; If RETURNLO is not zero, BNE DOLO ; then just decrement low byte. DEC HIBYTE,SP ; Else deal with high byte, too. DOLO DEC LOBYTE,SP ; Point to WAIT/STOP opcode. RETURN PULH RTI ; Restore H register. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA N O N - D I S C L O S U R E BRCLR Advance Information System Integration Module (SIM) A G R E E M E N T SBSW — SIM Break Stop/Wait R E Q U I R E D System Integration Module (SIM) SIM Registers 137 R E Q U I R E D System Integration Module (SIM) 7.8.2 SIM Reset Status Register This register contains six flags that show the source of the last reset. Clear the SIM reset status register by reading it. A power-on reset sets the POR bit and clears all other bits in the register. Address: A G R E E M E N T Read: $FE01 Bit 7 6 5 4 3 2 1 Bit 0 POR PIN COP ILOP ILAD 0 LVI 0 1 0 0 0 0 0 0 0 Write: Reset: = Unimplemented Figure 7-18. SIM Reset Status Register (SRSR) POR — Power-On Reset Bit 1 = Last reset caused by POR circuit 0 = Read of SRSR N O N - D I S C L O S U R E PIN — External Reset Bit 1 = Last reset caused by external reset pin (RST) 0 = POR or read of SRSR COP — Computer Operating Properly Reset Bit 1 = Last reset caused by COP counter 0 = POR or read of SRSR ILOP — Illegal Opcode Reset Bit 1 = Last reset caused by an illegal opcode 0 = POR or read of SRSR ILAD — Illegal Address Reset Bit (opcode fetches only) 1 = Last reset caused by an opcode fetch from an illegal address 0 = POR or read of SRSR MOD — Module Reset Bit 1 = Last reset caused by one of the internal modules 0 = POR or read of SRSR Advance Information 138 MC68HC(9)08PT48 — Rev. 2.0 System Integration Module (SIM) MOTOROLA 7.8.3 SIM Break Flag Control Register The SIM break control register (SBFCR) contains a bit that enables software to clear status bits while the MCU is in a break state. Address: $FE03 Bit 7 6 5 4 3 2 1 Bit 0 BCFE R R R R R R R Read: Write: Reset:: 0 R = Reserved Figure 7-19. SIM Break Flag Control Register (SBFCR) BCFE — Break Clear Flag Enable Bit This read/write bit enables software to clear status bits by accessing status registers while the MCU is in a break state. To clear status bits during the break state, the BCFE bit must be set. 1 = Status bits clearable during break 0 = Status bits not clearable during break MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information System Integration Module (SIM) 139 N O N - D I S C L O S U R E LVI — Low-Voltage Inhibit Reset Bit 1 = Last reset was caused by the LVI circuit 0 = POR or read of SRSR A G R E E M E N T R E Q U I R E D System Integration Module (SIM) SIM Registers N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D System Integration Module (SIM) Advance Information 140 MC68HC(9)08PT48 — Rev. 2.0 System Integration Module (SIM) MOTOROLA 8.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141 8.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141 8.2 Introduction This section describes the 2.5 Kbytes of RAM. 8.3 Functional Description Addresses $0050 through $0A4F are RAM locations. The location of the stack RAM is programmable. The 16-bit stack pointer allows the stack to be anywhere in the 64-Kbyte memory space. NOTE: For correct operation, the stack pointer must point only to RAM locations. Within page zero are 176 bytes of RAM. Because the location of the stack RAM is programmable, all page zero RAM locations can be used for I/O (input/output) control and user data or code. When the stack pointer is moved from its reset location at $00FF, direct addressing mode instructions can access efficiently all page zero RAM locations. Page zero RAM, therefore, provides ideal locations for frequently accessed global variables. Before processing an interrupt, the CPU uses 5 bytes of the stack to save the contents of the CPU registers. NOTE: For M6805 compatibility, the H register is not stacked. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Random-Access Memory (RAM) 141 R E Q U I R E D 8.1 Contents A G R E E M E N T Section 8. Random-Access Memory (RAM) N O N - D I S C L O S U R E Advance Information — MC68HC(9)08PT48 R E Q U I R E D Random-Access Memory (RAM) During a subroutine call, the CPU uses 2 bytes of the stack to store the return address. The stack pointer decrements during pushes and increments during pulls. Be careful when using nested subroutines. The CPU may overwrite data in the RAM during a subroutine or during the interrupt stacking operation. N O N - D I S C L O S U R E A G R E E M E N T NOTE: Advance Information 142 MC68HC(9)08PT48 — Rev. 2.0 Random-Access Memory (RAM) MOTOROLA 9.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143 9.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144 9.4 FLASH 3 Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . .145 9.5 FLASH 3 Block Protect Register. . . . . . . . . . . . . . . . . . . . . . .147 9.6 Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148 9.7 Charge Pump Frequency Control . . . . . . . . . . . . . . . . . . . . . .148 9.8 FLASH Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149 9.9 FLASH Program and Margin Read Operation . . . . . . . . . . . .150 9.2 Introduction This section describes the operation of the embedded 2-Kbyte FLASH memory. This is non-volatile memory which can be read, programmed, and erased from a single external supply. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information 2-Kbyte FLASH Memory 143 R E Q U I R E D 9.1 Contents A G R E E M E N T Section 9. 2-Kbyte FLASH Memory N O N - D I S C L O S U R E Advance Information — MC68HC(9)08PT48 9.3 Functional Description This FLASH memory array contains 2,048 bytes. An erased bit reads as a logic 0 and a programmed bit reads as a logic 1. Program and erase operations are facilitated through control bits in a memory mapped register. Details for these operations appear later in this section. Memory in the FLASH array is organized into pages and rows. There are eight pages of memory per row and for this array, 1 byte per page. The minimum erase block size is a single row, eight bytes. Programming is performed on a per page basis, or for this array, one byte at a time. A G R E E M E N T R E Q U I R E D 2-Kbyte FLASH Memory The address ranges for the 2-Kbyte FLASH memory are: • $1800–$1FFF; general-purpose FLASH array N O N - D I S C L O S U R E When programming the FLASH, just enough program time must be utilized via an iterative programming algorithm. Too much program time can result in a disturb condition in which an erased bit becomes programmed. This can be prevented as long as no more than eight program operations are performed per row before again performing an erase operation. Each programmed page is read in margin mode to ensure that the bits are programmed enough for data retention over device lifetime. The row architecture for this array is: • $1800–$1807; row 0 • $1808–$180F; row 1 • $1810–$1817; row 2 • ---------------------------- • $1FF8–$1FFF; row 255 Advance Information 144 MC68HC(9)08PT48 — Rev. 2.0 2-Kbyte FLASH Memory MOTOROLA 9.4 FLASH 3 Control Register The FLASH control register (FL3CR) controls FLASH program, erase, and margin operations. Address: $FE08 Bit 7 6 5 4 3 2 1 Bit 0 F3DIV1 F3DIV0 F3BLK1 F3BLK0 HVEN MARG ERASE PGM 0 0 0 0 0 0 0 0 Read: R E Q U I R E D 2-Kbyte FLASH Memory FLASH 3 Control Register Figure 9-1. FLASH 3 Control Register (FL3CR) NOTE: Devices with more than one FLASH have multiple control registers (FLCRs). Only one FLASH control register should be accessed at a time, so while accessing one control register, ensure that any others are cleared. F3DIV0 — Frequency Divide Control Bit This bit selects the factor by which CGMVCLK is divided to derive the charge pump frequency. See Table 9-2. Note that F3DIV1 has no effect. F3BLK1 and F3BLK0 — Block Erase Control Bits These bits control erasing of blocks of varying size. Table 9-1 shows the various block sizes which can be erased in one erase operation. Table 9-1. Erase Block Sizes BLK1 BLK0 Block Size Row Boundaries 0 0 Full array: 2 Kbytes 0–255($1800–$1FFF) 0 1 One-half array: 1 Kbyte 0–127($1800–$1BFF) 128–255($1C00–$1FFF Eight rows: 64 bytes 0–7($1800–$183F) 8–15($1840–$187F) 16–23($1880–$18BF) --248–255($1FC0–$1FFF) Single row: 8 bytes 0($1800–$1807) 1($1808–$180F) ---255($1FF8–$1FFF) 1 1 0 1 MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information 2-Kbyte FLASH Memory 145 N O N - D I S C L O S U R E Reset: A G R E E M E N T Write: R E Q U I R E D 2-Kbyte FLASH Memory In step 4 of the erase operation in section 9.8 FLASH Erase Operation, the upper addresses are latched and used to determine the location of the block to be erased. For the full array, the only requirement is that the target address points to any byte in this array. Writing to any address in the array will enable the erase. HVEN — High-Voltage Enable Bit A G R E E M E N T This read/write bit enables high voltage from the charge pump to the memory for either program or erase operation. It can only be set if either PGM or ERASE is set. 1 = High voltage enabled to array and charge pump on 0 = High voltage disabled to array and charge pump off MARG — Program Margin Control Bit This read/write bit configures the memory for a program margin operation. It cannot be set if the HVEN bit is set, and if it is set when HVEN is set, it will automatically return to 0. 1 = Margin operation selected 0 = Margin operation unselected ERASE — Erase Control Bit N O N - D I S C L O S U R E This read/write bit configures the memory for erase operation. It is interlocked with the PGM bit such that both bits cannot be set to 1 at the same time. 1 = Erase operation selected 0 = Erase operation unselected PGM — Program Control Bit This read/write bit configures the memory for program operation. It is interlocked with the ERASE bit such that both bits cannot be equal to 1 or set to 1 at the same time. 1 = Program operation selected 0 = Program operation unselected Advance Information 146 MC68HC(9)08PT48 — Rev. 2.0 2-Kbyte FLASH Memory MOTOROLA The block protect register (FL3BPR) is implemented as an input/output (I/O) register. Each bit, when programmed, protects a range of addresses in the FLASH. Address: $001E Bit 7 6 5 4 3 2 1 Bit 0 BPR3 BPR2 BPR1 BPR0 1 1 1 1 Read: Write: Reset: X X X = Unimplemented X X = Indeterminate Figure 9-2. FLASH 3 Block Protect Register (FL3BPR) BPR3 — Block Protect Register Bit 3 This bit protects the memory contents in the address range $1C00 to $1FFF. 1 = Address range protected from erase or program 0 = Address range open to erase or program A G R E E M E N T 9.5 FLASH 3 Block Protect Register R E Q U I R E D 2-Kbyte FLASH Memory FLASH 3 Block Protect Register This bit protects the memory contents in the address range $1A00 to $1FFF. 1 = Address range protected from erase or program 0 = Address range open to erase or program BPR1 — Block Protect Register Bit 1 This bit protects the memory contents in the address range $1900 to $1FFF. 1 = Address range protected from erase or program 0 = Address range open to erase or program BPR0 — Block Protect Register Bit 0 This bit protects the memory contents in the address range $1800 to $1FFF. 1 = Address range protected from erase or program 0 = Address range open to erase or program MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information 2-Kbyte FLASH Memory 147 N O N - D I S C L O S U R E BPR2 — Block Protect Register Bit 2 R E Q U I R E D 2-Kbyte FLASH Memory By programming the block protect bits, a portion of the memory will be locked so that no further erase or program operations may be performed. Programming more than one bit at a time is redundant. If both BPR3 and BPR2 are set, for instance, the address range $1A00 through $1FFF is locked. If all bits are cleared, then all of the memory is available for erase and program. N O N - D I S C L O S U R E A G R E E M E N T 9.6 Block Protection Because of the ability of the on-board charge pump to erase and program the FLASH memory in the target application, provision is made for protecting blocks of memory from unintentional erase or program operations. This protection is done by reserving a location in the I/O space for block protect information. If the address range for an erase or program operation includes a protected block, the PGM or ERASE bit is cleared which prevents the HVEN bit in the FLASH control register from being set so that no high voltage is allowed in the array. When the block protect register is cleared, the entire memory is accessible for program and erase. When bits within the register are programmed, they lock blocks of memory address ranges as shown in the 9.5 FLASH 3 Block Protect Register. 9.7 Charge Pump Frequency Control The internal charge pump for this array is to be operated over the specified frequency range (refer to 22.16 2-K FLASH Memory Electrical Characteristics). The PLL output clock, CGMVCLK, is used to derive the two quadrature clocks, VCLK12 and VCLK23 which are one-half CGMVCLK. Additional pump frequency control is provided using the FDIV0 bit to keep the VCLKs within the specified range. The PLL must be ON and locked (but not necessarily engaged) before program/erase operations can be performed. See Table 9-2. Advance Information 148 MC68HC(9)08PT48 — Rev. 2.0 2-Kbyte FLASH Memory MOTOROLA FDIV0 Pump Clock Frequency 0 CGMVCLK ÷ 2 1 CGMVCLK ÷ 4 9.8 FLASH Erase Operation NOTE: After a total of eight program operations have been applied to a row, the row must be erased before further use to avoid the disturb condition. An erased byte will read $00. 22.16 2-K FLASH Memory Electrical Characteristics has a detailed description of the times used in this algorithm. Use this step-by-step procedure to erase a block of FLASH memory: 1. Establish pump frequency by configuring PLL. 2. Unprotect target portion of the array (BPR0–BPR3.) 3. Set the ERASE bit, the BLK0, BLK1, and FDIV0 bit in the FLASH control register. 4. Write to any FLASH address with any data within the block address range desired. 5. Set the HVEN bit. 6. Wait for a time, tERASE. 7. Clear the HVEN bit. 8. Wait for a time, t Kill, for the high voltages to dissipate. 9. Clear the ERASE bit. 10. After time, tHVD, the memory can be accessed again in read mode. NOTE: These operations must be performed in the order as shown, but other unrelated operations may occur between the steps. Do not exceed tErase maximum. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information 2-Kbyte FLASH Memory 149 N O N - D I S C L O S U R E . Table 9-2. Charge Pump Clock Frequency A G R E E M E N T R E Q U I R E D 2-Kbyte FLASH Memory FLASH Erase Operation 9.9 FLASH Program and Margin Read Operation Programming of this FLASH array is done on a page basis where one page equals one byte. The purpose of the margin read mode is to ensure that data has been programmed with sufficient margin for long-term data retention. During a margin read, the control gates of the selected memory bits are held at a slightly negative voltage by an internal charge pump. Reading the data in margin mode is the same as for ordinary read mode except that a built-in counter stretches the data access for an additional eight cycles to allow sensing of the lower cell current. In short, a margin read applies a more stringent condition on the bitcell during read which ensures the data will be valid throughout the life of the product. A margin read can only follow a program operation. All times listed here are specified in Section 22. Electrical Specifications. A G R E E M E N T R E Q U I R E D 2-Kbyte FLASH Memory The procedure for programming the FLASH memory is: 1. Establish pump frequency by configuring the PLL. 2. Set the PGM bit and program FDIV0 to the appropriate value. This configures the memory for program operation and enables the latching of address and data for programming. N O N - D I S C L O S U R E 3. Write data to the page (1 byte) being programmed. 4. Set the HVEN bit. 5. Wait for a time, tSTEP. 6. Clear the HVEN bit. 7. Wait for a time, tHVTV. 8. Set the MARG bit. 9. Wait for a time, tVTP. 10. Clear the PGM bit. 11. Wait for a time, tHVD. 12. Read the page of data. (This is in margin mode.) 13. Clear the MARG bit. 14. If any programmed bits do not read correctly, repeat the process from step 2 through 13 up to maximum program pulses. (See 22.16 2-K FLASH Memory Electrical Characteristics.) Advance Information 150 MC68HC(9)08PT48 — Rev. 2.0 2-Kbyte FLASH Memory MOTOROLA Note: This page program algorithm assumes the PLL is on and locked and the page in question has been erased before entry. R E Q U I R E D 2-Kbyte FLASH Memory FLASH Program and Margin Read Operation PROGRAM 2-K FLASH INITIALIZE ATTEMPT COUNTER TO 0 SET PGM BIT AND FDIV BITS A G R E E M E N T WRITE DATA TO SELECTED PAGE SET HVEN BIT WAIT tSTEP CLEAR HVEN BIT WAIT tHVTV SET MARGIN BIT WAIT tVTP N O N - D I S C L O S U R E CLEAR PGM BIT WAIT tHVD READ PAGE OF DATA INCREMENT ATTEMPT COUNTER NO ATTEMPT COUNT EQUAL TO 5? CLEAR MARGIN BIT READ DATA EQUAL TO WRITE DATA? NO YES YES PROGRAMMING OPERATION FAILED PROGRAMMING OPERATION COMPLETE Figure 9-3. Page Program Algorithm MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information 2-Kbyte FLASH Memory 151 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D 2-Kbyte FLASH Memory Advance Information 152 MC68HC(9)08PT48 — Rev. 2.0 2-Kbyte FLASH Memory MOTOROLA 10.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153 10.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154 10.4 FLASH 1Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .155 10.5 FLASH 2 Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . .155 10.6 FLASH 1 Block Protect Register. . . . . . . . . . . . . . . . . . . . . . .158 10.7 FLASH 2 Block Protect Register. . . . . . . . . . . . . . . . . . . . . . .159 10.8 Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160 10.9 Charge Pump Frequency Control . . . . . . . . . . . . . . . . . . . . . .161 10.10 FLASH Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161 10.11 FLASH Program and Margin Read Operation . . . . . . . . . . . .162 10.2 Introduction This section describes the operation of the embedded 48-Kbyte FLASH memory. This is non-volatile memory which can be read, programmed, and erased from a single external supply. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information 48-Kbyte FLASH Memory 153 R E Q U I R E D 10.1 Contents A G R E E M E N T Section 10. 48-Kbyte FLASH Memory N O N - D I S C L O S U R E Advance Information — MC68HC(9)08PT48 10.3 Functional Description The FLASH memory contains 48,676 bytes divided between two FLASH arrays. An erased bit reads as a logic 0 and a programmed bit reads as a logic 1. Program and erase operations are facilitated through control bits in a memory mapped register. Details for these operations appear later in this section. Memory in the FLASH array is organized into pages and rows. There are eight pages of memory per row and for this array, 8 bytes per page. The minimum erase block size is a single row, 64 bytes. Programming is performed on a per page basis, or for this array, eight bytes at a time. The address ranges for the 48-Kbyte FLASH memory are: A G R E E M E N T R E Q U I R E D 48-Kbyte FLASH Memory • • • $4000–$7FFF; FLASH 2 array $8000–$FDFF; FLASH 1 array $FFD4–$FFFF; user vector space and part of FLASH 1 array N O N - D I S C L O S U R E When programming the FLASH, just enough program time must be utilized via an iterative programming algorithm. Too much program time can result in a disturb condition in which an erased bit becomes programmed. This can be prevented as long as no more than eight program operations are performed per row before again performing an erase operation. Each programmed page is read in margin mode to ensure that the bits are programmed enough for data retention over device lifetime. The row architecture for this array is: • $8000–$803F; row 0 of FLASH 1 • $8040–$807F; row 1 of FLASH 1 • $8080–$80CF; row 2 of FLASH 1 • ---------------------------------------• $FFC0–$FFFF; row 511 of FLASH 1 • • • • • $4000–$403F; row 0 of FLASH 2 $4040–$407F; row 1 of FLASH 2 $4080–$40BF; row 2 of FLASH 2 ---------------------------------------$7FC0–$7FFF; row 255 of FLASH 2 Advance Information 154 MC68HC(9)08PT48 — Rev. 2.0 48-Kbyte FLASH Memory MOTOROLA 10.4 FLASH 1 Control Register The FLASH 1 control register (FL1CR) controls FLASH program, erase, and margin operations. Address: $FE0C Bit 7 6 5 4 3 2 1 Bit 0 F1DIV1 F1DIV0 F1BLK1 F1BLK0 HVEN MARG ERASE PGM 0 0 0 0 0 0 0 0 Read: R E Q U I R E D 48-Kbyte FLASH Memory FLASH 1Control Register Figure 10-1. FLASH 1 Control Register (FL1CR) 10.5 FLASH 2 Control Register The FLASH 2 control register (FL2CR) controls FLASH program, erase, and margin operations. Address: $FE0A Bit 7 6 5 4 3 2 1 Bit 0 F2DIV1 F2DIV0 F2BLK1 F2BLK0 HVEN MARG ERASE PGM 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 10-2. FLASH 2 Control Register (FL2CR) NOTE: Devices with more than one FLASH have multiple control registers (FLCRs). Only one FLASH control register should be accessed at a time, so while accessing one control register, ensure that any others are cleared. F1DIV0, F2DIV0 — Frequency Divide Control Bit These bits are logically ORed together and the output selects the factor by which CGMVCLK is divided to derive the charge pump frequency. See Table 10-3. Note that F1DIV1 and F2DIV1 have no effect. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information 48-Kbyte FLASH Memory 155 N O N - D I S C L O S U R E Reset: A G R E E M E N T Write: R E Q U I R E D 48-Kbyte FLASH Memory F1BLK1, F1BLK0, F2BLK1, F2BLK0— Block Erase Control Bits These bits control erasing of blocks of varying size. Table 10-1 and Table 10-2 show the various block sizes which can be erased in one erase operation. A G R E E M E N T Table 10-1. 32-Kbyte Erase Block Sizes F1BLK1 F1BLK0 Block Size Row Boundaries 0 0 Full array: 32 Kbytes 0–511 ($8000–$FFFF) 0 1 One-half array: 16 Kbytes 0–255 ($8000–$BFFF) 256–511 ($C000–$FFFF) Eight rows: 512 bytes 0–7 ($8000–$81FF) 8–15 ($8200–$83FF) 16–23 ($8400–$86FF) --504–511 ($FE00–$FFFF) Single row: 64 bytes 0 ($8000–$803F) 1 ($8040–$807F) ---511 ($FFC0–$FFFF) 1 1 0 1 N O N - D I S C L O S U R E Table 10-2. 16-Kbyte Erase Block Sizes F2BLK1 F2BLK0 Block Size Row Boundaries 0 0 Full array: 16 Kbytes 0–255 ($4000–$7FFF) 0 1 One half array: 8 Kbytes 0–127 ($4000–$5FFF) 128–255 ($6000–$7FFF) Eight rows: 512 bytes 0–7 ($4000–$41FF) 8–15 ($4200–$43FF) 16–23 ($4400–$45FF) --248–255 ($7E00–$7FFF) Single row: 64 bytes 0 ($4000–$403F) 1 ($4040–$407F) ---255 ($7FC0–$7FFF) 1 1 0 1 Advance Information 156 MC68HC(9)08PT48 — Rev. 2.0 48-Kbyte FLASH Memory MOTOROLA This read/write bit enables high voltage from the charge pump to the memory for either program or erase operation. It can only be set if either PGM or ERASE is set. 1 = High voltage enabled to array and charge pump on 0 = High voltage disabled to array and charge pump off MARG — Program Margin Control Bit This read/write bit configures the memory for a program margin operation. It cannot be set if the HVEN bit is set, and if it is set when HVEN is set, it will return to 0 automatically. 1 = Margin operation selected 0 = Margin operation unselected ERASE — Erase Control Bit This read/write bit configures the memory for erase operation. It is interlocked with the PGM bit such that both bits cannot be set to 1 at the same time. 1 = Erase operation selected 0 = Erase operation unselected PGM — Program Control Bit This read/write bit configures the memory for program operation. It is interlocked with the ERASE bit such that both bits cannot be equal to 1 or set to 1 at the same time. 1 = Program operation selected 0 = Program operation unselected MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information 48-Kbyte FLASH Memory 157 A G R E E M E N T HVEN — High-Voltage Enable Bit N O N - D I S C L O S U R E In step 4 of the erase operation in 10.10 FLASH Erase Operation, the upper addresses are latched and used to determine the location of the block to be erased. For the full array, the only requirement is that the target address points to any byte in this array. Writing to any address in the array will enable the erase. R E Q U I R E D 48-Kbyte FLASH Memory FLASH 2 Control Register R E Q U I R E D 48-Kbyte FLASH Memory 10.6 FLASH 1 Block Protect Register The FLASH 1 block protect register (FL1BPR) is implemented as an input/output (I/O) register. Each bit, when programmed, protects a range of addresses in the FLASH. Address: $001F Bit 7 6 5 4 3 2 1 Bit 0 F1BPR3 F1BPR2 F1BPR1 F1BPR0 1 1 1 1 Read: A G R E E M E N T Write: Reset: X X X = Unimplemented X X = Indeterminate Figure 10-3. FLASH 1 Block Protect Register (FL1BPR) F1BPR3 — Block Protect Register Bit 3 This bit protects the memory contents in the address range $C000 to $FFFF. 1 = Address range protected from erase or program 0 = Address range open to erase or program N O N - D I S C L O S U R E F1BPR2 — Block Protect Register Bit 2 This bit protects the memory contents in the address range $A000 to $FFFF. 1 = Address range protected from erase or program 0 = Address range open to erase or program F1BPR1 — Block Protect Register Bit 1 This bit protects the memory contents in the address range $9000 to $FFFF. 1 = Address range protected from erase or program 0 = Address range open to erase or program F1BPR0 — Block Protect Register Bit 0 This bit protects the memory contents in the address range $8000 to $FFFF. 1 = Address range protected from erase or program 0 = Address range open to erase or program Advance Information 158 MC68HC(9)08PT48 — Rev. 2.0 48-Kbyte FLASH Memory MOTOROLA 10.7 FLASH 2 Block Protect Register The FLASH 2 block protect register (FL2BPR) is implemented as an I/O register. Each bit, when programmed, protects a range of addresses in the FLASH. Address: $004F Bit 7 6 5 4 3 2 1 Bit 0 F2BPR3 F2BPR2 F2BPR1 F2BPR0 1 1 1 1 Read: Write: Reset: X X X = Unimplemented X X = Indeterminate A G R E E M E N T By programming the block protect bits, a portion of the memory will be locked so that no further erase or program operations may be performed. Programming more than one bit at a time is redundant. If both F1BPR3 and F1BPR2 are set, for instance, the address range $A000 through $FFFF is locked. If all bits are cleared, then all of the memory is available for erase and program. R E Q U I R E D 48-Kbyte FLASH Memory FLASH 2 Block Protect Register F2BPR3 — Block Protect Register Bit 3 This bit protects the memory contents in the address range $6000 to $7FFF. 1 = Address range protected from erase or program 0 = Address range open to erase or program F2BPR2 — Block Protect Register Bit 2 This bit protects the memory contents in the address range $5000 to $7FFF. 1 = Address range protected from erase or program 0 = Address range open to erase or program MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information 48-Kbyte FLASH Memory 159 N O N - D I S C L O S U R E Figure 10-4. FLASH 2 Block Protect Register (FL2BPR) F2BPR1 — Block Protect Register Bit 1 This bit protects the memory contents in the address range $4800 to $7FFF. 1 = Address range protected from erase or program 0 = Address range open to erase or program F2BPR0 — Block Protect Register Bit 0 This bit protects the memory contents in the address range $4000 to $7FFF. 1 = Address range protected from erase or program 0 = Address range open to erase or program By programming the block protect bits, a portion of the memory will be locked so that no further erase or program operations may be performed. Programming more than one bit at a time is redundant. If both F2BPR3 and F2BPR2 are set, for instance, the address range $5000 through $7FFF is locked. If all bits are cleared, then all of the memory is available for erase and program. 10.8 Block Protection Because of the ability of the on-board charge pump to erase and program the FLASH memory in the target application, provision is made for protecting blocks of memory from unintentional erase or program operations. This protection is done by reserving a location in the I/O space for block protect information. If the address range for an erase or program operation includes a protected block, the PGM or ERASE bit is cleared which prevents the HVEN bit in the FLASH control register from being set so that no high voltage is allowed in the array. N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D 48-Kbyte FLASH Memory When the block protect register is cleared, the entire memory is accessible for program and erase. When bits within the register are programmed, they lock blocks of memory address ranges as shown in 10.7 FLASH 2 Block Protect Register. Advance Information 160 MC68HC(9)08PT48 — Rev. 2.0 48-Kbyte FLASH Memory MOTOROLA Table 10-3. Charge Pump Clock Frequency FDIV0 Pump Clock Frequency 0 CGMVCLK ÷ 2 1 CGMVCLK ÷ 4 10.10 FLASH Erase Operation NOTE: After a total of eight program operations have been applied to a row, the row must be erased before further use to avoid the disturb condition. An erased byte will read $00. Section 22. Electrical Specifications has a detailed description of the times used in this algorithm. Use this step-by-step procedure to erase a block of FLASH memory: 1. Establish pump frequency by configuring PLL. 2. Unprotect target portion of the array (FxBPR0–FxBPR3). 3. Set the ERASE bit, the FxBLK0, FxBLK1, and FxDIV0 bits in the FLASH control register. 4. Write to any FLASH address with any data within the block address range desired. 5. Set the HVEN bit. 6. Wait for a time, tErase. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information 48-Kbyte FLASH Memory 161 A G R E E M E N T The internal charge pump for this array is to be operated over the specified frequency range (refer to 22.16 2-K FLASH Memory Electrical Characteristics). The PLL output clock, CGMVCLK, is used to derive the two quadrature clocks, VCLK12 and VCLK23 which are one-half CGMVCLK. Additional pump frequency control is provided using the FxDIV0 bit in order to keep the VCLKs within the specified range. The PLL must be ON and Locked (but not necessarily engaged) before program/erase operations can be performed. N O N - D I S C L O S U R E 10.9 Charge Pump Frequency Control R E Q U I R E D 48-Kbyte FLASH Memory Charge Pump Frequency Control 7. Clear the HVEN bit. 8. Wait for a time, t Kill, for the high voltages to dissipate. 9. Clear the ERASE bit. 10. After a time, tHVD, the memory can be accessed in read mode again. NOTE: These operations must be performed in the order shown, but other unrelated operations may occur between the steps. Do not exceed tErase maximum. 10.11 FLASH Program and Margin Read Operation Programming of this FLASH array is done on a page basis where one page equals eight bytes. The purpose of the margin read mode is to ensure that data has been programmed with sufficient margin for longterm data retention. During a margin read, the control gates of the selected memory bits are held at a slightly negative voltage by an internal charge pump. Reading the data in margin mode is the same as for ordinary read mode except that a built-in counter stretches the data access for an additional eight cycles to allow sensing of the lower cell current. In short, a margin read applies a more stringent condition on the bitcell during read which ensures the data will be valid throughout the life of the product. A margin read can only follow a program operation. All times listed here are specified in Section 22. Electrical Specifications. N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D 48-Kbyte FLASH Memory The step-by-step procedure for programming the FLASH memory is: 1. Establish pump frequency by configuring the PLL. 2. Set the PGM bit and program FxDIV0 appropriately. This configures the memory for program operation and enables the latching of address and data for programming. 3. Write data to the page (8 bytes) being programmed. 4. Set the HVEN bit. 5. Wait for a time, tStep. 6. Clear the HVEN bit. Advance Information 162 MC68HC(9)08PT48 — Rev. 2.0 48-Kbyte FLASH Memory MOTOROLA R E Q U I R E D 48-Kbyte FLASH Memory FLASH Program and Margin Read Operation 7. Wait for a time, tHVTV. 8. Set the MARG bit. 9. Wait for a time, tVTP. 10. Clear the PGM bit. 11. Wait for a time, tHVD. 12. Read the page of data. (This is in margin mode.) N O N - D I S C L O S U R E 14. If any programmed bits do not read correctly, repeat the process from step 2 through 13 up to maximum program pulses. (See 22.16 2-K FLASH Memory Electrical Characteristics.) A G R E E M E N T 13. Clear the MARG bit. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information 48-Kbyte FLASH Memory 163 R E Q U I R E D 48-Kbyte FLASH Memory Note: This page program algorithm assumes the PLL is on and locked, and the page in question has been erased before entry. Program FLASH Initialize Attempt Counter to 0 Set PGM Bit and FxDIV bits A G R E E M E N T Write Data to Selected Page Set HVEN Bit Wait tSTEP Clear HVEN Bit Wait tHVTV Set MARGIN Bit Wait tVTP N O N - D I S C L O S U R E Clear PGM Bit Wait tHVD Read Page of Data Increment Attempt Counter NO Attempt Count Equal To 5? Clear MARGIN Bit Read Data Equal To Write Data? NO YES YES Programming Operation Failed Programming Operation Complete Figure 10-5. Page Program Algorithm Advance Information 164 MC68HC(9)08PT48 — Rev. 2.0 48-Kbyte FLASH Memory MOTOROLA 11.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166 11.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166 11.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166 11.4.1 Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168 11.5 Slave Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170 11.6 Transmission Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171 11.6.1 Clock Phase and Polarity Controls . . . . . . . . . . . . . . . . . .171 11.6.2 Transmission Format When CPHA = 0 . . . . . . . . . . . . . . .171 11.6.3 Transmission Format When CPHA = 1 . . . . . . . . . . . . . . .173 11.6.4 Transmission Initiation Latency . . . . . . . . . . . . . . . . . . . . .174 11.7 Queuing Transmission Data . . . . . . . . . . . . . . . . . . . . . . . . . .176 11.8 Error Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177 11.8.1 Overflow Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177 11.8.2 Mode Fault Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180 11.9 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182 11.10 Resetting the SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184 11.11 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185 11.12 SPI During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .185 11.13 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186 11.13.1 MISO (Master In/Slave Out) . . . . . . . . . . . . . . . . . . . . . . .186 11.13.2 MOSI (Master Out/Slave In) . . . . . . . . . . . . . . . . . . . . . . .186 11.13.3 SPSCK (Serial Clock) . . . . . . . . . . . . . . . . . . . . . . . . . . . .187 11.13.4 SS (Slave Select) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187 11.13.5 CGND (Clock Ground) . . . . . . . . . . . . . . . . . . . . . . . . . . .188 11.14 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189 11.14.1 SPI Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189 11.14.2 SPI Status and Control Register . . . . . . . . . . . . . . . . . . .192 11.14.3 SPI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195 MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Serial Peripheral Interface (SPI) Module 165 R E Q U I R E D 11.1 Contents A G R E E M E N T Section 11. Serial Peripheral Interface (SPI) Module N O N - D I S C L O S U R E Advance Information — MC68HC(9)08PT48 R E Q U I R E D Serial Peripheral Interface (SPI) Module 11.2 Introduction This section describes the serial peripheral interface (SPI) module which allows full-duplex, synchronous, serial communications with peripheral devices. 11.3 Features N O N - D I S C L O S U R E A G R E E M E N T Features of the SPI module include: • Full-duplex operation • Master and slave modes • Double-buffered operation with separate transmit and receive registers • Four master mode frequencies (maximum = bus frequency ÷ 2) • Maximum slave mode frequency = bus frequency • Clock ground for reduced radio frequency (RF) interference • Serial clock with programmable polarity and phase • Two separately enabled interrupts: – SPRF (SPI receiver full) – SPTE (SPI transmitter empty) • Mode fault error flag with CPU interrupt capability • Overflow error flag with CPU interrupt capability • Programmable wired-OR mode • I2C (inter-integrated circuit) compatibility 11.4 Functional Description Figure 11-1 shows the structure of the SPI module and Figure 11-2 shows the locations and contents of the SPI input/output (I/O) registers. Advance Information 166 MC68HC(9)08PT48 — Rev. 2.0 Serial Peripheral Interface (SPI) Module MOTOROLA R E Q U I R E D Serial Peripheral Interface (SPI) Module Functional Description INTERNAL BUS TRANSMIT DATA REGISTER CGMOUT 2 (FROM SIM) SHIFT REGISTER 7 6 5 4 3 2 1 MISO 0 2 MOSI 8 RECEIVE DATA REGISTER 32 PIN CONTROL LOGIC 128 SPMSTR SPE CLOCK SELECT SPR1 A G R E E M E N T CLOCK DIVIDER SPSCK M CLOCK LOGIC S SS SPR0 SPMSTR CPHA MODFEN TRANSMITTER CPU INTERRUPT REQUEST CPOL SPWOM ERRIE SPI CONTROL SPTIE RECEIVER/ERROR CPU INTERRUPT REQUEST DMAS SPE SPRF SPTE OVRF MODF Figure 11-1. SPI Module Block Diagram The SPI module allows full-duplex, synchronous, serial communication between the MCU and peripheral devices, including other MCUs. Software can poll the SPI status flags or SPI operation can be interruptdriven. The following subsections describe the operation of the SPI module. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Serial Peripheral Interface (SPI) Module 167 N O N - D I S C L O S U R E SPRIE Addr. $000F $0010 $0011 Register Name Bit 7 Read: SPRIE SPI Control Register Write: (SPCR) Reset: 0 Read: SPRF SPI Status and Control Write: Register (SPSCR) Reset: 0 Read: SPI Data Register Write: (SPDR) Reset: 6 5 4 3 2 1 Bit 0 DMAS SPMSTR CPOL CPHA SPWOM SPE SPTIE 0 1 0 1 0 0 0 OVRF MODF SPTE MODFEN SPR1 SPR0 ERRIE 0 0 0 1 0 0 0 R7 R6 R5 R4 R3 R2 R1 R0 T7 T6 T5 T4 T3 T2 T1 T0 Indeterminate after reset = Unimplemented Figure 11-2. SPI I/O Register Summary 11.4.1 Master Mode The SPI operates in master mode when the SPI master bit, SPMSTR, is set. NOTE: N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Serial Peripheral Interface (SPI) Module Configure the SPI modules as master or slave before enabling them. Enable the master SPI before enabling the slave SPI. Disable the slave SPI before disabling the master SPI. (See 11.14.1 SPI Control Register.) Only a master SPI module can initiate transmissions. Software begins the transmission from a master SPI module by writing to the transmit data register. If the shift register is empty, the byte immediately transfers to the shift register, setting the SPI transmitter empty bit, SPTE. The byte begins shifting out on the MOSI pin under the control of the serial clock. (See Figure 11-3.) The SPR1 and SPR0 bits control the baud rate generator and determine the speed of the shift register. (See 11.14.2 SPI Status and Control Register.) Through the SPSCK pin, the baud rate generator of the master also controls the shift register of the slave peripheral. Advance Information 168 MC68HC(9)08PT48 — Rev. 2.0 Serial Peripheral Interface (SPI) Module MOTOROLA When the DMAS bit is set, the SPI status and control register does not have to be read to clear the SPRF bit. A read of the SPI data register by either the CPU or the DMA clears the SPRF bit. A write to the SPI data register clears the SPTE bit. NOTE: This device has no DMA. DMAS should be cleared. MASTER MCU SHIFT REGISTER SLAVE MCU MISO MISO MOSI MOSI SHIFT REGISTER BAUD RATE GENERATOR SS SPSCK VDD N O N - D I S C L O S U R E SPSCK SS Figure 11-3. Full-Duplex Master-Slave Connections MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Serial Peripheral Interface (SPI) Module A G R E E M E N T As the byte shifts out on the MOSI pin of the master, another byte shifts in from the slave on the master’s MISO pin. The transmission ends when the receiver full bit, SPRF, becomes set. At the same time that SPRF becomes set, the byte from the slave transfers to the receive data register. In normal operation, SPRF signals the end of a transmission. Software clears SPRF by reading the SPI status and control register with SPRF set and then reading the SPI data register. Writing to the SPI data register clears the SPTE bit. R E Q U I R E D Serial Peripheral Interface (SPI) Module Functional Description 169 11.5 Slave Mode The SPI operates in slave mode when the SPMSTR bit is clear. In slave mode, the SPSCK pin is the input for the serial clock from the master MCU. Before a data transmission occurs, the SS pin of the slave SPI must be at logic 0. SS must remain low until the transmission is complete. (See 11.8.2 Mode Fault Error.) In a slave SPI module, data enters the shift register under the control of the serial clock from the master SPI module. After a byte enters the shift register of a slave SPI, it transfers to the receive data register, and the SPRF bit is set. To prevent an overflow condition, slave software then must read the receive data register before another full byte enters the shift register. A G R E E M E N T R E Q U I R E D Serial Peripheral Interface (SPI) Module N O N - D I S C L O S U R E The maximum frequency of the SPSCK for an SPI configured as a slave is the bus clock speed (which is twice as fast as the fastest master SPSCK clock that can be generated). The frequency of the SPSCK for an SPI configured as a slave does not have to correspond to any SPI baud rate. The baud rate only controls the speed of the SPSCK generated by an SPI configured as a master. Therefore, the frequency of the SPSCK for an SPI configured as a slave can be any frequency less than or equal to the bus speed. When the master SPI starts a transmission, the data in the slave shift register begins shifting out on the MISO pin. The slave can load its shift register with a new byte for the next transmission by writing to its transmit data register. The slave must write to its transmit data register at least one bus cycle before the master starts the next transmission. Otherwise the byte already in the slave shift register shifts out on the MISO pin. Data written to the slave shift register during a transmission remains in a buffer until the end of the transmission. When the clock phase bit (CPHA) is set, the first edge of SPSCK starts a transmission. When CPHA is clear, the falling edge of SS starts a transmission. (See 11.6 Transmission Formats.) NOTE: SPSCK must be in the proper idle state before the slave is enabled to prevent SPSCK from appearing as a clock edge. Advance Information 170 MC68HC(9)08PT48 — Rev. 2.0 Serial Peripheral Interface (SPI) Module MOTOROLA 11.6.1 Clock Phase and Polarity Controls Software can select any of four combinations of serial clock (SPSCK) phase and polarity using two bits in the SPI control register (SPCR). The clock polarity is specified by the CPOL control bit, which selects an active high or low clock and has no significant effect on the transmission format. The clock phase (CPHA) control bit selects one of two fundamentally different transmission formats. The clock phase and polarity should be identical for the master SPI device and the communicating slave device. In some cases, the phase and polarity are changed between transmissions to allow a master device to communicate with peripheral slaves having different requirements. NOTE: Before writing to the CPOL bit or the CPHA bit, disable the SPI by clearing the SPI enable bit (SPE). 11.6.2 Transmission Format When CPHA = 0 Figure 11-4 shows an SPI transmission in which CPHA is logic 0. The figure should not be used as a replacement for data sheet parametric information.Two waveforms are shown for SPSCK: one for CPOL = 0 and another for CPOL = 1. The diagram may be interpreted as a master or slave timing diagram since the serial clock (SPSCK), master in/slave out (MISO), and master out/slave in (MOSI) pins are directly connected between the master and the slave. The MISO signal is the output from the slave, and the MOSI signal is the output from the master. The SS line MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Serial Peripheral Interface (SPI) Module 171 A G R E E M E N T During an SPI transmission, data is simultaneously transmitted (shifted out serially) and received (shifted in serially). A serial clock synchronizes shifting and sampling on the two serial data lines. A slave select line allows selection of an individual slave SPI device; slave devices that are not selected do not interfere with SPI bus activities. On a master SPI device, the slave select line can optionally be used to indicate multiplemaster bus contention. N O N - D I S C L O S U R E 11.6 Transmission Formats R E Q U I R E D Serial Peripheral Interface (SPI) Module Transmission Formats R E Q U I R E D Serial Peripheral Interface (SPI) Module A G R E E M E N T is the slave select input to the slave. The slave SPI drives its MISO output only when its slave select input (SS) is at logic 0, so that only the selected slave drives to the master. The SS pin of the master is not shown but is assumed to be inactive. The SS pin of the master must be high or must be reconfigured as general-purpose I/O not affecting the SPI. (See 11.8.2 Mode Fault Error.) When CPHA = 0, the first SPSCK edge is the MSB (most significant bit) capture strobe. Therefore the slave must begin driving its data before the first SPSCK edge, and a falling edge on the SS pin is used to start the slave data transmission. The slave’s SS pin must be toggled back to high and then low again between each byte transmitted as shown in Figure 11-5. SPSCK CYCLE # FOR REFERENCE 1 2 3 4 5 6 7 8 MSB BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 LSB BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 LSB SPSCK; CPOL = 0 SPSCK; CPOL =1 MOSI FROM MASTER N O N - D I S C L O S U R E MISO FROM SLAVE MSB SS; TO SLAVE CAPTURE STROBE Figure 11-4. Transmission Format (CPHA = 0) MISO/MOSI BYTE 1 BYTE 2 BYTE 3 MASTER SS SLAVE SS CPHA = 0 SLAVE SS CPHA = 1 Figure 11-5. CPHA/SS Timing Advance Information 172 MC68HC(9)08PT48 — Rev. 2.0 Serial Peripheral Interface (SPI) Module MOTOROLA Figure 11-6 shows an SPI transmission in which CPHA is logic 1. The figure should not be used as a replacement for data sheet parametric information. Two waveforms are shown for SPSCK: one for CPOL = 0 and another for CPOL = 1. The diagram may be interpreted as a master or slave timing diagram since the serial clock (SPSCK), master in/slave out (MISO), and master out/slave in (MOSI) pins are directly connected between the master and the slave. The MISO signal is the output from the slave, and the MOSI signal is the output from the master. The SS line is the slave select input to the slave. The slave SPI drives its MISO output only when its slave select input (SS) is at logic 0, so that only the selected slave drives to the master. The SS pin of the master is not shown but is assumed to be inactive. The SS pin of the master must be high or must be reconfigured as general-purpose I/O not affecting the SPI. (See 11.8.2 Mode Fault Error.) When CPHA = 1, the master begins driving its MOSI pin on the first SPSCK edge. Therefore, the slave uses the first SPSCK edge as a start transmission signal. The SS pin can remain low between transmissions. This format may be preferable in systems having only one master and only one slave driving the MISO data line. When CPHA = 1 for a slave, the first edge of the SPSCK indicates the beginning of the transmission. This causes the SPI to leave its idle state and begin driving the MISO pin with the MSB of its data. Once the transmission begins, no new data is allowed into the shift register from the transmit data register. Therefore, the SPI data register of the slave must be loaded with transmit data before the first edge of SPSCK. Any data written after the first edge is stored in the transmit data register and transferred to the shift register after the current transmission. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Serial Peripheral Interface (SPI) Module 173 A G R E E M E N T 11.6.3 Transmission Format When CPHA = 1 N O N - D I S C L O S U R E When CPHA = 0 for a slave, the falling edge of SS indicates the beginning of the transmission. This causes the SPI to leave its idle state and begin driving the MISO pin with the MSB of its data. Once the transmission begins, no new data is allowed into the shift register from the transmit data register. Therefore, the SPI data register of the slave must be loaded with transmit data before the falling edge of SS. Any data written after the falling edge is stored in the transmit data register and transferred to the shift register after the current transmission. R E Q U I R E D Serial Peripheral Interface (SPI) Module Transmission Formats SPSCK CYCLE # FOR REFERENCE 1 2 3 4 5 6 7 8 MOSI FROM MASTER MSB BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 LSB MISO FROM SLAVE MSB BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 SPSCK; CPOL = 0 SPSCK; CPOL =1 LSB SS; TO SLAVE CAPTURE STROBE Figure 11-6. Transmission Format (CPHA = 1) 11.6.4 Transmission Initiation Latency When the SPI is configured as a master (SPMSTR = 1), writing to the SPDR starts a transmission. CPHA has no effect on the delay to the start of the transmission, but it does affect the initial state of the SPSCK signal. When CPHA = 0, the SPSCK signal remains inactive for the first half of the first SPSCK cycle. When CPHA = 1, the first SPSCK cycle begins with an edge on the SPSCK line from its inactive to its active level. The SPI clock rate (selected by SPR1:SPR0) affects the delay from the write to SPDR and the start of the SPI transmission. (See Figure 11-7.) The internal SPI clock in the master is a free-running derivative of the internal MCU clock. To conserve power, it is enabled only when both the SPE and SPMSTR bits are set. SPSCK edges occur halfway through the low time of the internal MCU clock. Since the SPI clock is free-running, it is uncertain where the write to the SPDR occurs relative to the slower SPSCK. This uncertainty causes the variation in the initiation delay shown in Figure 11-7. This delay is no longer than a single SPI bit time. That is, the maximum delay is two MCU bus cycles for DIV2, eight MCU bus cycles for DIV8, 32 MCU bus cycles for DIV32, and 128 MCU bus cycles for DIV128. N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Serial Peripheral Interface (SPI) Module Advance Information 174 MC68HC(9)08PT48 — Rev. 2.0 Serial Peripheral Interface (SPI) Module MOTOROLA WRITE TO SPDR R E Q U I R E D Serial Peripheral Interface (SPI) Module Transmission Formats INITIATION DELAY BUS CLOCK MOSI MSB BIT 5 BIT 6 SPSCK CPHA = 1 SPSCK CPHA = 0 1 3 2 A G R E E M E N T SPSCK CYCLE NUMBER INITIATION DELAY FROM WRITE SPDR TO TRANSFER BEGIN WRITE TO SPDR BUS CLOCK EARLIEST LATEST SPSCK = INTERNAL CLOCK ÷ 2; 2 POSSIBLE START POINTS WRITE TO SPDR EARLIEST WRITE TO SPDR SPSCK = INTERNAL CLOCK ÷ 8; 8 POSSIBLE START POINTS LATEST SPSCK = INTERNAL CLOCK ÷ 32; 32 POSSIBLE START POINTS LATEST SPSCK = INTERNAL CLOCK ÷ 128; 128 POSSIBLE START POINTS LATEST N O N - D I S C L O S U R E BUS CLOCK BUS CLOCK EARLIEST WRITE TO SPDR BUS CLOCK EARLIEST Figure 11-7. Transmission Start Delay (Master) MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Serial Peripheral Interface (SPI) Module 175 11.7 Queuing Transmission Data The double-buffered transmit data register allows a data byte to be queued and transmitted. For an SPI configured as a master, a queued data byte is transmitted immediately after the previous transmission has completed. The SPI transmitter empty flag (SPTE) indicates when the transmit data buffer is ready to accept new data. Write to the transmit data register only when the SPTE bit is high. Figure 11-8 shows the timing associated with doing back-to-back transmissions with the SPI. (SPSCK has CPHA:CPOL = 1:0.) A G R E E M E N T R E Q U I R E D Serial Peripheral Interface (SPI) Module WRITE TO SPDR SPTE 1 3 8 5 2 10 SPSCK; CPHA:CPOL = 1:0 MOSI MSB BIT BIT BIT BIT BIT BIT LSB MSB BIT BIT BIT BIT BIT BIT LSB MSB BIT BIT BIT 6 5 4 3 2 1 6 5 4 3 2 1 6 5 4 BYTE 1 BYTE 2 BYTE 3 4 N O N - D I S C L O S U R E SPRF 9 6 READ SPSCR 11 7 READ SPDR 1 CPU WRITES BYTE 1 TO SPDR, CLEARING SPTE BIT. 2 BYTE 1 TRANSFERS FROM TRANSMIT DATA REGISTER TO SHIFT REGISTER, SETTING SPTE BIT. 3 CPU WRITES BYTE 2 TO SPDR, QUEUEING BYTE 2 AND CLEARING SPTE BIT. 4 FIRST INCOMING BYTE TRANSFERS FROM SHIFT REGISTER TO RECEIVE DATA REGISTER, SETTING SPRF BIT. 5 BYTE 2 TRANSFERS FROM TRANSMIT DATA REGISTER TO SHIFT REGISTER, SETTING SPTE BIT. 6 CPU READS SPSCR WITH SPRF BIT SET. 12 7 CPU READS SPDR, CLEARING SPRF BIT. 8 CPU WRITES BYTE 3 TO SPDR, QUEUEING BYTE 3 AND CLEARING SPTE BIT. 9 SECOND INCOMING BYTE TRANSFERS FROM SHIFT REGISTER TO RECEIVE DATA REGISTER, SETTING SPRF BIT. 10 BYTE 3 TRANSFERS FROM TRANSMIT DATA REGISTER TO SHIFT REGISTER, SETTING SPTE BIT. 11 CPU READS SPSCR WITH SPRF BIT SET. 12 CPU READS SPDR, CLEARING SPRF BIT. Figure 11-8. SPRF/SPTE CPU Interrupt Timing Advance Information 176 MC68HC(9)08PT48 — Rev. 2.0 Serial Peripheral Interface (SPI) Module MOTOROLA 11.8 Error Conditions These flags signal SPI error conditions: • Overflow (OVRF) — Failing to read the SPI data register before the next full byte enters the shift register sets the OVRF bit. The new byte does not transfer to the receive data register, and the unread byte still can be read. OVRF is in the SPI status and control register. • Mode fault error (MODF) — The MODF bit indicates that the voltage on the slave select pin (SS) is inconsistent with the mode of the SPI. MODF is in the SPI status and control register. 11.8.1 Overflow Error The overflow flag (OVRF) becomes set if the receive data register still has unread data from a previous transmission when the capture strobe of bit 1 of the next transmission occurs. The bit 1 capture strobe occurs in the middle of SPSCK cycle 7. (See Figure 11-4 and Figure 11-6.) If an overflow occurs, all data received after the overflow and before the OVRF bit is cleared does not transfer to the receive data register and does not set the SPI receiver full bit (SPRF). The unread data that transferred to the receive data register before the overflow occurred can MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Serial Peripheral Interface (SPI) Module 177 A G R E E M E N T For an idle master or idle slave that has no data loaded into its transmit buffer, the SPTE is set again no more than two bus cycles after the transmit buffer empties into the shift register. This allows the user to queue up a 16-bit value to send. For an already active slave, the load of the shift register cannot occur until the transmission is completed. This implies that a back-to-back write to the transmit data register is not possible. The SPTE indicates when the next write can occur. N O N - D I S C L O S U R E The transmit data buffer allows back-to-back transmissions without the slave precisely timing its writes between transmissions as in a system with a single data buffer. Also, if no new data is written to the data buffer, the last value contained in the shift register is the next data word to be transmitted. R E Q U I R E D Serial Peripheral Interface (SPI) Module Error Conditions R E Q U I R E D Serial Peripheral Interface (SPI) Module still be read. Therefore, an overflow error always indicates the loss of data. Clear the overflow flag by reading the SPI status and control register and then reading the SPI data register. NOTE: This device has no DMA. DMAS should be cleared. A G R E E M E N T OVRF generates a receiver/error CPU interrupt request if the error interrupt enable bit (ERRIE) is also set. When the DMAS bit is low, the SPRF, MODF, and OVRF interrupts share the same CPU interrupt vector. When the DMAS bit is high, SPRF generates a receiver DMA service request, and MODF and OVRF can generate a receiver/error CPU interrupt request. (See Figure 11-11.) It is not possible to enable MODF or OVRF individually to generate a receiver/error CPU interrupt request. However, leaving MODFEN low prevents MODF from being set. N O N - D I S C L O S U R E If the CPU SPRF interrupt is enabled and the OVRF interrupt is not, watch for an overflow condition. Figure 11-9 shows how it is possible to miss an overflow. The first part of Figure 11-9 shows how it is possible to read the SPSCR and SPDR to clear the SPRF without problems. However, as illustrated by the second transmission example, the OVRF bit can be set in between the time that SPSCR and SPDR are read. BYTE 1 BYTE 2 BYTE 3 BYTE 4 1 4 6 8 SPRF OVRF 2 READ SPSCR 5 3 READ SPDR 1 BYTE 1 SETS SPRF BIT. 2 CPU READS SPSCR WITH SPRF BIT SET AND OVRF BIT CLEAR. CPU READS BYTE 1 IN SPDR, CLEARING SPRF BIT. BYTE 2 SETS SPRF BIT. 3 4 7 5 CPU READS SPSCR WITH SPRF BIT SET AND OVRF BIT CLEAR. 6 BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST. 7 CPU READS BYTE 2 IN SPDR, CLEARING SPRF BIT, BUT NOT OVRF BIT. BYTE 4 FAILS TO SET SPRF BIT BECAUSE OVRF BIT IS NOT CLEARED. BYTE 4 IS LOST. 8 Figure 11-9. Missed Read of Overflow Condition Advance Information 178 MC68HC(9)08PT48 — Rev. 2.0 Serial Peripheral Interface (SPI) Module MOTOROLA BYTE 1 BYTE 2 BYTE 3 BYTE 4 1 5 7 11 SPI RECEIVE COMPLETE A G R E E M E N T In this case, an overflow can easily be missed. Since no more SPRF interrupts can be generated until this OVRF is serviced, it is not obvious that bytes are being lost as more transmissions are completed. To prevent this, either enable the OVRF interrupt or do another read of the SPSCR following the read of the SPDR. This ensures that the OVRF was not set before the SPRF was cleared and that future transmissions can set the SPRF bit. Figure 11-10 illustrates this process. Generally, to avoid this second SPSCR read, enable the OVRF to the CPU by setting the ERRIE bit. SPRF OVRF 4 6 9 3 READ SPDR 1 BYTE 1 SETS SPRF BIT. 2 CPU READS SPSCR WITH SPRF BIT SET AND OVRF BIT CLEAR. CPU READS BYTE 1 IN SPDR, CLEARING SPRF BIT. 3 8 12 10 8 CPU READS BYTE 2 IN SPDR, CLEARING SPRF BIT. 9 CPU READS SPSCR AGAIN TO CHECK OVRF BIT. 14 13 N O N - D I S C L O S U R E 2 READ SPSCR 10 CPU READS BYTE 2 SPDR, CLEARING OVRF BIT. 4 CPU READS SPSCR AGAIN TO CHECK OVRF BIT. 5 BYTE 2 SETS SPRF BIT. 12 CPU READS SPSCR. 6 CPU READS SPSCR WITH SPRF BIT SET AND OVRF BIT CLEAR. 13 CPU READS BYTE 4 IN SPDR, CLEARING SPRF BIT. 7 BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST. 14 CPU READS SPSCR AGAIN TO CHECK OVRF BIT. 11 BYTE 4 SETS SPRF BIT. Figure 11-10. Clearing SPRF When OVRF Interrupt Is Not Enabled MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Serial Peripheral Interface (SPI) Module R E Q U I R E D Serial Peripheral Interface (SPI) Module Error Conditions 179 11.8.2 Mode Fault Error Setting the SPMSTR bit selects master mode and configures the SPSCK and MOSI pins as outputs and the MISO pin as an input. Clearing SPMSTR selects slave mode and configures the SPSCK and MOSI pins as inputs and the MISO pin as an output. The mode fault bit, MODF, becomes set any time the state of the slave select pin, SS, is inconsistent with the mode selected by SPMSTR. To prevent SPI pin contention and damage to the MCU, a mode fault error occurs if: A G R E E M E N T R E Q U I R E D Serial Peripheral Interface (SPI) Module • The SS pin of a slave SPI goes high during a transmission. • The SS pin of a master SPI goes low at any time. For the MODF flag to be set, the mode fault error enable bit (MODFEN) must be set. Clearing the MODFEN bit does not clear the MODF flag but does prevent MODF from being set again after MODF is cleared. NOTE: This device has no DMA. DMAS should be cleared. N O N - D I S C L O S U R E MODF generates a receiver/error CPU interrupt request if the error interrupt enable bit (ERRIE) is also set. When the DMAS bit is low, the SPRF, MODF, and OVRF interrupts share the same CPU interrupt vector. When the DMAS bit is high, SPRF generates a receiver DMA service request instead of a CPU interrupt request, but MODF and OVRF can generate a receiver/error CPU interrupt request. (See Figure 11-11.) It is not possible to enable MODF or OVRF individually to generate a receiver/error CPU interrupt request. However, leaving MODFEN low prevents MODF from being set. In a master SPI with the mode fault enable bit (MODFEN) set, the mode fault flag (MODF) is set if SS goes to logic 0. A mode fault in a master SPI causes these events to occur: • If ERRIE = 1, the SPI generates an SPI receiver/error CPU interrupt request. • The SPE bit is cleared. • The SPTE bit is set. • The SPI state counter is cleared. • The data direction register of the shared I/O port regains control of port drivers. Advance Information 180 MC68HC(9)08PT48 — Rev. 2.0 Serial Peripheral Interface (SPI) Module MOTOROLA When configured as a slave (SPMSTR = 0), the MODF flag is set if SS goes high during a transmission. When CPHA = 0, a transmission begins when SS goes low and ends once the incoming SPSCK goes back to its idle level following the shift of the eighth data bit. When CPHA = 1, the transmission begins when the SPSCK leaves its idle level and SS is already low. The transmission continues until the SPSCK returns to its idle level following the shift of the last data bit. (See 11.6 Transmission Formats.) NOTE: Setting the MODF flag does not clear the SPMSTR bit. The SPMSTR bit has no function when SPE = 0. Reading SPMSTR when MODF = 1 shows the difference between a MODF occurring when the SPI is a master and when it is a slave. NOTE: When CPHA = 0, a MODF occurs if a slave is selected (SS is at logic 0) and later unselected (SS is at logic 1) even if no SPSCK is sent to that slave. This happens because SS at logic 0 indicates the start of the transmission (MISO driven out with the value of MSB) for CPHA = 0. When CPHA = 1, a slave can be selected and then later unselected with no transmission occurring. Therefore, MODF does not occur since a transmission was never begun. In a slave SPI (MSTR = 0), the MODF bit generates an SPI receiver/error CPU interrupt request if the ERRIE bit is set. The MODF bit does not clear the SPE bit or reset the SPI in any way. Software can abort the SPI transmission by clearing the SPE bit of the slave. NOTE: A logic 1 voltage on the SS pin of a slave SPI puts the MISO pin in a high impedance state. Also, the slave SPI ignores all incoming SPSCK clocks, even if it was already in the middle of a transmission. To clear the MODF flag, read the SPSCR with the MODF bit set and then write to the SPCR register. This entire clearing mechanism must occur with no MODF condition existing or else the flag is not cleared. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Serial Peripheral Interface (SPI) Module 181 A G R E E M E N T To prevent bus contention with another master SPI after a mode fault error, clear all SPI bits of the data direction register of the shared I/O port before enabling the SPI. N O N - D I S C L O S U R E NOTE: R E Q U I R E D Serial Peripheral Interface (SPI) Module Error Conditions 11.9 Interrupts Four SPI status flags can be enabled to generate CPU interrupt requests, see Table 11-1. Table 11-1. SPI Interrupts Flag A G R E E M E N T R E Q U I R E D Serial Peripheral Interface (SPI) Module NOTE: Request SPTE Transmitter empty SPI transmitter CPU interrupt request DMAS = 0, SPTIE = 1, SPE = 1 SPI transmitter DMA service request DMAS = 1, SPTIE = 1, SPE = 1 SPRF Receiver full SPI receiver CPU interrupt request DMAS = 0, SPRIE = 1 SPI receiver DMA service request DMAS = 1, SPRIE = 1 OVRF Overflow SPI receiver/error interrupt request ERRIE = 1 MODF Mode fault SPI receiver/error interrupt request ERRIE = 1 This device has no DMA. DMAS should be cleared. N O N - D I S C L O S U R E The DMA select bit (DMAS) controls whether SPTE and SPRF generate CPU interrupt requests or DMA service requests. When DMAS = 0, reading the SPI status and control register with SPRF set and then reading the receive data register clears SPRF. When DMAS = 1, any read of the receive data register clears the SPRF flag. The clearing mechanism for the SPTE flag is always just a write to the transmit data register. The SPI transmitter interrupt enable bit (SPTIE) enables the SPTE flag to generate transmitter interrupt requests provided that the SPI is enabled (SPE = 1). The SPI receiver interrupt enable bit (SPRIE) enables the SPRF bit to generate receiver interrupt requests regardless of the state of the SPE bit. (See Figure 11-11.) The error interrupt enable bit (ERRIE) enables both the MODF and OVRF bits to generate a receiver/error CPU interrupt request. Advance Information 182 MC68HC(9)08PT48 — Rev. 2.0 Serial Peripheral Interface (SPI) Module MOTOROLA The mode fault enable bit (MODFEN) can prevent the MODF flag from being set so that only the OVRF bit is enabled by the ERRIE bit to generate receiver/error CPU interrupt requests. SPI TRANSMITTER DMA SERVICE REQUEST SPTE SPTIE SPE R E Q U I R E D Serial Peripheral Interface (SPI) Module Interrupts DMAS SPI RECEIVER DMA SERVICE REQUEST SPRIE SPRF SPI RECEIVER/ERROR CPU INTERRUPT REQUEST ERRIE MODF OVRF A G R E E M E N T SPI TRANSMITTER CPU INTERRUPT REQUEST NOTE: This device has no DMA. DMAS should be cleared. The following two sources in the SPI status and control register can generate interrupt requests. • SPI receiver full bit (SPRF) — The SPRF bit becomes set every time a byte transfers from the shift register to the receive data register. If the SPI receiver interrupt enable bit, SPRIE, is also set, SPRF can generate either an SPI receiver/error CPU interrupt request or an SPRF DMA service request. If the DMA select bit, DMAS, is clear, SPRF generates an SPRF CPU interrupt request. If DMAS is set, SPRF generates an SPRF DMA service request. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Serial Peripheral Interface (SPI) Module 183 N O N - D I S C L O S U R E Figure 11-11. SPI Interrupt Request Generation • SPI transmitter empty (SPTE) — The SPTE bit becomes set every time a byte transfers from the transmit data register to the shift register. If the SPI transmit interrupt enable bit, SPTIE, is also set, SPTE can generate either an SPTE CPU interrupt request or an SPTE DMA service request. If the DMAS bit is clear, SPTE generates an SPTE CPU interrupt request. If DMAS is set, SPTE generates an SPTE DMA service request. 11.10 Resetting the SPI Any system reset completely resets the SPI. Partial resets occur whenever the SPI enable bit (SPE) is low. Whenever SPE is low, the following occurs: N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Serial Peripheral Interface (SPI) Module • The SPTE flag is set. • Any transmission currently in progress is aborted. • The shift register is cleared. • The SPI state counter is cleared, making it ready for a new complete transmission. • All the SPI port logic is disabled. These items are reset only by a system reset: • All control bits in the SPCR register • All control bits in the SPSCR register (MODFEN, ERRIE, SPR1, and SPR0) • The status flags SPRF, OVRF, and MODF By not resetting the control bits when SPE is low, the user can clear SPE between transmissions without having to set all control bits again when SPE is set back high for the next transmission. By not resetting the SPRF, OVRF, and MODF flags, the user can still service these interrupts after the SPI has been disabled. The user can disable the SPI by writing 0 to the SPE bit. The SPI can also be disabled by a mode fault occurring in an SPI that was configured as a master with the MODFEN bit set. Advance Information 184 MC68HC(9)08PT48 — Rev. 2.0 Serial Peripheral Interface (SPI) Module MOTOROLA If SPI module functions are not required during wait mode, reduce power consumption by disabling the SPI module before executing the WAIT instruction. 11.12 SPI During Break Interrupts The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state. (See 7.8.3 SIM Break Flag Control Register.) To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state. To protect status bits during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), software can read and write I/O registers during the break state without affecting status bits. Some status bits have a 2-step read/write clearing procedure. If software does the first step on such a bit before the break, the bit cannot change during the break state as long as BCFE is at logic 0. After the break, doing the second step clears the status bit. Since the SPTE bit cannot be cleared during a break with the BCFE bit cleared, a write to the transmit data register in break mode does not initiate a transmission nor is this data transferred into the shift register. Therefore, a write to the SPDR in break mode with the BCFE bit cleared has no effect. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Serial Peripheral Interface (SPI) Module 185 A G R E E M E N T The SPI module remains active after the execution of a WAIT instruction. In wait mode, the SPI module registers are not accessible by the CPU. Any enabled CPU interrupt request from the SPI module can bring the MCU out of wait mode. N O N - D I S C L O S U R E 11.11 Wait Mode R E Q U I R E D Serial Peripheral Interface (SPI) Module Wait Mode N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Serial Peripheral Interface (SPI) Module 11.13 I/O Signals The SPI module has five I/O (input/output) pins: • MISO — Data received • MOSI — Data transmitted • SPSCK — Serial clock • SS — Slave select • CGND — Clock ground The SPI has limited inter-integrated circuit (I2C) capability (requiring software support) as a master in a single-master environment. To communicate with I2C peripherals, MOSI becomes an open-drain output when the SPWOM bit in the SPI control register is set. In I2C communication, the MOSI and MISO pins are connected to a bidirectional pin from the I2C peripheral and through a pullup resistor to VDD. 11.13.1 MISO (Master In/Slave Out) MISO is one of the two SPI module pins that transmit serial data. In fullduplex operation, the MISO pin of the master SPI module is connected to the MISO pin of the slave SPI module. The master SPI simultaneously receives data on its MISO pin and transmits data from its MOSI pin. Slave output data on the MISO pin is enabled only when the SPI is configured as a slave. The SPI is configured as a slave when its SPMSTR bit is logic 0 and its SS pin is at logic 0. To support a multipleslave system, a logic 1 on the SS pin puts the MISO pin in a highimpedance state. 11.13.2 MOSI (Master Out/Slave In) MOSI is one of the two SPI module pins that transmit serial data. In fullduplex operation, the MOSI pin of the master SPI module is connected to the MOSI pin of the slave SPI module. The master SPI simultaneously transmits data from its MOSI pin and receives data on its MISO pin. Advance Information 186 MC68HC(9)08PT48 — Rev. 2.0 Serial Peripheral Interface (SPI) Module MOTOROLA When enabled, the SPI controls data direction of the SPSCK pin regardless of the state of the data direction register of the shared I/O port. 11.13.4 SS (Slave Select) The SS pin has various functions depending on the current state of the SPI. For an SPI configured as a slave, the SS is used to select a slave. For CPHA = 0, the SS is used to define the start of a transmission. (See 11.6 Transmission Formats.) Since it is used to indicate the start of a transmission, the SS must be toggled high and low between each byte transmitted for the CPHA = 0 format. However, it can remain low between transmissions for the CPHA = 1 format. See Figure 11-12. MISO/MOSI BYTE 1 BYTE 2 BYTE 3 MASTER SS SLAVE SS CPHA = 0 SLAVE SS CPHA = 1 Figure 11-12. CPHA/SS Timing When an SPI is configured as a slave, the SS pin is always configured as an input. It cannot be used as a general-purpose I/O regardless of the state of the MODFEN control bit. However, the MODFEN bit can still prevent the state of the SS from creating a MODF error. (See 11.14.2 SPI Status and Control Register.) MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Serial Peripheral Interface (SPI) Module 187 A G R E E M E N T The serial clock synchronizes data transmission between master and slave devices. In a master MCU, the SPSCK pin is the clock output. In a slave MCU, the SPSCK pin is the clock input. In full duplex operation, the master and slave MCUs exchange a byte of data in eight serial clock cycles. N O N - D I S C L O S U R E 11.13.3 SPSCK (Serial Clock) R E Q U I R E D Serial Peripheral Interface (SPI) Module I/O Signals R E Q U I R E D Serial Peripheral Interface (SPI) Module NOTE: When an SPI is configured as a master, the SS input can be used in conjunction with the MODF flag to prevent multiple masters from driving MOSI and SPSCK. (See 11.8.2 Mode Fault Error.) For the state of the SS pin to set the MODF flag, the MODFEN bit in the SPSCK register must be set. If the MODFEN bit is low for an SPI master, the SS pin can be used as a general-purpose I/O under the control of the data direction register of the shared I/O port. With MODFEN high, it is an input-only pin to the SPI regardless of the state of the data direction register of the shared I/O port. A G R E E M E N T N O N - D I S C L O S U R E A logic 1 voltage on the SS pin of a slave SPI puts the MISO pin in a highimpedance state. The slave SPI ignores all incoming SPSCK clocks, even if it was already in the middle of a transmission. The CPU can always read the state of the SS pin by configuring the appropriate pin as an input and reading the port data register. (See Table 11-2.) Table 11-2. SPI Configuration SPE SPMSTR MODFEN SPI Configuration State of SS Logic 0 X(1) X Not enabled General-purpose I/O; SS ignored by SPI 1 0 X Slave Input-only to SPI 1 1 0 Master without MODF General-purpose I/O; SS ignored by SPI 1 1 1 Master with MODF Input-only to SPI 1. X = don’t care 11.13.5 CGND (Clock Ground) CGND is the ground return for the serial clock pin, SPSCK, and the ground for the port output buffers. It is connected to the EVSS1 pad. Advance Information 188 MC68HC(9)08PT48 — Rev. 2.0 Serial Peripheral Interface (SPI) Module MOTOROLA R E Q U I R E D Serial Peripheral Interface (SPI) Module I/O Registers 11.14 I/O Registers Three I/O registers control and monitor SPI operation: • SPI control register (SPCR) • SPI status and control register (SPSCR) • SPI data register (SPDR) A G R E E M E N T 11.14.1 SPI Control Register The SPI control register (SPCR): Enables SPI module interrupt requests • Selects CPU interrupt requests • Configures the SPI module as master or slave • Selects serial clock polarity and phase • Configures the SPSCK, MOSI, and MISO pins as open-drain outputs • Enables the SPI module N O N - D I S C L O S U R E • MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Serial Peripheral Interface (SPI) Module 189 R E Q U I R E D Serial Peripheral Interface (SPI) Module Address: $000F Bit 7 6 5 4 3 2 1 Bit 0 SPRIE DMAS SPMSTR CPOL CPHA SPWOM SPE SPTIE 0 0 1 0 1 0 0 0 Read: Write: Reset: Figure 11-13. SPI Control Register (SPCR) A G R E E M E N T SPRIE — SPI Receiver Interrupt Enable Bit This read/write bit enables interrupt requests generated by the SPRF bit. The SPRF bit is set when a byte transfers from the shift register to the receive data register. 1 = SPRF CPU interrupt requests or SPRF DMA service requests enabled 0 = SPRF CPU interrupt requests or SPRF DMA service requests disabled DMAS —DMA Select Bit N O N - D I S C L O S U R E This read/write bit selects DMA service requests when the SPI receiver full bit, SPRF, or the SPI transmitter empty bit, SPTE, becomes set. Setting the DMAS bit disables SPRF CPU interrupt requests and SPTE CPU interrupt requests. 1 = SPRF DMA and SPTE DMA service requests enabled (SPRF CPU and SPTE CPU interrupt requests disabled) 0 = SPRF DMA and SPTE DMA service requests disabled (SPRF CPU and SPTE CPU interrupt requests enabled) NOTE: This device has no DMA. DMAS should be cleared. SPMSTR — SPI Master Bit This read/write bit selects master mode operation or slave mode operation. 1 = Master mode 0 = Slave mode Advance Information 190 MC68HC(9)08PT48 — Rev. 2.0 Serial Peripheral Interface (SPI) Module MOTOROLA CPHA — Clock Phase Bit This read/write bit controls the timing relationship between the serial clock and SPI data. (See Figure 11-4 and Figure 11-6.) To transmit data between SPI modules, the SPI modules must have identical CPHA values. When CPHA = 0, the SS pin of the slave SPI module must be set to logic 1 between bytes. (See Figure 11-12.) SPWOM — SPI Wired-OR Mode Bit This read/write bit disables the pullup devices on pins SPSCK, MOSI, and MISO so that those pins become open-drain outputs. 1 = Wired-OR SPSCK, MOSI, and MISO pins 0 = Normal push-pull SPSCK, MOSI, and MISO pins SPE — SPI Enable This read/write bit enables the SPI module. Clearing SPE causes a partial reset of the SPI. (See 11.10 Resetting the SPI.) 1 = SPI module enabled 0 = SPI module disabled SPTIE — SPI Transmit Interrupt Enable This read/write bit enables interrupt requests generated by the SPTE bit. SPTE is set when a byte transfers from the transmit data register to the shift register. 1 = SPTE interrupt requests enabled 0 = SPTE interrupt requests disabled MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Serial Peripheral Interface (SPI) Module 191 A G R E E M E N T This read/write bit determines the logic state of the SPSCK pin between transmissions. (See Figure 11-4 and Figure 11-6.) To transmit data between SPI modules, the SPI modules must have identical CPOL values. N O N - D I S C L O S U R E CPOL — Clock Polarity Bit R E Q U I R E D Serial Peripheral Interface (SPI) Module I/O Registers 11.14.2 SPI Status and Control Register The SPI status and control register (SPSCR) contains flags to signal these conditions: A G R E E M E N T R E Q U I R E D Serial Peripheral Interface (SPI) Module • Receive data register full • Failure to clear SPRF bit before next byte is received (overflow error) • Inconsistent logic level on SS pin (mode fault error) • Transmit data register empty The SPI status and control register also contains bits that perform these functions: • Enable error interrupts • Enable mode fault error detection • Select master SPI baud rate Address: $0010 Bit 7 N O N - D I S C L O S U R E Read: 6 SPRF 5 4 3 OVRF MODF SPTE ERRIE 2 1 Bit 0 MODFEN SPR1 SPR0 0 0 0 Write: Reset: 0 0 0 0 1 = Unimplemented Figure 11-14. SPI Status and Control Register (SPSCR) SPRF — SPI Receiver Full Bit This clearable, read-only flag is set each time a byte transfers from the shift register to the receive data register. SPRF generates an interrupt request if the SPRIE bit in the SPI control register is set also. 1 = Receive data register full 0 = Receive data register not full Advance Information 192 MC68HC(9)08PT48 — Rev. 2.0 Serial Peripheral Interface (SPI) Module MOTOROLA OVRF — Overflow Bit This clearable, read-only flag is set if software does not read the byte in the receive data register before the next full byte enters the shift register. In an overflow condition, the byte already in the receive data register is unaffected, and the byte that shifted in last is lost. Clear the OVRF bit by reading the SPI status and control register with OVRF set and then reading the receive data register. 1 = Overflow 0 = No overflow MODF — Mode Fault Bit This clearable, read-only flag is set in a slave SPI if the SS pin goes high during a transmission with the MODFEN bit set. In a master SPI, the MODF flag is set if the SS pin goes low at any time with the MODFEN bit set. Clear the MODF bit by reading the SPI status and control register (SPSCR) with MODF set and then writing to the SPI control register (SPCR). 1 = SS pin at inappropriate logic level 0 = SS pin at appropriate logic level SPTE — SPI Transmitter Empty Bit This clearable, read-only flag is set each time the transmit data register transfers a byte into the shift register. SPTE generates an interrupt request if the SPTIE bit in the SPI control register is set also. 1 = Transmit data register empty 0 = Transmit data register not empty NOTE: Do not write to the SPI data register unless the SPTE bit is high. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Serial Peripheral Interface (SPI) Module 193 A G R E E M E N T This read/write bit enables the MODF and OVRF bits to generate CPU interrupt requests. Reset clears the ERRIE bit. 1 = MODF and OVRF can generate CPU interrupt requests. 0 = MODF and OVRF cannot generate CPU interrupt requests. N O N - D I S C L O S U R E ERRIE — Error Interrupt Enable Bit R E Q U I R E D Serial Peripheral Interface (SPI) Module I/O Registers R E Q U I R E D Serial Peripheral Interface (SPI) Module MODFEN — Mode Fault Enable Bit This read/write bit, when set to 1, allows the MODF flag to be set. If the MODF flag is set, clearing the MODFEN does not clear the MODF flag. If the SPI is enabled as a master and the MODFEN bit is low, then the SS pin is available as a general-purpose I/O. A G R E E M E N T If the MODFEN bit is set, then this pin is not available as a general purpose I/O. When the SPI is enabled as a slave, the SS pin is not available as a general-purpose I/O regardless of the value of MODFEN. (See 11.13.4 SS (Slave Select).) If the MODFEN bit is low, the level of the SS pin does not affect the operation of an enabled SPI configured as a master. For an enabled SPI configured as a slave, having MODFEN low only prevents the MODF flag from being set. It does not affect any other part of SPI operation. (See 11.8.2 Mode Fault Error.) SPR1 and SPR0 — SPI Baud Rate Select Bits In master mode, these read/write bits select one of four baud rates as shown in Table 11-3. SPR1 and SPR0 have no effect in slave mode. Reset clears SPR1 and SPR0. N O N - D I S C L O S U R E Table 11-3. SPI Master Baud Rate Selection SPR1:SPR0 Baud Rate Divisor (BD) 00 2 01 8 10 32 11 128 Use this formula to calculate the SPI baud rate: CGMOUT Baud rate = -------------------------2 × BD CGMOUT = base clock output of the clock generator module (CGM) BD = baud rate divisor Advance Information 194 MC68HC(9)08PT48 — Rev. 2.0 Serial Peripheral Interface (SPI) Module MOTOROLA 11.14.3 SPI Data Register The SPI data register (SPDR) consists of the read-only receive data register and the write-only transmit data register. Writing to the SPI data register writes data into the transmit data register. Reading the SPI data register reads data from the receive data register. The transmit data and receive data registers are separate registers that can contain different values. See Figure 11-1. $0011 Bit 7 6 5 4 3 2 1 Bit 0 Read: R7 R6 R5 R4 R3 R2 R1 R0 Write: T7 T6 T5 T4 T3 T2 T1 T0 Reset: Indeterminate after reset Figure 11-15. SPI Data Register (SPDR) R7:R0/T7:T0 — Receive/Transmit Data Bits Do not use read-modify-write instructions on the SPI data register since the register read is not the same as the register written. N O N - D I S C L O S U R E NOTE: A G R E E M E N T Address: R E Q U I R E D Serial Peripheral Interface (SPI) Module I/O Registers MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Serial Peripheral Interface (SPI) Module 195 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Serial Peripheral Interface (SPI) Module Advance Information 196 MC68HC(9)08PT48 — Rev. 2.0 Serial Peripheral Interface (SPI) Module MOTOROLA 12.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .198 12.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .198 12.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199 12.4.1 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202 12.4.2 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202 12.4.2.1 Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202 12.4.2.2 Character Transmission . . . . . . . . . . . . . . . . . . . . . . . . .203 12.4.2.3 Break Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204 12.4.2.4 Idle Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205 12.4.2.5 Inversion of Transmitted Output. . . . . . . . . . . . . . . . . . .205 12.4.2.6 Transmitter Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . .206 12.4.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206 12.4.3.1 Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206 12.4.3.2 Character Reception . . . . . . . . . . . . . . . . . . . . . . . . . . .206 12.4.3.3 Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208 12.4.3.4 Framing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210 12.4.3.5 Baud Rate Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . .210 12.4.3.6 Receiver Wakeup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213 12.4.3.7 Receiver Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . .214 12.4.3.8 Error Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214 12.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215 12.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215 12.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215 12.6 SCI During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .215 12.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216 12.7.1 PTG2/TxD (Transmit Data) . . . . . . . . . . . . . . . . . . . . . . . .216 12.7.2 PTG1/RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . .216 MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Serial Communications Interface (SCI) Module 197 R E Q U I R E D 12.1 Contents A G R E E M E N T Section 12. Serial Communications Interface (SCI) Module N O N - D I S C L O S U R E Advance Information — MC68HC(9)08PT48 12.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216 12.8.1 SCI Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . .217 12.8.2 SCI Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . .220 12.8.3 SCI Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . .222 12.8.4 SCI Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .225 12.8.5 SCI Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . .228 12.8.6 SCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229 12.8.7 SCI Baud Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . .229 12.2 Introduction This section describes the serial communications interface module (SCI, Version D), which allows high-speed asynchronous communications with peripheral devices and other MCUs. 12.3 Features Features of the SCI module include: N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Serial Communications Interface (SCI) Module • Full-duplex operation • Standard mark/space non-return-to-zero (NRZ) format • 32 programmable baud rates • Selectable clock source for baud rate (see Section 14. Configuration Register (CONFIG)) • Programmable 8-bit or 9-bit character length • Separately enabled transmitter and receiver • Separate receiver and transmitter CPU interrupt requests • Separate receiver and transmitter DMA service requests • Programmable transmitter output polarity • Two receiver wakeup methods: – Idle line wakeup – Address mark wakeup Advance Information 198 MC68HC(9)08PT48 — Rev. 2.0 Serial Communications Interface (SCI) Module MOTOROLA • Receiver framing error detection • Hardware parity checking • 1/16 bit-time noise detection 12.4 Functional Description Figure 12-1 shows the structure of the SCI module. The SCI allows fullduplex, asynchronous, NRZ serial communication between the MCU and remote devices, including other MCUs. The transmitter and receiver of the SCI operate independently, although they use the same baud rate generator. During normal operation, the CPU monitors the status of the SCI, writes the data to be transmitted, and processes received data. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Serial Communications Interface (SCI) Module 199 A G R E E M E N T Interrupt-driven operation with eight interrupt flags: – Transmitter empty – Transmission complete – Receiver full – Idle receiver input – Receiver overrun – Noise error – Framing error – Parity error N O N - D I S C L O S U R E • R E Q U I R E D Serial Communications Interface (SCI) Module Functional Description INTERNAL BUS SCI DATA REGISTER ERROR INTERRUPT CONTROL RECEIVER INTERRUPT CONTROL RECEIVE SHIFT REGISTER PTG1/RxD TRANSMITTER INTERRUPT CONTROL SCI DATA REGISTER DMA INTERRUPT CONTROL R E Q U I R E D Serial Communications Interface (SCI) Module TRANSMIT SHIFT REGISTER PTG2/TxD TXINV SCTIE R8 A G R E E M E N T TCIE T8 SCRIE ILIE DMARE TE SCTE RE DMATE TC RWU SBK SCRF OR ORIE IDLE NF NEIE FE FEIE PE PEIE LOOPS LOOPS RECEIVE CONTROL N O N - D I S C L O S U R E WAKEUP CONTROL ENSCI ENSCI FLAG CONTROL TRANSMIT CONTROL BKF M RPF WAKE ILTY CLOCK SOURCE ÷4 PRESCALER BAUD RATE GENERATOR ÷ 16 PEN PTY DATA SELECTION CONTROL Figure 12-1. SCI Module Block Diagram Advance Information 200 MC68HC(9)08PT48 — Rev. 2.0 Serial Communications Interface (SCI) Module MOTOROLA Bit 7 6 5 4 3 2 1 Bit 0 ENSCI TXINV M WAKE ILTY PEN PTY 0 0 0 0 0 0 0 TCIE SCRIE ILIE TE RE RWU SBK 0 0 0 0 0 0 0 T8 DMARE DMATE ORIE NEIE FEIE PEIE U 0 0 0 0 0 0 TC SCRF IDLE OR NF FE PE 1 0 0 0 0 0 0 BKF RPF Read: $0014 LOOPS SCI Control Register 1 Write: (SCC1) Reset: 0 TCIE $0015 SCTIE SCI Control Register 2 Write: (SCC2) Reset: 0 Read: $0016 SCI Control Register 3 Write: (SCC3) Reset: R8 U Read: SCTE $0017 SCI Status Register 1 Write: (SCS1) Reset: 1 Read: $0018 $0019 SCI Status Register 2 Write: (SCS2) Reset: 0 0 0 0 0 0 0 0 Read: R7 R6 R5 R4 R3 R2 R1 R0 T7 T6 T5 T4 T3 T2 T1 T0 SCR2 SCR1 SCR0 0 0 0 SCI Data Register Write: (SCDR) Reset: Unaffected by reset Read: $001A SCI Baud Rate Register Write: (SCBR) Reset: 0 0 SCP1 SCP0 0 0 = Unimplemented 0 U = Undetermined Figure 12-2. SCI I/O Register Summary MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Serial Communications Interface (SCI) Module 201 A G R E E M E N T Register Name N O N - D I S C L O S U R E Addr. R E Q U I R E D Serial Communications Interface (SCI) Module Functional Description A G R E E M E N T R E Q U I R E D Serial Communications Interface (SCI) Module 12.4.1 Data Format The SCI uses the standard non-return-to-zero (NRZ) mark/space data format illustrated in Figure 12-3. 8-BIT DATA FORMAT (BIT M IN SCC1 CLEAR) START BIT BIT 0 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT 7 9-BIT DATA FORMAT (BIT M IN SCC1 SET) START BIT BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 NEXT START BIT STOP BIT POSSIBLE PARITY BIT BIT 6 BIT 7 BIT 8 STOP BIT NEXT START BIT Figure 12-3. SCI Data Formats 12.4.2 Transmitter Figure 12-4 shows the structure of the SCI transmitter. NOTE: N O N - D I S C L O S U R E BIT 1 POSSIBLE PARITY BIT The transmission output pin is enabled by TE bit of SCC2 instead of ENSCI bit of SCC1. 12.4.2.1 Character Length The transmitter can accommodate either 8-bit or 9-bit data. The state of the M bit in SCI control register 1 (SCC1) determines character length. When transmitting 9-bit data, bit T8 in SCI control register 3 (SCC3) is the ninth bit (bit 8). Advance Information 202 MC68HC(9)08PT48 — Rev. 2.0 Serial Communications Interface (SCI) Module MOTOROLA R E Q U I R E D Serial Communications Interface (SCI) Module Functional Description INTERNAL BUS ÷ 16 SCI DATA REGISTER SCP1 11-BIT TRANSMIT SHIFT REGISTER STOP CLOCK SOURCE BAUD DIVIDER SCP0 SCR1 H SCR2 8 7 6 5 4 3 2 START PRESCALER ÷4 1 0 L PTG2/TxD DMATE TRANSMITTER CONTROL LOGIC DMATE SCTE DMATE SCTE SCTIE TC TCIE BREAK (ALL ZEROS) T8 PREAMBLE (ALL ONES) PARITY GENERATION PTY SHIFT ENABLE PEN LOAD FROM SCDR DMA SERVICE REQUEST CPU INTERRUPT REQUEST M SCTE RWU SBK LOOPS SCTIE ENSCI TC TE TCIE Figure 12-4. SCI Transmitter 12.4.2.2 Character Transmission During an SCI transmission, the transmit shift register shifts a character out to the PTG2/TxD pin. The SCI data register (SCDR) is the write-only buffer between the internal data bus and the transmit shift register. To initiate an SCI transmission: 1. Enable the SCI by writing a logic 1 to the enable SCI bit (ENSCI) in SCI control register 1 (SCC1). 2. Enable the transmitter by writing a logic 1 to the transmitter enable bit (TE) in SCI control register 2 (SCC2). MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Serial Communications Interface (SCI) Module 203 N O N - D I S C L O S U R E TXINV A G R E E M E N T MSB SCR0 R E Q U I R E D Serial Communications Interface (SCI) Module 3. Clear the SCI transmitter empty bit (SCTE) by reading SCI status register 1 (SCS1). 4. Write the data to transmit into the SCDR. 5. Repeat steps 3 and 4 for each subsequent transmission. N O N - D I S C L O S U R E A G R E E M E N T At the start of a transmission, transmitter control logic automatically loads the transmit shift register with a preamble of logic 1s. After the preamble shifts out, control logic transfers the SCDR data into the transmit shift register. A logic 0 start bit automatically goes into the least significant bit (LSB) position of the transmit shift register. A logic 1 stop bit goes into the most significant bit (MSB) position. The SCI transmitter empty bit, SCTE, in SCS1 becomes set when the SCDR transfers a byte to the transmit shift register. The SCTE bit indicates that the SCDR can accept new data from the internal data bus. If the SCI transmit interrupt enable bit, SCTIE, in SCC2 is also set, the SCTE bit generates an SCTE CPU interrupt request. When the transmit shift register is not transmitting a character, the PTG2/TxD pin goes to the idle condition, logic 1. If at any time software clears the ENSCI bit in SCI control register 1 (SCC1), the transmitter and receiver relinquish control of the port E pins. 12.4.2.3 Break Characters Writing a logic 1 to the send break bit, SBK, in SCC2 loads the transmit shift register with a break character. A break character contains all logic 0s and has no start, stop, or parity bit. Break character length depends on the M bit in SCC1. As long as SBK is at logic 1, transmitter logic continuously loads break characters into the transmit shift register. After software clears the SBK bit, the shift register finishes transmitting the last break character and then transmits at least one logic 1. The automatic logic 1 at the end of a break character guarantees the recognition of the start bit of the next character. Advance Information 204 MC68HC(9)08PT48 — Rev. 2.0 Serial Communications Interface (SCI) Module MOTOROLA Sets the framing error flag, FE • Sets the SCI receiver full flag, SCRF • Clears the SCI data register • Clears the received bit 8, R8 • Sets the break flag, BKF • May set the overrun flag, OR, noise flag, NF, parity error flag, PE, or the reception in progress flag, RPF 12.4.2.4 Idle Characters An idle character contains all logic 1s and has no start, stop, or parity bit. Idle character length depends on the M bit in SCC1. The preamble is a synchronizing idle character that begins every transmission. If the TE bit is cleared during a transmission, the PTG2/TxD pin becomes idle after completion of the transmission in progress. Clearing and then setting the TE bit during a transmission queues an idle character to be sent after the character currently being transmitted. NOTE: When queueing an idle character, return the TE bit to logic 1 before the stop bit of the current character shifts out to the PTG2/TxD pin. Setting TE after the stop bit appears on PTG2/TxD causes data previously written to the SCDR to be lost. A good time to toggle the TE bit is when the SCTE bit becomes set and just before writing the next byte to the SCDR. 12.4.2.5 Inversion of Transmitted Output The transmit inversion bit (TXINV) in SCI control register 1 (SCC1) reverses the polarity of transmitted data. All transmitted values, including idle, break, start, and stop bits, are inverted when TXINV is at logic 1. (See 12.8.1 SCI Control Register 1.) MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Serial Communications Interface (SCI) Module 205 A G R E E M E N T • N O N - D I S C L O S U R E The SCI recognizes a break character when a start bit is followed by eight or nine logic 0 data bits and a logic 0 where the stop bit should be. Receiving a break character has these effects on SCI registers: R E Q U I R E D Serial Communications Interface (SCI) Module Functional Description A G R E E M E N T R E Q U I R E D Serial Communications Interface (SCI) Module 12.4.2.6 Transmitter Interrupts These conditions can generate CPU interrupt requests from the SCI transmitter: • SCI transmitter empty (SCTE) — The SCTE bit in SCS1 indicates that the SCDR has transferred a character to the transmit shift register. SCTE can generate an SCTE CPU interrupt request. Setting the SCI transmit interrupt enable bit, SCTIE, in SCC2 enables SCTE CPU interrupts. • Transmission complete (TC) — The TC bit in SCS1 indicates that the transmit shift register and the SCDR are empty and that no break or idle character has been generated. The SCI transmitter interrupt enable bit, SCTIE, in SCC2 enables TC CPU interrupt requests. 12.4.3 Receiver Figure 12-5 shows the structure of the SCI receiver. N O N - D I S C L O S U R E 12.4.3.1 Character Length The receiver can accommodate either 8-bit or 9-bit data. The state of the M bit in SCI control register 1 (SCC1) determines character length. When receiving 9-bit data, bit R8 in SCI control register 2 (SCC2) is the ninth bit (bit 8). 12.4.3.2 Character Reception During an SCI reception, the receive shift register shifts characters in from the PTG1/RxD pin. The SCI data register (SCDR) is the read-only buffer between the internal data bus and the receive shift register. After a complete character shifts into the receive shift register, the data portion of the character transfers to the SCDR. The SCI receiver full bit, SCRF, in SCI status register 1 (SCS1) becomes set, indicating that the received byte can be read. If the SCI receive interrupt enable bit, SCRIE, in SCC2 is also set, the SCRF bit generates an SCRF CPU interrupt request. Advance Information 206 MC68HC(9)08PT48 — Rev. 2.0 Serial Communications Interface (SCI) Module MOTOROLA R E Q U I R E D Serial Communications Interface (SCI) Module Functional Description INTERNAL BUS SCR1 SCR0 BAUD DIVIDER ÷ 16 CLOCK SOURCE STOP PRESCALER DATA RECOVERY PTG1/Rx H ALL ONES ÷4 SCI DATA REGISTER ALL ZEROS BKF ERROR CPU INTERRUPT REQUEST DMA SERVICE REQUEST CPU INTERRUPT REQUEST RPF 11-BIT RECEIVE SHIFT REGISTER 8 7 6 5 4 3 M SCRF WAKE WAKEUP LOGIC ILTY PEN 1 0 L RWU IDLE SBK R8 PARITY CHECKING PTY 2 A G R E E M E N T SCP0 START SCR2 MSB SCP1 IDLE ILIE ILIE SCRF SCRIE DMARE SCRIE DMARE N O N - D I S C L O S U R E SCRF DMARE OR ORIE NF NEIE FE FEIE PE PEIE OR ORIE NF NEIE FE FEIE PE PEIE Figure 12-5. SCI Receiver Block Diagram MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Serial Communications Interface (SCI) Module 207 12.4.3.3 Data Sampling The receiver samples the PTG1/RxD pin at the RT clock rate. The RT clock is an internal signal with a frequency 16 times the baud-rate frequency. (See Figure 12-6.) N O N - D I S C L O S U R E A G R E E M E N T • Start bit — To locate the start bit, recovery logic does an asynchronous search for a logic 0 preceded by three logic 1s. When the falling edge of a possible start bit occurs, the RT clock begins to count to 16. • To verify a valid start bit, data recovery logic takes samples at RT3, RT5, and RT7. If any two of these three samples are logic 1s, the RT clock is reset and the search for start bit begins again. If all three samples are logic 0s, start bit verification is successful. If only one of the three samples is logic 1, start bit verification is successful, but the noise flag (NF) becomes set. • Data bit — To detect noise in data bits, recovery logic takes samples at RT8, RT9, and RT10 of every data bit time. If all three samples are not unanimous, the noise flag becomes set. • Stop bit — To detect noise in stop bits, recovery logic takes samples at RT8, RT9, and RT10. If all three samples are not unanimous, the noise flag becomes set. START BIT LSB PTG1/RxD START BIT QUALIFICATION SAMPLES START BIT VERIFICATION DATA SAMPLING RT4 RT3 RT2 RT16 RT1 RT15 RT14 RT13 RT12 RT11 RT10 RT9 RT8 RT7 RT6 RT5 RT4 RT3 RT2 RT1 RT1 RT1 RT1 RT1 RT1 RT1 RT CLOCK STATE RT1 RT CLOCK RT1 R E Q U I R E D Serial Communications Interface (SCI) Module RT CLOCK RESET Figure 12-6. Receiver Data Sampling Advance Information 208 MC68HC(9)08PT48 — Rev. 2.0 Serial Communications Interface (SCI) Module MOTOROLA RT3, RT5, and RT7 Samples Start Bit Verification Noise Flag 000 Yes 0 001 Yes 1 010 Yes 1 011 No 0 100 Yes 1 101 No 0 110 No 0 111 No 0 If start bit verification is not successful, the RT clock is reset and a new search for a start bit begins. To determine the value of a data bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. Table 12-2 summarizes the results of the data bit samples. Table 12-2. Data Bit Recovery NOTE: RT8, RT9, and RT10 Samples Data Bit Determination Noise Flag 000 0 0 001 0 1 010 0 1 011 1 1 100 0 1 101 1 1 110 1 1 111 1 0 The RT8, RT9, and RT10 samples do not affect start bit verification. If any or all of the RT8, RT9, and RT10 start bit samples are logic 1s MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Serial Communications Interface (SCI) Module 209 A G R E E M E N T Table 12-1. Start Bit Verification N O N - D I S C L O S U R E To verify the start bit and to detect noise, data recovery logic takes samples at RT3, RT5, and RT7. Table 12-1 summarizes the results of the start bit verification samples. R E Q U I R E D Serial Communications Interface (SCI) Module Functional Description N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Serial Communications Interface (SCI) Module following a successful start bit verification, the noise flag (NF) is set and the receiver assumes that the bit is a start bit. To verify a stop bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. Table 12-3 summarizes the results of the stop bit samples. Table 12-3. Stop Bit Recovery RT8, RT9, and RT10 Samples Framing Error Flag Noise Flag 000 1 0 001 1 1 010 1 1 011 0 1 100 1 1 101 0 1 110 0 1 111 0 0 12.4.3.4 Framing Errors If the data recovery logic does not detect a logic 1 where the stop bit should be in an incoming character, it sets the framing error bit, FE, in SCS1. A break character also sets the FE flag because a break character has no stop bit. The FE flag is set at the same time that the SCRF bit is set. 12.4.3.5 Baud Rate Tolerance A transmitting device may be operating at a baud rate below or above the receiver baud rate. Accumulated bit time misalignment can cause one of the three stop bit data samples to fall outside the actual stop bit. Then a noise error occurs. If more than one of the samples is outside the stop bit, a framing error occurs. In most applications, the baud rate tolerance is much more than the degree of misalignment that is likely to occur. Advance Information 210 MC68HC(9)08PT48 — Rev. 2.0 Serial Communications Interface (SCI) Module MOTOROLA Figure 12-7 shows how much a slow received character can be misaligned without causing a noise error or a framing error. The slow stop bit begins at RT8 instead of RT1 but arrives in time for the stop bit data samples at RT8, RT9, and RT10. MSB STOP RT16 RT15 RT14 RT13 RT12 RT11 RT10 RT9 RT8 RT7 RT6 RT5 RT4 RT3 RT2 RT1 RECEIVER RT CLOCK DATA SAMPLES Figure 12-7. Slow Data For an 8-bit character, data sampling of the stop bit takes the receiver 9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles. With the misaligned character shown in Figure 12-7, the receiver counts 154 RT cycles at the point when the count of the transmitting device is 9 bit times × 16 RT cycles + 3 RT cycles = 147 RT cycles. The maximum percent difference between the receiver count and the transmitter count of a slow 8-bit character with no errors is 154 – 147 -------------------------- × 100 = 4.54% 154 For a 9-bit character, data sampling of the stop bit takes the receiver 10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles. With the misaligned character shown in Figure 12-7, the receiver counts 170 RT cycles at the point when the count of the transmitting device is 10 bit times × 16 RT cycles + 3 RT cycles = 163 RT cycles. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Serial Communications Interface (SCI) Module 211 A G R E E M E N T Slow Data Tolerance N O N - D I S C L O S U R E As the receiver samples an incoming character, it resynchronizes the RT clock on any valid falling edge within the character. Resynchronization within characters corrects misalignments between transmitter bit times and receiver bit times. R E Q U I R E D Serial Communications Interface (SCI) Module Functional Description R E Q U I R E D Serial Communications Interface (SCI) Module The maximum percent difference between the receiver count and the transmitter count of a slow 9-bit character with no errors is 170 – 163 -------------------------- × 100 = 4.12% 170 Fast Data Tolerance A G R E E M E N T Figure 12-8 shows how much a fast received character can be misaligned without causing a noise error or a framing error. The fast stop bit ends at RT10 instead of RT16 but is still there for the stop bit data samples at RT8, RT9, and RT10. STOP IDLE OR NEXT CHARACTER RT16 RT15 RT14 RT13 RT12 RT11 RT10 RT9 RT8 RT7 RT6 RT5 RT4 RT3 RT2 RT1 RECEIVER RT CLOCK DATA SAMPLES Figure 12-8. Fast Data N O N - D I S C L O S U R E For an 8-bit character, data sampling of the stop bit takes the receiver 9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles. With the misaligned character shown in Figure 12-8, the receiver counts 154 RT cycles at the point when the count of the transmitting device is 10 bit times × 16 RT cycles = 160 RT cycles. The maximum percent difference between the receiver count and the transmitter count of a fast 8-bit character with no errors is 154 – 160 ˙ -------------------------- × 100 = 3.90% 154 For a 9-bit character, data sampling of the stop bit takes the receiver 10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles. With the misaligned character shown in Figure 12-8, the receiver counts 170 RT cycles at the point when the count of the transmitting device is 11 bit times × 16 RT cycles = 176 RT cycles. Advance Information 212 MC68HC(9)08PT48 — Rev. 2.0 Serial Communications Interface (SCI) Module MOTOROLA 12.4.3.6 Receiver Wakeup So that the MCU can ignore transmissions intended only for other receivers in multiple-receiver systems, the MCU can be put into a standby state. Setting the receiver wakeup bit, RWU, in SCC2 puts the MCU into a standby state during which receiver interrupts are disabled. Depending on the state of the WAKE bit in SCC1, either of two conditions on the PTG1/RxD pin can bring the MCU out of the standby state: NOTE: • Address mark — An address mark is a logic 1 in the most significant bit position of a received character. When the WAKE bit is set, an address mark wakes the receiver from the standby state by clearing the RWU bit. The address mark also sets the SCI receiver full flag, SCRF. Software can then compare the character containing the address mark to the user-defined address of the receiver. If they are the same, the receiver remains awake and processes the characters that follow. If they are not the same, software can set the RWU bit and put the receiver back into the standby state. • Idle input line condition — When the WAKE bit is clear, an idle character on the RxD pin wakes the receiver from the standby state by clearing the RWU bit. The idle character that wakes the receiver does not set the receiver idle bit, IDLE, or the SCI receiver full flag, SCRF. The idle line type bit, ILTY, determines whether the receiver begins counting logic 1s as idle character bits after the start bit or after the stop bit. With the WAKE bit clear, setting the RWU bit after the RxD pin has been idle may cause the receiver to wake up immediately. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Serial Communications Interface (SCI) Module 213 A G R E E M E N T 170 – 176 -------------------------- × 100 = 3.53% 170 N O N - D I S C L O S U R E The maximum percent difference between the receiver count and the transmitter count of a fast 9-bit character with no errors is R E Q U I R E D Serial Communications Interface (SCI) Module Functional Description 12.4.3.7 Receiver Interrupts These two sources can generate CPU interrupt requests from the SCI receiver: • SCI receiver full (SCRF) — The SCRF bit in SCS1 indicates that the receive shift register has transferred a character to the SCDR. SCRF can generate an SCRF CPU interrupt request or an SCRF DMA service request. Setting the SCI receive interrupt enable bit, SCRIE, in SCC2 enables SCRF CPU interrupts. Setting both the SCRIE bit and the DMA receive enable bit, DMARE, in SCC3 enables SCRF DMA service requests. • Idle input (IDLE) — The IDLE bit in SCS1 indicates that 10 or 11 consecutive logic 1s shifted in from the PTG1/RxD pin. The idle line interrupt enable bit, ILIE, in SCC2 enables IDLE CPU interrupts. 12.4.3.8 Error Interrupts The following receiver error conditions can generate CPU interrupt requests: N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Serial Communications Interface (SCI) Module • Receiver overrun (OR) — The OR bit in SCS1 indicates that the receive shift register shifted in a new character before the previous character was read from the SCDR. The overrun interrupt enable bit, ORIE, in SCC3 enables OR CPU interrupts. • Noise flag (NF) — The NF bit in SCS1 is set when the SCI detects noise on incoming data, including start, data, and stop bits. The noise error interrupt enable bit, NEIE, in SCC3 enables NF CPU interrupts. • Framing error (FE) — The FE bit in SCS1 is set when a logic 0 occurs where the receiver expects a stop bit. The framing error interrupt enable bit, FEIE, in SCC3 enables FE CPU interrupts. • Parity error (PE) — The PE bit in SCS1 is set when the SCI detects a parity error in incoming data. The parity error interrupt enable bit, PEIE, in SCC3 enables PE CPU interrupts. Advance Information 214 MC68HC(9)08PT48 — Rev. 2.0 Serial Communications Interface (SCI) Module MOTOROLA 12.5.1 Wait Mode The SCI module remains active after the execution of a WAIT instruction. In wait mode, the SCI module registers are not accessible by the CPU. Any enabled CPU interrupt request from the SCI module can bring the MCU out of wait mode. If SCI module functions are not required during wait mode, reduce power consumption by disabling the module before executing the WAIT instruction. 12.5.2 Stop Mode The SCI module is inactive after the execution of a STOP instruction. The STOP instruction does not affect SCI register states. SCI module operation resumes after an external interrupt. 12.6 SCI During Break Interrupts The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state. (See 7.8.3 SIM Break Flag Control Register.) To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state. To protect status bits during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), software can read and write I/O registers during the break state without affecting status bits. Some status bits have a 2-step read/write clearing procedure. If software does MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Serial Communications Interface (SCI) Module 215 A G R E E M E N T The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. N O N - D I S C L O S U R E 12.5 Low-Power Modes R E Q U I R E D Serial Communications Interface (SCI) Module Low-Power Modes N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Serial Communications Interface (SCI) Module the first step on such a bit before the break, the bit cannot change during the break state as long as BCFE is at logic 0. After the break, doing the second step clears the status bit. 12.7 I/O Signals Port E shares two of its pins with the SCI module. The two SCI I/O (input/output) pins are: • PTG2/TxD — Transmit data • PTG1/RxD — Receive data 12.7.1 PTG2/TxD (Transmit Data) The PTG2/TxD pin is the serial data output from the SCI transmitter. 12.7.2 PTG1/RxD (Receive Data) The PTG1/RxD pin is the serial data input to the SCI receiver. 12.8 I/O Registers The following I/O registers control and monitor SCI operation: • SCI control register 1 (SCC1) • SCI control register 2 (SCC2) • SCI control register 3 (SCC3) • SCI status register 1 (SCS1) • SCI status register 2 (SCS2) • SCI data register (SCDR) • SCI baud rate register (SCBR) Advance Information 216 MC68HC(9)08PT48 — Rev. 2.0 Serial Communications Interface (SCI) Module MOTOROLA 12.8.1 SCI Control Register 1 SCI control register 1 (SCC1): • Enables loop mode operation • Enables the SCI • Controls output polarity • Controls character length • Controls SCI wakeup method • Controls idle character detection • Enables parity function • Controls parity type Address: $0014 Bit 7 6 5 4 3 2 1 Bit 0 LOOPS ENSCI TXINV M WAKE ILTY PEN PTY 0 0 0 0 0 0 0 0 Read: Write: Reset: A G R E E M E N T R E Q U I R E D Serial Communications Interface (SCI) Module I/O Registers LOOPS — Loop Mode Select Bit This read/write bit enables loop mode operation. In loop mode, the PTE1/RxD pin is disconnected from the SCI, and the transmitter output goes into the receiver input. Both the transmitter and the receiver must be enabled to use loop mode. Reset clears the LOOPS bit. 1 = Loop mode enabled 0 = Normal operation enabled ENSCI — Enable SCI Bit This read/write bit enables the SCI and the SCI baud rate generator. Clearing ENSCI sets the SCTE and TC bits in SCI status register 1 and disables transmitter interrupts. Reset clears the ENSCI bit. 1 = SCI enabled 0 = SCI disabled MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Serial Communications Interface (SCI) Module 217 N O N - D I S C L O S U R E Figure 12-9. SCI Control Register 1 (SCC1) R E Q U I R E D Serial Communications Interface (SCI) Module TXINV — Transmit Inversion Bit This read/write bit reverses the polarity of transmitted data. Reset clears the TXINV bit. 1 = Transmitter output inverted 0 = Transmitter output not inverted NOTE: Setting the TXINV bit inverts all transmitted values, including idle, break, start, and stop bits. A G R E E M E N T M — Mode (Character Length) Bit This read/write bit determines whether SCI characters are eight or nine bits long. (See Table 12-4.) The ninth bit can serve as an extra stop bit, as a receiver wakeup signal, or as a parity bit. Reset clears the M bit. 1 = 9-bit SCI characters 0 = 8-bit SCI characters WAKE — Wakeup Condition Bit N O N - D I S C L O S U R E This read/write bit determines which condition wakes up the SCI: a logic 1 (address mark) in the most significant bit position of a received character or an idle condition on the PTE1/RxD pin. Reset clears the WAKE bit. 1 = Address mark wakeup 0 = Idle line wakeup ILTY — Idle Line Type Bit This read/write bit determines when the SCI starts counting logic 1s as idle character bits. The counting begins either after the start bit or after the stop bit. If the count begins after the start bit, then a string of logic 1s preceding the stop bit may cause false recognition of an idle character. Beginning the count after the stop bit avoids false idle character recognition, but requires properly synchronized transmissions. Reset clears the ILTY bit. 1 = Idle character bit count begins after stop bit. 0 = Idle character bit count begins after start bit. Advance Information 218 MC68HC(9)08PT48 — Rev. 2.0 Serial Communications Interface (SCI) Module MOTOROLA This read/write bit enables the SCI parity function. (See Table 12-4.) When enabled, the parity function inserts a parity bit in the most significant bit position. (See Figure 12-3.) Reset clears the PEN bit. 1 = Parity function enabled 0 = Parity function disabled PTY — Parity Bit This read/write bit determines whether the SCI generates and checks for odd parity or even parity. (See Table 12-4.) Reset clears the PTY bit. 1 = Odd parity 0 = Even parity Table 12-4. Character Format Selection Control Bits Character Format PEN:PTY Start Bits Data Bits Parity Stop Bits Character Length 0 0X 1 8 None 1 10 bits 1 0X 1 9 None 1 11 bits 0 10 1 7 Even 1 10 bits 0 11 1 7 Odd 1 10 bits 1 10 1 8 Even 1 11 bits 1 11 1 8 Odd 1 11 bits MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA N O N - D I S C L O S U R E M Advance Information Serial Communications Interface (SCI) Module A G R E E M E N T PEN — Parity Enable Bit R E Q U I R E D Serial Communications Interface (SCI) Module I/O Registers 219 12.8.2 SCI Control Register 2 SCI control register 2 (SCC2): A G R E E M E N T R E Q U I R E D Serial Communications Interface (SCI) Module • Enables the following interrupts: – Transmitter interrupts – Transmission complete interrupts – Receiver interrupts – Idle line interrupts • Enables the transmitter • Enables the receiver • Enables SCI wakeup • Transmits SCI break characters Address: $0015 Bit 7 6 5 4 3 2 1 Bit 0 SCTIE TCIE SCRIE ILIE TE RE RWU SBK 0 0 0 0 0 0 0 0 Read: Write: N O N - D I S C L O S U R E Reset: Figure 12-10. SCI Control Register 2 (SCC2) SCTIE — SCI Transmit Interrupt Enable Bit This read/write bit enables SCTE CPU interrupt requests or SCTE DMA service requests. Setting the SCTIE bit and clearing the DMA transfer enable bit, DMATE, in SCC3 enables SCTE CPU interrupt requests. Setting both the SCTIE and DMATE bits enables SCTE DMA service requests. Reset clears the SCTIE bit. 1 = SCTE CPU interrupt requests or SCTE DMA service requests enabled 0 = SCTE CPU interrupt requests or SCTE DMA service requests disabled Advance Information 220 MC68HC(9)08PT48 — Rev. 2.0 Serial Communications Interface (SCI) Module MOTOROLA SCRIE — SCI Receive Interrupt Enable Bit This read/write bit enables SCRF CPU interrupt requests or SCRF DMA service requests. Setting the SCRIE bit and clearing the DMA receive enable bit, DMARE, in SCC3 enables SCRF CPU interrupt requests. Setting both the SCRIE and DMARE bits enables SCRF DMA service requests. Reset clears the SCRIE bit. 1 = SCRF CPU interrupt requests or SCRF DMA service requests enabled 0 = SCRF CPU interrupt requests or SCRF DMA service requests disabled ILIE — Idle Line Interrupt Enable Bit This read/write bit enables IDLE CPU interrupt requests when the IDLE bit becomes set. Reset clears the ILIE bit. 1 = IDLE CPU interrupts enabled 0 = IDLE CPU interrupts disabled TE — Transmitter Enable Bit Setting this read/write bit begins the transmission by sending a preamble of 10 or 11 logic 1s from the transmit shift register to the PTE2/TxD pin. If software clears the TE bit, the transmitter completes any transmission in progress before the PTG2/TxD returns to the idle condition (three-state). Reset clears the TE bit. 1 = Transmission enabled 0 = Transmission disabled RE — Receiver Enable Bit Setting this read/write bit enables the receiver. Clearing the RE bit disables the receiver but does not affect receiver interrupt flag bits. Reset clears the RE bit. 1 = Receiver enabled 0 = Receiver disabled MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Serial Communications Interface (SCI) Module 221 A G R E E M E N T This read/write bit enables TC CPU interrupt requests. Reset clears the TCIE bit. 1 = TC CPU interrupt requests enabled 0 = TC CPU interrupt requests disabled N O N - D I S C L O S U R E TCIE — Transmission Complete Interrupt Enable Bit R E Q U I R E D Serial Communications Interface (SCI) Module I/O Registers RWU — Receiver Wakeup Bit This read/write bit puts the receiver in a standby state during which receiver interrupts are disabled. Typically, data transmitted to the receiver clears the RWU bit and returns the receiver to normal operation. The WAKE bit in SCC1 determines whether an idle input or an address mark brings the receiver out of the standby state. Reset clears the RWU bit. 1 = Standby state 0 = Normal operation SBK — Send Break Bit Setting and then clearing this read/write bit transmits a break character followed by a logic 1. The logic 1 after the break character guarantees recognition of a valid start bit. If SBK remains set, the transmitter continuously transmits break characters with no logic 1s between them. Reset clears the SBK bit. 1 = Transmit break characters 0 = No break characters being transmitted 12.8.3 SCI Control Register 3 SCI control register 3 (SCC3): N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Serial Communications Interface (SCI) Module • Stores the ninth SCI data bit received and the ninth SCI data bit to be transmitted • Enables SCI receiver full (SCRF) DMA service requests • Enables SCI transmitter empty (SCTE) DMA service requests • Enables the following interrupts: – Receiver overrun interrupts – Noise error interrupts – Framing error interrupts – Parity error interrupts Advance Information 222 MC68HC(9)08PT48 — Rev. 2.0 Serial Communications Interface (SCI) Module MOTOROLA $0016 Bit 7 Read: 6 5 4 3 2 1 Bit 0 T8 DMARE DMATE ORIE NEIE FEIE PEIE U 0 0 0 0 0 0 R8 Write: Reset: U = Unimplemented U = Undetermined Figure 12-11. SCI Control Register 3 (SCC3) R8 — Received Bit 8 When the SCI is receiving 9-bit characters, R8 is the read-only bit 8 of the received character. R8 is received at the same time that the SCDR receives the other eight bits. Reset has no effect on the R8 bit. T8 — Transmitted Bit 8 When the SCI is transmitting 9-bit characters, T8 is the read/write bit 8 of the transmitted character. T8 is loaded into the transmit shift register at the same time that the SCDR is loaded into the transmit shift register. Reset has no effect on the T8 bit. A G R E E M E N T Address: R E Q U I R E D Serial Communications Interface (SCI) Module I/O Registers This read/write bit enables SCI receiver full (SCRF) DMA service requests. (See 12.8.4 SCI Status Register 1.) Setting the DMARE bit disables SCRF CPU interrupt requests. Reset clears the DMARE bit. 1 = SCRF DMA service requests enabled (SCRF CPU interrupt requests disabled) 0 = SCRF DMA service requests disabled (SCRF CPU interrupt requests enabled) MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Serial Communications Interface (SCI) Module 223 N O N - D I S C L O S U R E DMARE — DMA Receive Enable Bit R E Q U I R E D Serial Communications Interface (SCI) Module DMATE — DMA Transfer Enable Bit A G R E E M E N T This read/write bit enables SCI transmitter empty (SCTE) DMA service requests. (See 12.8.4 SCI Status Register 1.) Setting the DMATE bit disables SCTE CPU interrupt requests. Reset clears DMATE. 1 = SCTE DMA service requests enabled (SCTE CPU interrupt requests disabled) 0 = SCTE DMA service requests disabled (SCTE CPU interrupt requests enabled) ORIE — Receiver Overrun Interrupt Enable Bit This read/write bit enables receiver overrun (OR) CPU interrupt requests. (See 12.8.4 SCI Status Register 1.) Reset clears ORIE. 1 = OR CPU interrupt requests enabled 0 = OR CPU interrupt requests disabled NEIE — Receiver Noise Error Interrupt Enable Bit N O N - D I S C L O S U R E This read/write bit enables receiver noise error (NE) CPU interrupt requests. (See 12.8.4 SCI Status Register 1.) Reset clears NEIE. 1 = NE CPU interrupt requests enabled 0 = NE CPU interrupt requests disabled FEIE — Receiver Framing Error Interrupt Enable Bit This read/write bit enables receiver framing error (FE) CPU interrupt requests. (See 12.8.4 SCI Status Register 1.) Reset clears FEIE. 1 = FE CPU interrupt requests enabled 0 = FE CPU interrupt requests disabled PEIE — Receiver Parity Error Interrupt Enable Bit This read/write bit enables receiver parity error (PE) CPU interrupt requests. (See 12.8.4 SCI Status Register 1.) Reset clears PEIE. 1 = PE CPU interrupt requests enabled 0 = PE CPU interrupt requests disabled Advance Information 224 MC68HC(9)08PT48 — Rev. 2.0 Serial Communications Interface (SCI) Module MOTOROLA SCI status register 1 (SCS1) contains flags to signal these conditions: • Transfer of SCDR data to transmit shift register complete • Transmission complete • Transfer of receive shift register data to SCDR complete • Receiver input idle • Receiver overrun • Noisy data • Framing error • Parity error Address: Read: $0017 Bit 7 6 5 4 3 2 1 Bit 0 SCTE TC SCRF IDLE OR NF FE PE 1 1 0 0 0 0 0 0 Write: Reset: A G R E E M E N T 12.8.4 SCI Status Register 1 R E Q U I R E D Serial Communications Interface (SCI) Module I/O Registers Figure 12-12. SCI Status Register 1 (SCS1) SCTE — SCI Transmitter Empty Bit This clearable, read-only bit is set when the SCDR transfers a character to the transmit shift register. SCTE can generate an SCTE CPU interrupt request or an SCTE DMA service request. When the SCTIE bit in SCC2 is set and the DMATE bit in SCC3 is clear, SCTE generates an SCTE CPU interrupt request. With both the SCTIE and DMATE bits set, SCTE generates an SCTE DMA service request. In normal operation, clear the SCTE bit by reading SCS1 with SCTE set and then writing to SCDR. In DMA transfers, the DMA automatically clears the SCTE bit when it writes to the SCDR. Reset sets the SCTE bit. 1 = SCDR data transferred to transmit shift register 0 = SCDR data not transferred to transmit shift register MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Serial Communications Interface (SCI) Module 225 N O N - D I S C L O S U R E = Unimplemented R E Q U I R E D Serial Communications Interface (SCI) Module TC — Transmission Complete Bit A G R E E M E N T This clearable, read-only bit is set when the SCTE bit is set, and no data, preamble, or break character is being transmitted. TC generates a TC CPU interrupt request if the TCIE bit in SCC2 is also set. Clear the TC bit by reading SCS1 with TC set and then writing to the SCDR. When the DMA services an SCTE DMA service request, the DMA clears the TC bit by writing to the SCDR. Reset sets the TC bit. 1 = No transmission in progress 0 = Transmission in progress SCRF — SCI Receiver Full Bit N O N - D I S C L O S U R E This clearable, read-only bit is set when the data in the receive shift register transfers to the SCI data register. SCRF can generate an SCRF CPU interrupt request or an SCRF DMA service request. When the SCRIE bit in SCC2 is set and the DMARE bit in SCC3 is clear, SCRF generates an SCRF CPU interrupt request. With both the SCRIE and DMARE bits set, SCRF generates an SCRF DMA service request. In normal operation, clear the SCRF bit by reading SCS1 with SCRF set and then reading the SCDR. In DMA transfers, the DMA clears the SCRF bit when it reads the SCDR. Reset clears SCRF. 1 = Received data available in SCDR 0 = Data not available in SCDR IDLE — Receiver Idle Bit This clearable, read-only bit is set when 10 or 11 consecutive logic 1s appear on the receiver input. IDLE generates an IDLE CPU interrupt request if the ILIE bit in SCC2 is also set. Clear the IDLE bit by reading SCS1 with IDLE set and then reading the SCDR. Once cleared, the IDLE bit can become set again only after the SCRF bit becomes set and another idle character appears on the receiver input. Reset clears the IDLE bit. 1 = Receiver input idle 0 = Receiver input active or idle since the IDLE bit was cleared Advance Information 226 MC68HC(9)08PT48 — Rev. 2.0 Serial Communications Interface (SCI) Module MOTOROLA NF — Receiver Noise Flag Bit This clearable, read-only bit is set when the SCI detects noise on the PTG1/RxD pin. NF generates an NF CPU interrupt request if the NEIE bit in SCC3 is also set. Clear the NF bit by reading SCS1 and then reading the SCDR. Reset clears the NF bit. 1 = Noise detected 0 = No noise detected FE — Receiver Framing Error Bit This clearable, read-only bit is set when a logic 0 occurs during a stop bit time. FE generates an FE CPU interrupt request if the FEIE bit in SCC3 also is set. Clear the FE bit by reading SCS1 with FE set and then reading the SCDR. Reset clears the FE bit. 1 = Framing error detected 0 = No framing error detected PE — Receiver Parity Error Bit This clearable, read-only bit is set when the SCI detects a parity error in incoming data. PE generates a PE CPU interrupt request if the PEIE bit in SCC3 is also set. Clear the PE bit by reading SCS1 with PE set and then reading the SCDR. Reset clears the PE bit. 1 = Parity error detected 0 = No parity error detected MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Serial Communications Interface (SCI) Module 227 A G R E E M E N T This clearable, read-only bit is set when software fails to read the SCDR before the receive shift register receives the next character. The OR bit generates an OR CPU interrupt request if the ORIE bit in SCC3 is also set. The data in the shift register is lost, but the data already in the SCDR is not affected. Clear the OR bit by reading SCS1 with OR set and then reading the SCDR. Reset clears the OR bit. 1 = Receive shift register full and SCRF = 1 0 = No receiver overrun N O N - D I S C L O S U R E OR — Receiver Overrun Bit R E Q U I R E D Serial Communications Interface (SCI) Module I/O Registers R E Q U I R E D Serial Communications Interface (SCI) Module 12.8.5 SCI Status Register 2 SCI status register 2 (SCS2) contains flags to signal these conditions: • Break character detected • Incoming data Address: $0018 A G R E E M E N T Bit 7 6 5 4 3 2 Read: 1 Bit 0 BKF RPF 0 0 Write: Reset: 0 0 0 0 0 0 = Unimplemented Figure 12-13. SCI Status Register 2 (SCS2) BKF — Break Flag Bit N O N - D I S C L O S U R E This clearable, read-only bit is set when the SCI detects a break character on the PTG1/RxD pin. BKF does not generate an interrupt request. Clear BKF by reading SCS2 with BKF set and then reading the SCDR. Once cleared, BKF can become set again only after logic 1s again appear on the PTG1/RxD pin followed by another break character. Reset clears the BKF bit. 1 = Break character detected 0 = No break character detected RPF — Reception in Progress Flag Bit This read-only bit is set during the RT1 time period of the start bit search. RPF does not generate an interrupt request. RPF is reset after the stop bit or when the SCI detects false start bits, usually from noise or a baud rate mismatch. Polling RPF before disabling the SCI module or entering stop mode can show whether a reception is in progress. 1 = Reception in progress 0 = No reception in progress Advance Information 228 MC68HC(9)08PT48 — Rev. 2.0 Serial Communications Interface (SCI) Module MOTOROLA The SCI data register (SCDR) is the buffer between the internal data bus and the receive and transmit shift registers. Reset has no effect on data in the SCI data register. Address: $0019 Bit 7 6 5 4 3 2 1 Bit 0 Read: R7 R6 R5 R4 R3 R2 R1 R0 Write: T7 T6 T5 T4 T3 T2 T1 T0 Reset: Unaffected by reset Figure 12-14. SCI Data Register (SCDR) R7/T7–R0/T0 — Receive/Transmit Data Bits Reading SCDR accesses the read-only received data bits, R7–R0. Writing to SCDR writes the data to be transmitted, T7–T0. Reset has no effect on the SCI data register. A G R E E M E N T 12.8.6 SCI Data Register R E Q U I R E D Serial Communications Interface (SCI) Module I/O Registers The baud rate register (SCBR) selects the baud rate for both the receiver and the transmitter. Address: $001A Bit 7 6 5 4 SCP1 SCP0 0 0 3 2 1 Bit 0 SCR2 SCR1 SCR0 0 0 0 Read: Write: Reset: 0 0 0 = Unimplemented Figure 12-15. SCI Baud Rate Register (SCBR) MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Serial Communications Interface (SCI) Module 229 N O N - D I S C L O S U R E 12.8.7 SCI Baud Rate Register R E Q U I R E D Serial Communications Interface (SCI) Module SCP1 and SCP0 — SCI Baud Rate Prescaler Bits These read/write bits select the baud rate prescaler divisor as shown in Table 12-5. Reset clears SCP1 and SCP0. A G R E E M E N T Table 12-5. SCI Baud Rate Prescaling SCP1 and SCP0 Prescaler Divisor (PD) 00 1 01 3 10 4 11 13 RCHK — SCI Rate Check This bit is only available in Test Mode. Setting this bit enables the transmitter clock to be visible on the transmit data pin instead of the transmit data. SCR2–SCR0 — SCI Baud Rate Select Bits N O N - D I S C L O S U R E These read/write bits select the SCI baud rate divisor as shown in Table 12-6. Reset clears SCR2–SCR0. Table 12-6. SCI Baud Rate Selection SCR2, SCR1, and SCR0 Baud Rate Divisor (BD) 000 1 001 2 010 4 011 8 100 16 101 32 110 64 111 128 Advance Information 230 MC68HC(9)08PT48 — Rev. 2.0 Serial Communications Interface (SCI) Module MOTOROLA Use this formula to calculate the SCI baud rate: CGMOUT ÷ 2 Baud rate = -----------------------------------64 × PD × BD where: CGMOUT÷2 = bus frequency PD = prescaler divisor BD = baud rate divisor SCI_BDSRC is an input to the SCI. Normally, it will be tied off low at the top level to select CGMXLCK as the clock source. If it is tied off high, it will select IT12 as the clock source. This makes the formula: IT12 Baud rate = -----------------------------------64 × PD × BD N O N - D I S C L O S U R E Table 12-7 shows the SCI baud rates that can be generated with a 4.9152-MHz crystal. A G R E E M E N T R E Q U I R E D Serial Communications Interface (SCI) Module I/O Registers MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Serial Communications Interface (SCI) Module 231 Table 12-7. SCI Baud Rate Selection Examples SCP1 and SCP0 Prescaler Divisor (PD) SCR2, SCR1, and SCR0 Baud Rate Divisor (BD) Baud Rate (CGMXCLK ÷ 2 = 0.8192 MHz) 00 1 000 1 12,800 00 1 001 2 6400 00 1 010 4 3200 00 1 011 8 1600 00 1 100 16 800 00 1 101 32 400 00 1 110 64 200 00 1 111 128 100 01 3 000 1 4267 01 3 001 2 2133 01 3 010 4 1067 01 3 011 8 533 01 3 100 16 267 01 3 101 32 133 01 3 110 64 67 01 3 111 128 33 10 4 000 1 3200 10 4 001 2 1600 10 4 010 4 800 10 4 011 8 400 10 4 100 16 200 10 4 101 32 100 10 4 110 64 50 10 4 111 128 25 11 13 000 1 984 11 13 001 2 492 11 13 010 4 246 11 13 011 8 123 11 13 100 16 62 11 13 101 32 31 11 13 110 64 15 11 13 111 128 8 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Serial Communications Interface (SCI) Module Advance Information 232 MC68HC(9)08PT48 — Rev. 2.0 Serial Communications Interface (SCI) Module MOTOROLA 13.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233 13.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234 13.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234 13.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234 13.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235 13.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236 13.4.4 Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236 13.4.5 Accuracy and Precision. . . . . . . . . . . . . . . . . . . . . . . . . . .236 13.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236 13.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237 13.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237 13.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237 13.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237 13.7.1 ADC Analog Power Pin (VDDA2) . . . . . . . . . . . . . . . . . . . .237 13.7.2 ADC Analog Ground Pin (VSSA2) . . . . . . . . . . . . . . . . . . .238 13.7.3 ADC Voltage Reference Pin (VRH) . . . . . . . . . . . . . . . . . .238 13.7.4 ADC Voltage In (ADVIN) . . . . . . . . . . . . . . . . . . . . . . . . . .238 13.8 Input/Output Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238 13.8.1 ADC Status and Control Register . . . . . . . . . . . . . . . . . . .238 13.8.2 ADC Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241 13.8.3 ADC Clock Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241 13.2 Introduction This section describes the 8-bit analog-to-digital converter (ADC). MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Analog-to-Digital Converter (ADC) Module 233 R E Q U I R E D 13.1 Contents A G R E E M E N T Section 13. Analog-to-Digital Converter (ADC) Module N O N - D I S C L O S U R E Advance Information — MC68HC(9)08PT48 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Analog-to-Digital Converter (ADC) Module 13.3 Features Features include: • Four channels with multiplexed input • Linear successive approximation • 8-bit resolution • Single or continous conversion • Conversion complete flag or conversion complete interrupt • Selectable ADC clock 13.4 Functional Description Four pins for sampling external sources are located at pins PTE7/AD3–PTE4/AD0. An analog multiplexer allows the single ADC to select one of four ADC channels as ADC voltage input (ADVIN). ADVIN is converted by the successive approximation register based ADC. When the conversion is completed, ADC places the result in the ADC data register and sets a flag or generates an interrupt. (See Figure 13-1.) NOTE: References to DMA and associated functions are only valid if the MCU has a DMA module. If the MCU has no DMA, any DMA-related register bits should be left in their reset state for expected MCU operation. 13.4.1 ADC Port I/O Pins PTE7/AD3–PTE4/AD0 are general-purpose input/output (I/O) pins that share with the ADC channels. The channel select bits define which ADC channel/port pin will be used as the input signal. The ADC overrides the port I/O logic by forcing that pin as input to the ADC. The remaining ADC channels/port pins are controlled by the port I/O logic and can be used as general-purpose I/O. Writes to the port register or data direction register (DDR) will not have any effect on the port pin that is selected by the ADC. A read of a port pin which is in use by the ADC will return a logic 0. Advance Information 234 MC68HC(9)08PT48 — Rev. 2.0 Analog-to-Digital Converter (ADC) Module MOTOROLA R E Q U I R E D Analog-to-Digital Converter (ADC) Module Functional Description INTERNAL DATA BUS READ DDRE DISABLE DDREx RESET WRITE PTE PTEx PTEx (ADC CHANNEL x) READ PTE A G R E E M E N T DISABLE ADC DATA REGISTER CONVERSION INTERRUPT COMPLETE LOGIC AIEN ADC VOLTAGE IN ADCH[4:0] (ADVIN) CHANNEL SELECT ADC COCO/IDMAS ADC CLOCK CGMXCLK BUS CLOCK CLOCK GENERATOR ADIV[2:0] ADICLK Figure 13-1. ADC Block Diagram 13.4.2 Voltage Conversion When the input voltage to the ADC equals VRH, the ADC converts the signal to $FF (full scale). If the input voltage equals AVSS, the ADC converts it to $00. Input voltages between VRH and AVSS are a straightline linear conversion. All other input voltages will result in $FF, if greater than VRH. NOTE: Input voltage should not exceed the analog supply voltages. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Analog-to-Digital Converter (ADC) Module 235 N O N - D I S C L O S U R E WRITE DDRE N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Analog-to-Digital Converter (ADC) Module 13.4.3 Conversion Time Conversion starts after a write to the ADC status and control register (ADSCR). Conversion time in terms of the number of bus cycles is a function of oscillator frequency, bus frequency, and ADIV prescaler bits. For example, with bus frequency of 4 MHz and ADC clock frequency of 1 MHz, one conversion will take between 16 ADC and 17 ADC clock cycles or between 16 µs and 17 µs. There will be 128 bus cycles between each conversion. Sample rate is approximately 30 kHz. Conversion time = 16–17 ADC cycles ADC frequency # Bus cycles = conversion time x bus frequency 13.4.4 Conversion In the continuous conversion mode, the ADC data register (ADR) will be filled with new data after each conversion. Data from the previous conversion will be overwritten whether that data has been read or not. Conversions will continue until the ADCO bit is cleared. The COCO/IDMAS bit is set after the first conversion and will stay set until the next write of the ADSCR or the next read of the ADR. In the single conversion mode, conversion begins with a write to the ADSCR. Only one conversion occurs between writes to the ADSCR. 13.4.5 Accuracy and Precision The conversion process is monotonic and has no missing codes. 13.5 Interrupts When the AIEN bit is set, the ADC module is capable of generating either CPU or DMA interrupts after each ADC conversion. A CPU interrupt is generated if the COCO/IDMAS bit is at logic 0. If COCO/IDMAS bit is set, a DMA interrupt is generated. The Advance Information 236 MC68HC(9)08PT48 — Rev. 2.0 Analog-to-Digital Converter (ADC) Module MOTOROLA 13.6 Low-Power Modes The WAIT and STOP instruction can put the MCU in low powerconsumption standby modes. 13.6.1 Wait Mode The ADC continues normal operation during wait mode. Any enabled CPU interrupt request from the ADC can bring the MCU out of wait mode. If the ADC is not required to bring the MCU out of wait mode, power down the ADC by setting ADCH4–ADCH0 bits in the ADSCR before executing the WAIT instruction. 13.6.2 Stop Mode The ADC module is inactive after the execution of a STOP instruction. Any pending conversion is aborted. ADC conversions resume when the MCU exits stop mode after an external interrupt. Allow one conversion cycle to stabilize the analog circuitry. 13.7 I/O Signals The ADC module has four pins shared with port E. 13.7.1 ADC Analog Power Pin (VDDA2) The ADC analog portion uses AVDD as its power pin. Connect the VDDA2 pin to the same voltage potential as VDD. External filtering may be necessary to ensure clean VDDA2 for good results. NOTE: Route AVDD carefully for maximum noise immunity and place bypass capacitors as close as possible to the package. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Analog-to-Digital Converter (ADC) Module 237 N O N - D I S C L O S U R E COCO/IDMAS bit is not used as a conversion complete flag when interrupts are enabled. A G R E E M E N T R E Q U I R E D Analog-to-Digital Converter (ADC) Module Low-Power Modes N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Analog-to-Digital Converter (ADC) Module 13.7.2 ADC Analog Ground Pin (VSSA2) The ADC analog portion uses AVSS as its ground pin. Connect the VSSA2 pin to the same voltage potential as VSS. 13.7.3 ADC Voltage Reference Pin (VRH) VRH is the power supply for setting the reference voltage VRH. Connect the VRH pin to a voltage potential <= VDDA2, not less than 1.5 V. 13.7.4 ADC Voltage In (ADVIN) ADVIN is the input voltage signal from one of the four ADC channels to the ADC module. 13.8 Input/Output Registers These I/O registers control and monitor operation of the ADC: • ADC status and control register (ADSCR) • ADC data register (ADR) • ADC clock register (ADCLK) 13.8.1 ADC Status and Control Register The function of the ADC status and control register (ADSCR) is described here. Address $004C Bit 7 6 5 4 3 2 1 Bit 0 AIEN ADCO ADCH4 ADCH3 ADCH2 ADCH1 ADCH0 Write: COCO/ IDMAS Reset: 0 0 0 1 1 1 1 1 Read: Figure 13-2. ADC Status and Control Register (ADSCR) Advance Information 238 MC68HC(9)08PT48 — Rev. 2.0 Analog-to-Digital Converter (ADC) Module MOTOROLA If AIEN bit is a logic 1, the COCO/IDMAS is a read/write bit which selects either CPU or DMA to service the ADC interrupt request. Reset clears this bit. 1 = Conversion completed (AIEN = 0)/DMA interrrupt (AIEN = 1) 0 = Conversion not completed (AIEN = 0)/CPU interrupt (AIEN = 1) AIEN — ADC Interrupt Enable When this bit is set, an interrupt is generated at the end of an ADC conversion. The interrupt signal is cleared when the ADR is read or the ADSCR is written. Reset clears AIEN bit. 1 = ADC interrupt enabled 0 = ADC interrupt disabled ADCO — ADC Continuous Conversion When set, the ADC will continuously convert samples and update the ADR at the end of each conversion. Only one conversion is completed between writes to the ADSCR when this bit is cleared. Reset clears the ADCO bit. 1 = Continuous ADC conversion 0 = One ADC conversion ADCH4–ADCH0 — ADC Channel Select Bits ADCH4–ADCH0 form a 5-bit field which is used to select one of 16 ADC channels. Only four channels, ADCH3–ADCH0, are avaliable on this MCU. The channels are detailed in Table 13-1. Care should be taken when using a port pin as both an analog and digital input simultaneously to prevent switching noise from corrupting the analog signal. The ADC subsystem is turned off when the channel select bits are all set to 1. This feature allows for reduced power consumption for the MCU when the ADC is not being used. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Analog-to-Digital Converter (ADC) Module 239 A G R E E M E N T When AIEN bit is a logic 0, the COCO/IDMAS is a read-only bit which is set each time a conversion is completed except in the continous conversion mode where it is set after the first conversion. This bit is cleared whenever the ADSCR is written or whenever the ADR is read. N O N - D I S C L O S U R E COCO/IDMAS — Conversions Complete/Interrupt DMA Select R E Q U I R E D Analog-to-Digital Converter (ADC) Module Input/Output Registers R E Q U I R E D Analog-to-Digital Converter (ADC) Module NOTE: Recovery from the disabled state requires one conversion cycle to stabilize. The voltage levels supplied from internal reference nodes as specified in Table 13-1 are used to verify the operation of the ADC converter both in production test and for user applications. N O N - D I S C L O S U R E A G R E E M E N T Table 13-1. Mux Channel Select ADCH4 ADCH3 ADCH2 ADCH1 ADCH0 Input Select 0 0 0 0 0 PTE4/AD0 0 0 0 0 1 PTE5/AD1 0 0 0 1 0 PTE6/AD2 0 0 0 1 1 PTE7/AD3 0 0 1 0 0 Reserved ↓ ↓ ↓ ↓ ↓ Reserved 1 1 0 1 1 Reserved 1 1 1 0 0 VRH 1 1 1 0 1 VRH 1 1 1 1 0 AVSS 1 1 1 1 1 ADC power off Note: If any unused channels are selected, the resulting ADC conversion will be unknown. Advance Information 240 MC68HC(9)08PT48 — Rev. 2.0 Analog-to-Digital Converter (ADC) Module MOTOROLA 13.8.2 ADC Data Register One 8-bit result register, ADC data register (ADR), is provided. This register is updated each time an ADC conversion completes. Address Read: $004D Bit 7 6 5 4 3 2 1 Bit 0 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0 0 0 0 0 0 0 0 0 R E Q U I R E D Analog-to-Digital Converter (ADC) Module Input/Output Registers = Unimplemented Figure 13-3. ADC Data Register (ADR) 13.8.3 ADC Clock Register The ADC clock register (ADCLKR) selects the clock frequency for the ADC. Address $004E Bit 7 6 5 4 ADIV2 ADIV1 ADIV0 ADICLK 0 0 0 0 Read: 3 2 1 Bit 0 0 0 0 0 0 0 0 0 Write: Reset: = Unimplemented Figure 13-4. ADC Clock Register (ADCLKR) ADIV2–ADIV0 — ADC Clock Prescaler Bits ADIV2, ADIV1, and ADIV0 form a 3-bit field which selects the divide ratio used by the ADC to generate the internal ADC clock. Table 13-2 shows the available clock configurations. The ADC clock should be set to approximately 1 MHz. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Analog-to-Digital Converter (ADC) Module 241 N O N - D I S C L O S U R E Reset: A G R E E M E N T Write: R E Q U I R E D Analog-to-Digital Converter (ADC) Module Table 13-2. ADC Clock Divide Ratio ADIV2 ADIV1 ADIV0 ADC Clock Rate 0 0 0 ADC input clock ÷ 1 0 0 1 ADC input clock ÷ 2 0 1 0 ADC input clock ÷ 4 0 1 1 ADC input clock ÷ 8 1 X X ADC input clock ÷ 16 A G R E E M E N T X = Don’t care ADICLK — ADC Input Clock Select ADICLK selects either bus clock or CGMXCLK as the input clock source to generate the internal ADC clock. Reset selects CGMXCLK as the ADC clock source. N O N - D I S C L O S U R E If the external clock (CGMXCLK) is equal or greater than 1 MHz, CGMXCLK can be used as the clock source for the ADC. If CGMXCLK is less than 1 MHz, use the PLL-generated bus clock as the clock source. As long as the internal ADC clock is at approximately 1 MHz, correct operation can be guaranteed. 1 = Internal bus clock 0 = External clock (CGMXCLK) ADC input clock frequency 1 MHz = ---------------------------------------------------------------------ADIV [ 2:0 ] Advance Information 242 MC68HC(9)08PT48 — Rev. 2.0 Analog-to-Digital Converter (ADC) Module MOTOROLA 14.2 14.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243 14.2 Introduction This section describes the configuration register (CONFIG). The configuration register enables or disables the following options: • Stop mode recovery time (32 OSCXCLK cycles or 4096 OSCXCLK cycles) • STOP instruction • Computer operating properly module (COP) • SCI clock source select (SCIBDSRC) 14.3 Functional Description The configuration register is used in the initialization of various options. The configuration register can be written once after each reset. Since the various options affect the operation of the MCU, it is recommended that this register be written immediately after reset. The configuration register is located at $003F. For compatibility, a write to a ROM version of the MCU at this location will have no effect. The configuration register may be read at any time. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Configuration Register (CONFIG) 243 R E Q U I R E D 14.1 Contents A G R E E M E N T Section 14. Configuration Register (CONFIG) N O N - D I S C L O S U R E Advance Information — MC68HC(9)08PT48 R E Q U I R E D Configuration Register (CONFIG) Address Read: $003F Bit 7 6 5 0 0 0 4 3 2 SSREC SCIBDSRC 0 1 1 Bit 0 STOP COPD 0 0 0 Write: Reset: 0 0 0 0 = Unimplemented A G R E E M E N T Figure 14-1. Configuration Register (CONFIG) NOTE: The CONFIG module is known as an MOR (mask option register) on a ROM device. (See Figure 14-2.) For references in the documentation which refer to the MOR, the CONFIG would be applicable for the FLASH version of the device. Address Read: $003F Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 SSREC SCIBDSRC SEC STOP COPD 0 0 0 X X X X X Write: N O N - D I S C L O S U R E Reset: = Unimplemented X = Indeterminate Figure 14-2. Mask Option Register (MOR) SSREC — Short Stop Recovery Bit SSREC enables the CPU to exit stop mode with a delay of 32 OSCXCLK cycles instead of a 4096-OSCXCLK cycle delay. 1 = Stop mode recovery after 32 OSCXCLK cycles 0 = Stop mode recovery after 4096 OSCXCLK cycles NOTE: Exiting stop mode by pulling reset will result in the long stop recovery. If using an external crystal, do not set the SSREC bit. SCIBDSRC — SCI Clock Select 1 = SCI Clock selects IT12 0 = SCI Clock selects CGMXCLK Advance Information 244 MC68HC(9)08PT48 — Rev. 2.0 Configuration Register (CONFIG) MOTOROLA R E Q U I R E D Configuration Register (CONFIG) Functional Description SEC — ROM Security Bit 1 = ROM security enabled 0 = ROM security disabled NOTE: This bit is not valid on the MC68HC908PT48. STOP — Enables the STOP instruction 1 = STOP instruction enabled 0 = STOP instruction treated as illegal opcode A G R E E M E N T COPD — COP Disable Bit N O N - D I S C L O S U R E COPD disables the COP module. (See Section 5. Computer Operating Properly (COP) Module.) 1 = COP module disabled 0 = COP module enabled MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Configuration Register (CONFIG) 245 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Configuration Register (CONFIG) Advance Information 246 MC68HC(9)08PT48 — Rev. 2.0 Configuration Register (CONFIG) MOTOROLA 15.1 Contents 15.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248 15.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248 15.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248 15.4.1 Timer Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . .252 15.4.2 Input Capture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252 15.4.3 Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252 15.4.3.1 Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . .252 15.4.3.2 Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .253 15.4.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . .254 15.4.4.1 Unbuffered PWM Signal Generation . . . . . . . . . . . . . . .255 15.4.4.2 Buffered PWM Signal Generation . . . . . . . . . . . . . . . . .256 15.4.4.3 PWM Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259 15.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259 15.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259 15.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259 15.7 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .260 15.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .260 15.8.1 TIM Clock Pin (PTG3/TCLK) . . . . . . . . . . . . . . . . . . . . . . .261 15.8.2 Timer Channel I/O Pins (PTG4/TCH0–PTG7/TCH3) . . . .261 15.9 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .261 15.9.1 Timer Status and Control Register . . . . . . . . . . . . . . . . . .262 15.9.2 Timer Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . .264 15.9.3 Timer Modulo Registers . . . . . . . . . . . . . . . . . . . . . . . . . .265 15.9.4 Timer Channel Status and Control Registers . . . . . . . . . .266 15.9.5 Timer Channel Registers. . . . . . . . . . . . . . . . . . . . . . . . . .271 MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Timer Interface Module (TIM) 247 N O N - D I S C L O S U R E 15.5 R E Q U I R E D Section 15. Timer Interface Module (TIM) A G R E E M E N T Advance Information — MC68HC(9)08PT48 R E Q U I R E D Timer Interface Module (TIM) 15.2 Introduction This section describes the timer interface module (TIM, version B). The TIM is a 4-channel timer that provides a timing reference with input capture, output compare, and pulse-width-modulation functions. Figure 15-1 is a block diagram of the TIM. N O N - D I S C L O S U R E A G R E E M E N T 15.3 Features Features of the TIM include: • Modular architecture • Four input capture/output compare channels – Rising-edge, falling-edge, or any-edge input capture trigger – Set, clear, or toggle output compare action • Buffered and unbuffered pulse width modulation (PWM) signal generation • Programmable TIM clock input – 7-frequency internal bus clock prescaler selection – External TIM clock input (2-MHz maximum frequency) • Free-running or modulo up-count operation • Toggle any channel pin on overflow • Timer counter stop and reset bit 15.4 Functional Description Figure 15-1 shows the structure of the TIM. The central component of the TIM is the 16-bit timer counter that can operate as a free-running counter or a modulo up-counter. The timer counter provides the timing reference for the input capture and output compare functions. The timer counter modulo registers, TMODH:TMODL, control the modulo value of the timer counter. Software can read the timer counter value at any time without affecting the counting sequence. The four TIM channels are programmable independently as input capture or output compare channels. Advance Information 248 MC68HC(9)08PT48 — Rev. 2.0 Timer Interface Module (TIM) MOTOROLA R E Q U I R E D Timer Interface Module (TIM) Functional Description TCLK TCLK PRESCALER SELECT INTERNAL BUS CLOCK PRESCALER TSTOP PS2 TRST PS1 PS0 16-BIT COUNTER TOF TOIE INTERRUPT LOGIC A G R E E M E N T 16-BIT COMPARATOR TMODH:TMODL TOV0 CHANNEL 0 ELS0B ELS0A CH0MAX PTG4 LOGIC DMA0S INTERRUPT LOGIC TCH0 16-BIT COMPARATOR TCH0H:TCH0L CH0F 16-BIT LATCH MS0A CH0IE MS0B ELS1B ELS1A CH1MAX PTG5 LOGIC DMA1S INTERRUPT LOGIC TCH1 16-BIT COMPARATOR TCH1H:TCH1L CH1F 16-BIT LATCH MS1A CH1IE N O N - D I S C L O S U R E INTERNAL BUS TOV1 CHANNEL 1 TOV2 CHANNEL 2 ELS2B ELS2A CH2MAX PTG6 LOGIC DMA2S INTERRUPT LOGIC TCH2 16-BIT COMPARATOR TCH2H:TCH2L CH2F 16-BIT LATCH MS2A CH2IE MS2B TOV3 CHANNEL 3 ELS3B ELS3A CH3MAX PTG7 LOGIC DMA3S INTERRUPT LOGIC TCH3 16-BIT COMPARATOR TCH3H:TCH3L CH3F 16-BIT LATCH MS3A CH3IE Figure 15-1. TIM Block Diagram MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Timer Interface Module (TIM) 249 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Timer Interface Module (TIM) Addr. Register Name Bit 7 TOF $0020 Read: Timer Status and Control Write: Register (TSC) Reset: $0022 $0023 $0024 $0025 $0026 5 TOIE TSTOP 0 0 4 3 0 0 2 1 Bit 0 PS2 PS1 PS0 TRST 0 1 0 0 0 0 0 Read: Bit 15 Timer Counter Register High Write: (TCNTH) Reset: 0 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 0 0 0 0 0 0 0 0 Read: Timer Counter Register Low Write: (TCNTL) Reset: Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 0 0 0 0 0 0 0 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 1 1 1 1 1 1 1 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 1 1 1 1 1 1 1 1 CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX 0 0 0 0 0 0 0 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 2 Bit 1 Bit 0 Read: Bit 15 Timer Modulo Register High Write: (TMODH) Reset: 1 Read: Timer Modulo Register Low Write: (TMODL) Reset: Read: CH0F Timer Channel 0 Status and Write: 0 Control Register (TSC0) Reset: 0 Read: Bit 15 Timer Channel 0 Register High Write: $0027 (TCH0H) Reset: Read: Timer Channel 0 Register Low $0028 Write: (TCH0L) Reset: $0029 6 Bit 7 Indeterminate after reset Bit 6 Bit 5 Bit 4 Bit 3 Indeterminate after reset Read: CH1F Timer Channel 1 Status and Write: 0 Control Register (TSC1) Reset: 0 0 CH1IE 0 0 MS1A ELS1B ELS1A TOV1 CH1MAX 0 0 0 0 0 = Unimplemented Figure 15-2. Timer I/O Register Summary Advance Information 250 MC68HC(9)08PT48 — Rev. 2.0 Timer Interface Module (TIM) MOTOROLA Addr. Register Name Bit 7 6 5 4 3 2 1 Bit 0 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 2 Bit 1 Bit 0 Read: $002A Bit 15 Timer Channel 1 Register High Write: (TCH1H) Reset: Indeterminate after reset Read: $002B Timer Channel 1 Register Low Write: (TCH1L) Reset: Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Unaffected by reset R E Q U I R E D Timer Interface Module (TIM) Functional Description Timer Channel 2 Status and Write: Control Register (TSC2) Reset: CH2IE MS2B MS2A ELS2B ELS2A TOV2 CH2MAX 0 0 0 0 0 0 0 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 2 Bit 1 Bit 0 0 0 Read: $002D Bit 15 Timer Channel 2 Register High Write: (TCH2H) Reset: Unaffected by reset Read: $002E Timer Channel 2 Register Low Write: (TCH2L) Reset: Bit 7 Bit 6 Timer Channel 3 Status and Write: Control Register (TSC3) Reset: Bit 4 Bit 3 Unaffected by reset Read: CH3F $002F Bit 5 0 CH3IE MS3A ELS3B ELS3A TOV3 CH3MAX 0 0 0 0 0 0 0 0 0 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 2 Bit 1 Bit 0 Read: $0030 Bit 15 Timer Channel 3 Register High Write: (TCH3H) Reset: Unaffected by reset Read: $0031 Timer Channel 3 Register Low Write: (TCH3L) Reset: Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Unaffected by reset = Unimplemented Figure 15-2. Timer I/O Register Summary (Continued) MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Timer Interface Module (TIM) 251 N O N - D I S C L O S U R E $002C A G R E E M E N T Read: CH2F N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Timer Interface Module (TIM) 15.4.1 Timer Counter Prescaler The TIM clock source can be one of the seven prescaler outputs or the TIM clock pin, PTG3/TCLK. The prescaler generates seven clock rates from the internal bus clock. The prescaler select bits, PS2–PS0, in the timer status and control register select the TIM clock source. 15.4.2 Input Capture With the input capture function, the TIM can capture the time at which an external event occurs. When an active edge occurs on the pin of an input capture channel, the TIM latches the contents of the timer counter into the timer channel registers, TCHxH:TCHxL. The polarity of the active edge is programmable. Input capture latency can be up to three bus clock cycles. Input captures can generate TIM CPU interrupt requests. 15.4.3 Output Compare With the output compare function, the TIM can generate a periodic pulse with a programmable polarity, duration, and frequency. When the counter reaches the value in the registers of an output compare channel, the TIM can set, clear, or toggle the channel pin. Output compares can generate TIM CPU interrupt requests or TIM DMA service requests. 15.4.3.1 Unbuffered Output Compare Any output compare channel can generate unbuffered output compare pulses as described in 15.4.3 Output Compare. The pulses are unbuffered because changing the output compare value requires writing the new value over the old value currently in the timer channel registers. An unsynchronized write to the timer channel registers to change an output compare value could cause incorrect operation for up to two counter overflow periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that counter overflow period. Also, using a timer overflow interrupt routine to write a new, smaller output Advance Information 252 MC68HC(9)08PT48 — Rev. 2.0 Timer Interface Module (TIM) MOTOROLA • When changing to a smaller value, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current output compare pulse. The interrupt routine has until the end of the counter overflow period to write the new value. • When changing to a larger output compare value, enable channel x timer overflow interrupts and write the new value in the timer overflow interrupt routine. The timer overflow interrupt occurs at the end of the current counter overflow period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same counter overflow period. 15.4.3.2 Buffered Output Compare Channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the PTG4/TCH0 pin. The timer channel registers of the linked pair alternately control the output. Setting the MS0B bit in timer channel 0 status and control register (TSC0) links channel 0 and channel 1. The output compare value in the timer channel 0 registers initially controls the output on the PTG4/TCH0 pin. Writing to the timer channel 1 registers enables the timer channel 1 registers to synchronously control the output after the timer overflows. At each subsequent overflow, the timer channel registers (0 or 1) that control the output are the ones written to last. TSC0 controls and monitors the buffered output compare function, and timer channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin, PTG5/TCH1, is available as a general-purpose I/O pin. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Timer Interface Module (TIM) 253 A G R E E M E N T Use these methods to synchronize unbuffered changes in the output compare value on channel x: N O N - D I S C L O S U R E compare value may cause the compare to be missed. The timer may pass the new value before it is written. R E Q U I R E D Timer Interface Module (TIM) Functional Description Channels 2 and 3 can be linked to form a buffered output compare channel whose output appears on the PTG6/TCH2 pin. The timer channel registers of the linked pair alternately control the output. Setting the MS2B bit in timer channel 2 status and control register (TSC2) links channel 2 and channel 3. The output compare value in the timer channel 2 registers initially controls the output on the PTG6/TCH2 pin. Writing to the timer channel 3 registers enables the timer channel 3 registers to synchronously control the output after the timer overflows. At each subsequent overflow, the timer channel registers (2 or 3) that control the output are the ones written to last. TSC2 controls and monitors the buffered output compare function, and timer channel 3 status and control register (TSC3) is unused. In buffered output compare operation, do not write new output compare values to the currently active channel registers. Writing to the active channel registers is the same as generating unbuffered output compares. 15.4.4 Pulse Width Modulation (PWM) By using the toggle-on-overflow feature with an output compare channel, the TIM can generate a PWM signal. The value in the timer counter modulo registers determines the period of the PWM signal. The channel pin toggles when the counter reaches the value in the timer counter modulo registers. The time between overflows is the period of the PWM signal. N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Timer Interface Module (TIM) As Figure 15-3 shows, the output compare value in the timer channel registers determines the pulse width of the PWM signal. The time between overflow and output compare is the pulse width. Program the TIM to clear the channel pin on output compare if the state of the PWM pulse is logic 1. Program the TIM to set the pin if the state of the PWM pulse is logic 0. The value in the timer counter modulo registers and the selected prescaler output determine the frequency of the PWM output. The frequency of an 8-bit PWM signal is variable in 256 increments. Writing $00FF (255) to the timer counter modulo registers produces a PWM period of 256 times the internal bus clock period. Advance Information 254 MC68HC(9)08PT48 — Rev. 2.0 Timer Interface Module (TIM) MOTOROLA OVERFLOW PERIOD PULSE WIDTH PTGx/TCHx OUTPUT COMPARE OUTPUT COMPARE OUTPUT COMPARE Figure 15-3. PWM Period and Pulse Width The value in the timer channel registers determines the pulse width of the PWM output. The pulse width of an 8-bit PWM signal is variable in 256 increments. Writing $0080 (128) to the timer channel registers produces a duty cycle of 128/256 or 50 percent. 15.4.4.1 Unbuffered PWM Signal Generation Any output compare channel can generate unbuffered PWM pulses as described in 15.4.4 Pulse Width Modulation (PWM). The pulses are unbuffered because changing the pulse width requires writing the new pulse width value over the old value currently in the timer channel registers. An unsynchronized write to the timer channel registers to change a pulse width value could cause incorrect operation for up to two PWM periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that PWM period. Also, using a timer overflow interrupt routine to write a new, smaller pulse width value may cause the compare to be missed. The timer may pass the new value before it is written. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Timer Interface Module (TIM) 255 A G R E E M E N T OVERFLOW N O N - D I S C L O S U R E OVERFLOW R E Q U I R E D Timer Interface Module (TIM) Functional Description R E Q U I R E D Timer Interface Module (TIM) N O N - D I S C L O S U R E A G R E E M E N T Use these methods to synchronize unbuffered changes in the PWM pulse width on channel x: NOTE: • When changing to a shorter pulse width, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current pulse. The interrupt routine has until the end of the PWM period to write the new value. • When changing to a longer pulse width, enable channel x timer overflow interrupts and write the new value in the timer overflow interrupt routine. The timer overflow interrupt occurs at the end of the current PWM period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same PWM period. In PWM signal generation, do not program the PWM channel to toggle on output compare. Toggling on output compare prevents reliable 0 percent duty cycle generation and removes the ability of the channel to self-correct in the event of software error or noise. Toggling on output compare also can cause incorrect PWM signal generation when changing the PWM pulse width to a new, much larger value. 15.4.4.2 Buffered PWM Signal Generation Channels 0 and 1 can be linked to form a buffered PWM channel whose output appears on the PTG4/TCH0 pin. The timer channel registers of the linked pair alternately control the pulse width of the output. Setting the MS0B bit in timer channel 0 status and control register (TSC0) links channel 0 and channel 1. The timer channel 0 registers initially control the pulse width on the PTG4/TCH0 pin. Writing to the timer channel 1 registers enables the timer channel 1 registers to synchronously control the pulse width at the beginning of the next PWM period. At each subsequent overflow, the timer channel registers (0 or 1) that control the pulse width are written to last. TSC0 controls and monitors the buffered PWM function, and timer channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin, PTG5/TCH1, is available as a general-purpose I/O pin. Advance Information 256 MC68HC(9)08PT48 — Rev. 2.0 Timer Interface Module (TIM) MOTOROLA NOTE: In buffered PWM signal generation, do not write new pulse width values to the currently active channel registers. Writing to the active channel registers is the same as generating unbuffered PWM signals. 15.4.4.3 PWM Initialization To ensure correct operation when generating unbuffered or buffered PWM signals, use this initialization procedure: 1. In the timer status and control register (TSC): a. Stop the timer counter by setting the timer stop bit, TSTOP. b. Reset the timer counter by setting the timer reset bit, TRST. 2. In the timer counter modulo registers (TMODH:TMODL), write the value for the required PWM period. 3. In the timer channel x registers (TCHxH:TCHxL), write the value for the required pulse width. 4. In timer channel x status and control register (TSCx): a. Write 0:1 (for unbuffered output compare or PWM signals) or 1:0 (for buffered output compare or PWM signals) to the mode select bits, MSxB:MSxA. (See Table 15-2.) b. Write 1 to the toggle-on-overflow bit, TOVx. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Timer Interface Module (TIM) 257 A G R E E M E N T Setting the MS2B bit in timer channel 2 status and control register (TSC2) links channel 2 and channel 3. The timer channel 2 registers initially control the pulse width on the PTG6/TCH2 pin. Writing to the timer channel 3 registers enables the timer channel 3 registers to synchronously control the pulse width at the beginning of the next PWM period. At each subsequent overflow, the timer channel registers (2 or 3) that control the pulse width are the ones written to last. TSC2 controls and monitors the buffered PWM function, and timer channel 3 status and control register (TSC3) is unused. N O N - D I S C L O S U R E Channels 2 and 3 can be linked to form a buffered PWM channel whose output appears on the PTG6/TCH2 pin. The timer channel registers of the linked pair alternately control the pulse width of the output. R E Q U I R E D Timer Interface Module (TIM) Functional Description R E Q U I R E D Timer Interface Module (TIM) c. A G R E E M E N T NOTE: Write 1:0 (to clear output on compare) or 1:1 (to set output on compare) to the edge/level select bits, ELSxB:ELSxA. The output action on compare must force the output to the complement of the pulse width level. (See Table 15-2.) In PWM signal generation, do not program the PWM channel to toggle on output compare. Toggling on output compare prevents reliable 0 percent duty cycle generation and removes the ability of the channel to self-correct in the event of software error or noise. Toggling on output compare can also cause incorrect PWM signal generation when changing the PWM pulse width to a new, much larger value. 5. In the timer status control register (TSC), clear the timer stop bit, TSTOP. Setting MS0B links channels 0 and 1 and configures them for buffered PWM operation. The timer channel 0 registers (TCH0H:TCH0L) initially control the buffered PWM output. Timer status control register 0 (TSCR0) controls and monitors the PWM signal from the linked channels. MS0B takes priority over MS0A. N O N - D I S C L O S U R E Setting MS2B links channels 2 and 3 and configures them for buffered PWM operation. The timer channel 2 registers (TCH2H:TCH2L) initially control the PWM output. Timer status control register 2 (TSCR2) controls and monitors the PWM signal from the linked channels. MS2B takes priority over MS2A. Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on timer overflows. Subsequent output compares try to force the output to a state it is already in and have no effect. The result is a 0 percent duty cycle output. Setting the CHxMAX bit generates a 100 percent duty cycle output. (See 15.9.4 Timer Channel Status and Control Registers.) Advance Information 258 MC68HC(9)08PT48 — Rev. 2.0 Timer Interface Module (TIM) MOTOROLA These TIM sources can generate interrupt requests: • TIM overflow flag (TOF) — TOF is set when the TIM counter value matches the value in the TIM counter modulo registers. The TIM overflow interrupt enable bit, TOIE, enables the TOF flag to generate TIM overflow CPU interrupt requests. TOF and TOIE are in the TIM status and control register. • TIM channel flags (CH3F–CH0F) — CHxF is set when an input capture or output compare occurs on channel x. The channel x interrupt enable bit, CHxIE, enables the CHxF flag to generate TIM channel x CPU interrupt requests. CHxF and CHxIE are in the TIM channel x status and control register. 15.6 Low-Power Modes The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. A G R E E M E N T 15.5 Interrupts R E Q U I R E D Timer Interface Module (TIM) Interrupts The TIM remains active after the execution of a WAIT instruction. Any enabled CPU interrupt request from the TIM can bring the MCU out of wait mode. If the TIM is not required to bring the MCU out of wait mode, reduce power consumption by stopping the TIM before executing the WAIT instruction. 15.6.2 Stop Mode The TIM is inactive after the execution of a STOP instruction. The STOP instruction does not affect register conditions or the state of the timer counter. Timer operation resumes when the MCU exits stop mode after an external interrupt. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Timer Interface Module (TIM) 259 N O N - D I S C L O S U R E 15.6.1 Wait Mode 15.7 TIM During Break Interrupts A break interrupt stops the timer counter. The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state. (See 19.5.2 Break Address Registers.) To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state. N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Timer Interface Module (TIM) To protect status bits during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), software can read and write I/O registers during the break state without affecting status bits. Some status bits have a 2-step read/write clearing procedure. If software does the first step on such a bit before the break, the bit cannot change during the break state as long as BCFE is at logic 0. After the break, doing the second step clears the status bit. 15.8 I/O Signals Port E shares five of its pins with the TIM. PTG3/TCLK is an external clock input to the timer prescaler. The four timer channel I/O pins are PTG4/TCH0, PTG5/TCH1, PTG6/TCH2, and PTG7/TCH3. Advance Information 260 MC68HC(9)08PT48 — Rev. 2.0 Timer Interface Module (TIM) MOTOROLA 1 ------------------------------------- + tSU bus frequency The maximum TCLK frequency is: Bus frequency ÷ 2 15.8.2 Timer Channel I/O Pins (PTG4/TCH0–PTG7/TCH3) Each channel I/O pin is programmable independently as an input capture pin or an output compare pin. PTG4/TCH0 and PTG6/TCH2 can be configured as buffered output compare or buffered PWM pins. 15.9 I/O Registers These I/O registers control and monitor operation of the TIM: • Timer status and control register (TSC) • Timer control registers (TCNTH:TCNTL) • Timer counter modulo registers (TMODH:TMODL) • Timer channel status and control registers (TSC0, TSC1, TSC2, and TSC3) • Timer channel registers (TCH0H:TCH0L, TCH1H:TCH1L, TCH2H:TCH2L, and TCH3H:TCH3L) MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Timer Interface Module (TIM) 261 A G R E E M E N T PTG3/TCLK is an external clock input that can be the clock source for the timer counter instead of the prescaled internal bus clock. Select the PTG3/TCLK input by writing logic 1s to the three prescaler select bits, PS[2:0]. (See 15.9.1 Timer Status and Control Register.) The minimum TCLK pulse width, TCLKLMIN or TCLKHMIN, is: N O N - D I S C L O S U R E 15.8.1 TIM Clock Pin (PTG3/TCLK) R E Q U I R E D Timer Interface Module (TIM) I/O Registers 15.9.1 Timer Status and Control Register The timer status and control register (TSC): A G R E E M E N T R E Q U I R E D Timer Interface Module (TIM) • Enables timer overflow interrupts • Flags timer overflows • Stops the timer counter • Resets the timer counter and prescaler • Prescales the timer counter clock Address: $0020 Bit 7 Read: 6 5 TOIE TSTOP TOF Write: 0 Reset: 0 4 3 0 0 2 1 Bit 0 PS2 PS1 PS0 0 0 0 TRST 0 1 0 0 = Unimplemented Figure 15-4. Timer Status and Control Register (TSC) N O N - D I S C L O S U R E TOF — Timer Overflow Flag Bit This read/write flag is set when the timer counter reaches the modulo value programmed in the timer counter modulo registers. Clear TOF by reading the timer status and control register when TOF is set and then writing a logic 0 to TOF. If another timer overflow occurs before the clearing sequence is complete, then writing logic 0 to TOF has no effect. Therefore, a TOF interrupt request cannot be lost due to inadvertent clearing of TOF. Reset clears the TOF bit. Writing a logic 1 to TOF has no effect. 1 = Timer counter has reached modulo value. 0 = Timer counter has not reached modulo value. TOIE — Timer Overflow Interrupt Enable Bit This read/write bit enables timer overflow interrupts when the TOF bit becomes set. Reset clears the TOIE bit. 1 = Timer overflow interrupts enabled 0 = Timer overflow interrupts disabled Advance Information 262 MC68HC(9)08PT48 — Rev. 2.0 Timer Interface Module (TIM) MOTOROLA This read/write bit stops the timer counter. Counting resumes when TSTOP is cleared. Reset sets the TSTOP bit, stopping the timer counter until software clears the TSTOP bit. 1 = Timer counter stopped 0 = Timer counter active NOTE: Do not set the TSTOP bit before entering wait mode if the TIM is required to exit wait mode. TRST — Timer Reset Bit Setting this write-only bit resets the timer counter and the timer prescaler. Setting TRST has no effect on any other registers. Counting resumes from $0000. TRST is cleared automatically after the timer counter is reset and always reads as logic 0. Reset clears the TRST bit. 1 = Prescaler and timer counter cleared 0 = No effect NOTE: Setting the TSTOP and TRST bits simultaneously stops the timer counter at a value of $0000. A G R E E M E N T TSTOP — Timer Stop Bit R E Q U I R E D Timer Interface Module (TIM) I/O Registers These read/write bits select either the PTG3/TCLK pin or one of the seven prescaler outputs as the input to the timer counter as Table 15-1 shows. Reset clears the PS2–PS0 bits. Table 15-1. Prescaler Selection NOTE: PS2–PS0 TIM Clock Source 000 Internal bus clock 001 Internal bus clock ÷ 2 010 Internal bus clock ÷ 4 011 Internal bus clock ÷ 8 100 Internal bus clock ÷ 16 101 Internal bus clock ÷ 32 110 Internal bus clock ÷ 64 111 PTG3/TCLK TCLK is a floating input pin. Do not select PS2–PS0 = 111. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Timer Interface Module (TIM) 263 N O N - D I S C L O S U R E PS2–PS0 — Prescaler Select Bits 15.9.2 Timer Counter Registers The two read-only timer counter registers (TCNTH and TCNTL) contain the high and low bytes of the value in the timer counter. Reading the high byte (TCNTH) latches the contents of the low byte (TCNTL). Subsequent reads of TCNTH do not affect the latched TCNTL value until TCNTL is read. Reset clears the timer counter registers. Setting the timer reset bit (TRST) also clears the timer counter registers. A G R E E M E N T R E Q U I R E D Timer Interface Module (TIM) Address: Read: $0022 Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 0 0 0 0 0 0 0 0 0 Write: Reset: = Unimplemented Figure 15-5. Timer Counter Register High (TCNTH) N O N - D I S C L O S U R E Address: Read: $0023 Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 0 0 0 0 0 0 0 Write: Reset: = Unimplemented Figure 15-6. Timer Counter Register Low (TCNTL) Advance Information 264 MC68HC(9)08PT48 — Rev. 2.0 Timer Interface Module (TIM) MOTOROLA The read/write timer modulo registers (TMODH and TMODL) contain the modulo value for the timer counter. When the timer counter reaches the modulo value, the overflow flag (TOF) becomes set, and the timer counter resumes counting from $0000 at the next clock. The TOF bit and overflow interrupts are inhibited after a write to the high byte (TMODH) until the low byte (TMODL) is written. Reset sets the timer modulo registers. Reset the timer counter before writing to the timer modulo registers. Address: $0024 Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 1 1 1 1 1 1 1 1 Read: Write: Reset: Figure 15-7. Timer Modulo Register High (TMODH) Address: $0025 Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 1 1 1 1 1 1 1 1 Read: Write: Reset: Figure 15-8. Timer Modulo Register Low (TMODL) MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Timer Interface Module (TIM) 265 N O N - D I S C L O S U R E NOTE: A G R E E M E N T 15.9.3 Timer Modulo Registers R E Q U I R E D Timer Interface Module (TIM) I/O Registers 15.9.4 Timer Channel Status and Control Registers Each of the timer channel status and control registers (TSC0–TSC3): A G R E E M E N T R E Q U I R E D Timer Interface Module (TIM) • Flags input captures and output compares • Enables input capture and output compare interrupts • Selects input capture, output compare, or PWM operation • Selects high, low, or toggling output on output compare • Selects rising edge, falling edge, or any edge as the active input capture trigger • Selects output toggling on timer overflow • Selects 100 percent PWM duty cycle Address: $0026 Bit 7 Read: CH0F Write: 0 Reset: 0 6 5 4 3 2 1 Bit 0 CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX 0 0 0 0 0 0 0 N O N - D I S C L O S U R E Figure 15-9. Timer Channel 0 Status and Control Register (TSC0) Address: $0029 Bit 7 Read: 6 CH1F 5 0 Reset: 0 3 2 1 Bit 0 MS1A ELS1B ELS1A TOV1 CH1MAX 0 0 0 0 0 0 CH1IE Write: 4 0 0 = Unimplemented Figure 15-10. Timer Channel 1 Status and Control Register (TSC1) Advance Information 266 MC68HC(9)08PT48 — Rev. 2.0 Timer Interface Module (TIM) MOTOROLA $002C Bit 7 Read: CH2F Write: 0 Reset: 0 6 5 4 3 2 1 Bit 0 CH2IE MS2B MS2A ELS2B ELS2A TOV2 CH2MAX 0 0 0 0 0 0 0 Figure 15-11. Timer Channel 2 Status and Control Register (TSC2) $002F Bit 7 Read: 6 CH3F 5 0 Reset: 0 3 2 1 Bit 0 MS3A ELS3B ELS3A TOV3 CH3MAX 0 0 0 0 0 0 CH3IE Write: 4 0 0 = Unimplemented Figure 15-12. Timer Channel 3 Status and Control Register (TSC3) CHxF— Channel x Flag Bit When channel x is an input capture channel, this read/write bit is set when an active edge occurs on the channel x pin. When channel x is an output compare channel, CHxF is set when the value in the timer counter registers matches the value in the timer channel x registers. When TIM CPU interrupt requests are enabled (CHxIE:DMAxS = 1:0), clear CHxF by reading timer channel x status and control register with CHxF set and then writing a logic 0 to CHxF. If another interrupt request occurs before the clearing sequence is complete, then writing logic 0 to CHxF has no effect. Therefore, an interrupt request cannot be lost due to inadvertent clearing of CHxF. When TIM DMA service requests are enabled (CHxIE:DMAxS = 1:1), clear CHxF by reading or writing to the low byte of the timer channel x registers (TCHxL). Reset clears the CHxF bit. Writing a logic 1 to CHxF has no effect. 1 = Input capture or output compare on channel x 0 = No input capture or output compare on channel x MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Timer Interface Module (TIM) 267 A G R E E M E N T Address: N O N - D I S C L O S U R E Address: R E Q U I R E D Timer Interface Module (TIM) I/O Registers R E Q U I R E D Timer Interface Module (TIM) CHxIE — Channel x Interrupt Enable Bit This read/write bit enables TIM CPU interrupts service requests on channel x. The DMAxS bit in the timer DMA select register selects channel x TIM DMA service requests or TIM CPU interrupt requests. NOTE: TIM DMA service requests cannot be used in buffered PWM mode. In buffered PWM mode, disable TIM DMA service requests by clearing the DMAxS bit in the timer DMA select register. A G R E E M E N T Reset clears the CHxE bit. 1 = Channel x CPU interrupt requests and DMA service requests enabled 0 = Channel x CPU interrupt requests and DMA service requests disabled NOTE: Reading the high byte of the timer channel x registers (TCHxH) inhibits the CHxF flag until the low byte (TCHxL) is read. MSxB — Mode Select Bit B This read/write bit selects buffered output compare/PWM operation. MSxB exists only in the timer channel 0 and timer channel 2 status and control registers. N O N - D I S C L O S U R E Setting MS0B disables the channel 1 status and control register. Setting MS2B disables the channel 3 status and control register. Reset clears the MSxB bit. 1 = Buffered output compare/PWM operation enabled 0 = Buffered output compare/PWM operation disabled MSxA — Mode Select Bit A When ELSxB:A ≠ 00, this read/write bit selects either input capture operation or unbuffered output compare/PWM operation. (See Table 15-2.) 1 = Unbuffered output compare/PWM operation 0 = Input capture operation When ELSxB:A = 00, this read/write bit selects the initial output level of the TCHx pin. (See Table 15-2.) Reset clears the MSxA bit. 1 = Initial output level low 0 = Initial output level high Advance Information 268 MC68HC(9)08PT48 — Rev. 2.0 Timer Interface Module (TIM) MOTOROLA Before changing a channel function by writing to the MSxB or MSxA bit, set the TSTOP and TRST bits in the timer status and control register (TSC). ELSxB and ELSxA — Edge/Level Select Bits When channel x is an input capture channel, these read/write bits control the active edge-sensing logic on channel x. When channel x is an output compare channel, ELSxB and ELSxA control the channel x output behavior when an output compare occurs. When ELSxB and ELSxA are both clear, channel x is not connected to port E, and pin PTGx/TCHx is available as a general-purpose I/O pin. Table 15-2 shows how ELSxB and ELSxA work. Reset clears the ELSxB and ELSxA bits. Table 15-2. Mode, Edge, and Level Selection MSxB and MSxA ELSxB and ELSxA X0 00 Mode Configuration Set initial output level high Output preset 00 XX 00 00 01 00 10 00 11 XX 00 01 01 01 10 01 11 XX 00 1X 01 1X 10 1X 11 Set initial output level low — TCHx pin under port control N O N - D I S C L O S U R E X1 Capture on rising edge only Input capture Capture on falling edge only Capture on rising or falling edge — TCHx pin under port control; initial output low Toggle output on compare Output compare or PWM Clear output on compare Set output on compare — TCHx pin under port control(1) Toggle output on compare Buffered output compare or buffered PWM Clear output on compare Set output on compare Note: 1. Initial output high if MSxA = 0. Initial output low if MSxA = 1. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA A G R E E M E N T NOTE: R E Q U I R E D Timer Interface Module (TIM) I/O Registers Advance Information Timer Interface Module (TIM) 269 R E Q U I R E D Timer Interface Module (TIM) NOTE: Before enabling a timer channel register for input capture operation, make sure that the PTG/TCHx pin is stable for at least two bus clocks. TOVx — Toggle on Overflow Bit A G R E E M E N T When channel x is an output compare channel, this read/write bit controls the behavior of the channel x output when the timer counter overflows. When channel x is an input capture channel, TOVx has no effect. Reset clears the TOVx bit. 1 = Channel x pin toggles on timer counter overflow. 0 = Channel x pin does not toggle on timer counter overflow. NOTE: When TOVx is set, a timer counter overflow takes precedence over a channel x output compare if both occur at the same time. NOTE: Reading the high byte of the timer channel x registers prevents the channel x pin from toggling until the low byte is read. CHxMAX — Channel x Maximum (100 percent) PWM Duty Cycle Bit N O N - D I S C L O S U R E This read/write bit forces the duty cycle of buffered and unbuffered PWM signals to 100 percent. As Figure 15-13 shows, the CHxMAX bit takes effect in the cycle after it is set or cleared. The output stays at the 100 percent duty cycle level until the cycle after CHxMAX is cleared. OVERFLOW OVERFLOW OVERFLOW OVERFLOW OVERFLOW PERIOD PTGx/TCHx OUTPUT COMPARE OUTPUT COMPARE OUTPUT COMPARE OUTPUT COMPARE CHxMAX Figure 15-13. CHxMAX Latency Advance Information 270 MC68HC(9)08PT48 — Rev. 2.0 Timer Interface Module (TIM) MOTOROLA In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the timer channel x registers (TCHxH) inhibits input captures until the low byte (TCHxL) is read. In output compare mode (MSxB:MSxA ≠ 0:0), writing to the high byte of the timer channel x registers (TCHxH) inhibits output compares until the low byte (TCHxL) is written. Address: $0027 Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Read: Write: Reset: Indeterminate after reset Figure 15-14. Timer Channel 0 Register High (TCH0H) Address: $0028 Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Read: Write: Reset: Indeterminate after reset Figure 15-15. Timer Channel 0 Register Low (TCH0L) MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Timer Interface Module (TIM) 271 A G R E E M E N T The timer channel registers (TCH0H/L–TCH3H/L) are read/write registers containing the captured timer counter value of the input capture function or the output compare value of the output compare function. The state of the timer channel registers after reset is unknown. N O N - D I S C L O S U R E 15.9.5 Timer Channel Registers R E Q U I R E D Timer Interface Module (TIM) I/O Registers R E Q U I R E D Timer Interface Module (TIM) Address: $002A Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Read: Write: Reset: Indeterminate after reset Figure 15-16. Timer Channel 1 Register High (TCH1H) A G R E E M E N T Address: $002B Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Read: Write: Reset: Indeterminate after reset Figure 15-17. Timer Channel 1 Register Low (TCH1L) Address: $002D Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Read: N O N - D I S C L O S U R E Write: Reset: Indeterminate after reset Figure 15-18. Timer Channel 2 Register High (TCH2H) Address: $002E Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Read: Write: Reset: Indeterminate after reset Figure 15-19. Timer Channel 2 Register Low (TCH2L) Advance Information 272 MC68HC(9)08PT48 — Rev. 2.0 Timer Interface Module (TIM) MOTOROLA $0030 Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Read: Write: Reset: Indeterminate after reset Figure 15-20. Timer Channel 3 Register High (TCH3H) Address: $0031 Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Read: Write: Reset: Indeterminate after reset N O N - D I S C L O S U R E Figure 15-21. Timer Channel 3 Register Low (TCH3L) A G R E E M E N T Address: R E Q U I R E D Timer Interface Module (TIM) I/O Registers MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Timer Interface Module (TIM) 273 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Timer Interface Module (TIM) Advance Information 274 MC68HC(9)08PT48 — Rev. 2.0 Timer Interface Module (TIM) MOTOROLA 16.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .275 16.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .275 16.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .276 16.5 Timebase Control Register Description . . . . . . . . . . . . . . . . .277 16.6 Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .279 16.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .279 16.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .279 16.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .279 16.2 Introduction The timebase module (TIMTBX) consists of a counter/divider clocked by the crystal clock which will generate periodic interrupts at user selectable rates. 16.3 Features Timebase features include: • Software programmable 1-Hz, 2-Hz, 4-Hz, and 8-Hz periodic interrupt • Uses 32.0-kHz, 32.748-kHz or 38.4-kHz crystal MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Timebase Module (TIMTBX) 275 R E Q U I R E D 16.1 Contents A G R E E M E N T Section 16. Timebase Module (TIMTBX) N O N - D I S C L O S U R E Advance Information — MC68HC(9)08PT48 16.4 Functional Description NOTE: This module is designed to support 32-kHz, 32.768-kHz, and 38.4-kHz oscillators. Input crystal frequency is selected by the first write of the XTALR1:XTALR0 bits of the control register TBXCR, immediately after reset. This module can generate a periodic interrupt by dividing the crystal frequency, CGMXCLK. The counter is initialized to 0 when TBXON bit is cleared. The counter, shown in Figure 16-1, starts counting when the TBXON bit is set. When the counter overflows at the tap selected by TBXR1:TBXR0, the TBXIF bit gets set. If the TBXIE bit is set, an interrupt request is sent to the CPU. The TBXIF flag is cleared by writing a 1 to the TACK bit. The first time the TBXIF flag is set after enabling the timebase module, the interrupt is generated at approximately half of the overflow period. Subsequent events occur at the exact period. A G R E E M E N T TBXINT ÷32n ÷150 ÷125 01 10 ELSE ÷128 ÷n ÷2 ÷2 ÷128n ÷2 8-BIT COUNTER TBXIE VDD D 00 01 10 XTALR1 TBXIF TBXON POST-COUNT DIV TACK ÷ 32 ÷2 TBXR0 ÷2 TBXR1 ÷2 MUX SEL ÷2 ÷ 256n ÷2 ÷64n N O N - D I S C L O S U R E CGMXCLK ÷32 PRESCALAR CLR Q CK 11 XTALR0 R E Q U I R E D Timebase Module (TIMTBX) Figure 16-1. Timebase Block Diagram Advance Information 276 MC68HC(9)08PT48 — Rev. 2.0 Timebase Module (TIMTBX) MOTOROLA 16.5 Timebase Control Register Description The timebase control register (TBXCR) is used to enable the timebase interrupts and set the rate. $0038 Bit 7 5 4 TBXIE TBXR1 TBXR0 TBXIF 2 1 Bit 0 TBXON XTALR1 XTALR0 0 0 0 0 Write: Reset: 3 TACK 0 0 0 0 0 A G R E E M E N T Read: 6 = Unimplemented Figure 16-2. Timebase Control Register (TBXCR) TBXIF — Timebase Interrupt Flag The read-only flag bit is set when the timebase counter has rolled over. 1 = Timebase interrupt pending 0 = Timebase interrupt not pending TBXIE — Timebase Interrupt Enabled The read/write bit enables the timebase interrupt when the TBIF bit becomes set. Reset clears the TBIE bit 1 = Timebase interrupt enabled 0 = Timebase interrupt disabled TBXR1 and TBXR0 — Timebase Rate Selection These read/write bits are used to select the rate of timebase interrupts as shown in Table 16-1. Table 16-1. Timebase Rate Selection TBXR1 and TBXR0 Divider Timebase Interrupt Rate (Hz) vs (ms) 00 1/256n 1 1000 01 1/128n 2 500 10 1/64n 4 250 11 1/32n 8 125 MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Timebase Module (TIMTBX) 277 N O N - D I S C L O S U R E Address: R E Q U I R E D Timebase Module (TIMTBX) Timebase Control Register Description R E Q U I R E D Timebase Module (TIMTBX) NOTE: Do not change TBXR1:TBXR0 bits while the timebase is enabled (TBXON=1). Divider ratio, n, is defined by the XTALR[1:0] selection. TACK — Timebase ACKnowledge A G R E E M E N T The write-only TACK bit always reads 0. Writing a logic 1 to this bit clears TBIF, the timebase interrupt flag. Writing a logic 0 to this bit has no effect. 1 = Clear timebase interrupt flag 0 = No effect TBXON — Timebase Enabled The read/write bit enables the timebase. Timebase may be turned off to reduce power consumption when its function is not necessary. The counter can be initialized by clearing and then setting this bit. Reset clears the TBXON bit. 1 = Timebase enabled 0 = Timebase disabled; counter initialized to 0 XTALR1 and XTALR0 — Input Crystal Frequency Selection N O N - D I S C L O S U R E These bits are used to select the input crystal frequencies as shown in Table 16-1. They can be written once only following a reset. Any subsequent writes to these bits after the first valid write will be ignored. Default value upon reset is 00, so a crystal frequency of 38.4 kHz is assumed. Table 16-2. Input Crystal Frequency Selection NOTE: XTALR1 and XTALR0 Crystal Frequencies (kHz) Divider Ratio, n 00 default 38.4 150 01 32.0 125 10 32.768 128 11 38.4 150 It is recommended that these bits be written into at the beginning of the RESET sequence. To minimize the effect of timing discrepancies resulting from the choice of different input crystal frequencies. Although these bits are defaulted to 0, the user should write to these bits to prevent subsequent writes from unintentionally changing the crystal frequency selection. Advance Information 278 MC68HC(9)08PT48 — Rev. 2.0 Timebase Module (TIMTBX) MOTOROLA Interrupt must be acknowledged by writing a logic 1 to TACK bit. 16.7 Low-Power Modes The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. 16.7.1 Wait Mode The timebase module remains active after execution of the WAIT instruction. In wait mode, the timebase register is not accessible by the CPU. If the timebase functions are not required during wait mode, reduce the power consumption by stopping the timebase before enabling the WAIT instruction. 16.7.2 Stop Mode The timebase is inactive after execution of the STOP instruction. The STOP instruction does not affect register conditions or the state of the timebase counter. The timebase operation continues when the MCU exits stop mode with an external Interrupt, after the system clock resumes. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Timebase Module (TIMTBX) 279 A G R E E M E N T The timebase module can interrupt the CPU on a regular basis with a rate defined by TBXR1 and TBXR0. When the timebase counter chain rolls over, the counter chain overflow will generate a CPU interrupt request. N O N - D I S C L O S U R E 16.6 Interrupt R E Q U I R E D Timebase Module (TIMTBX) Interrupt N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Timebase Module (TIMTBX) Advance Information 280 MC68HC(9)08PT48 — Rev. 2.0 Timebase Module (TIMTBX) MOTOROLA Section 17. Input/Output (I/O) Ports 17.1 Contents 17.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .284 17.3.1 Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .284 17.3.2 Data Direction Register A . . . . . . . . . . . . . . . . . . . . . . . . .284 17.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .286 17.4.1 Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .286 17.4.2 Data Direction Register B . . . . . . . . . . . . . . . . . . . . . . . . .286 17.5 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .288 17.5.1 Port C Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .288 17.5.2 Data Direction Register C . . . . . . . . . . . . . . . . . . . . . . . . .288 17.6 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .290 17.6.1 Port D Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .290 17.6.2 Data Direction Register D . . . . . . . . . . . . . . . . . . . . . . . . .290 17.7 Port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .292 17.7.1 Port E Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .292 17.7.2 Data Direction Register E . . . . . . . . . . . . . . . . . . . . . . . . .292 17.8 Port F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294 17.8.1 Port F Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294 17.8.2 Data Direction Register F . . . . . . . . . . . . . . . . . . . . . . . . .294 17.9 Port G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .296 17.9.1 Port G Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .296 17.9.2 Data Direction Register G . . . . . . . . . . . . . . . . . . . . . . . .296 MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Input/Output (I/O) Ports 281 A G R E E M E N T Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .282 N O N - D I S C L O S U R E 17.2 R E Q U I R E D Advance Information — MC68HC(9)08PT48 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Input/Output (I/O) Ports 17.2 Introduction 56 bidirectional input-output (I/O) pins form seven parallel ports. All I/O pins are programmable as inputs or outputs. NOTE: Addr. $0000 $0001 $0002 $0003 Connect any unused I/O pins to an appropriate logic level, either VDD or VSS. Although the I/O ports do not require termination for proper operation, termination reduces excess current consumption and the possibility of electrostatic damage. Register Name Bit 7 Read: PTA7 Port A Data Register Write: (PTA) Reset: Read: PTB7 Port B Data Register Write: (PTB) Reset: Read: PTC7 Port C Data Register Write: (PTC) Reset: Read: PTD7 Port D Data Register Write: (PTD) Reset: Read: DDRA7 Port A Data Direction Register $0004 Write: (DDRA) Reset: 0 Read: DDRB7 Port B Data Direction Register $0005 Write: (DDRB) Reset: 0 6 5 4 3 2 1 Bit 0 PTA6 PTA5 PTA4 PTA3 PTA2 PTA1 PTA0 PTB2 PTB1 PTB0 PTC2 PTC1 PTC0 PTD2 PTD1 PTD0 Unaffected by reset PTB6 PTB5 PTB4 PTB3 Unaffected by reset PTC6 PTC5 PTC4 PTC3 Unaffected by reset PTD6 PTD5 PTD4 PTD3 Unaffected by reset DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0 0 0 0 0 0 0 0 DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0 0 0 0 0 0 0 0 Figure 17-1. I/O Port Registers Advance Information 282 MC68HC(9)08PT48 — Rev. 2.0 Input/Output (I/O) Ports MOTOROLA Addr. Register Name Bit 7 6 5 4 3 2 1 Bit 0 DDRC5 DDRC4 DDRC3 DDRC2 DDRC1 DDRC0 0 0 0 0 0 0 DDRD5 DDRD4 DDRD3 DDRD2 DDRD1 DDRD0 0 0 0 0 0 0 PTE5 PTE4 PTE3 PTE2 PTE1 PTE0 PTF2 PTF1 PTF0 PTG2 PTG1 PTG0 Read: $0006 DDRC7 DDRC6 Port C Data Direction Register Write: (DDRC) Reset: 0 0 Read: $0007 DDRD7 DDRD6 Port D Data Direction Register Write: (DDRD) Reset: 0 0 R E Q U I R E D Input/Output (I/O) Ports Introduction PTE6 Unaffected by reset Read: PTF7 Port F Data Register Write: (PTF) Reset: $0009 PTF6 PTF5 PTF4 PTF3 Unaffected by reset Read: PTG7 Port G Data Register Write: (PTG) Reset: $000A PTG6 PTG5 PTG4 PTG3 Unaffected by reset Read: $000C DDRE7 Port E Data Direction Register Write: (DDRE) Reset: 0 DDRE6 DDRE5 DDRE4 DDRE3 DDRE2 DDRE1 DDRE0 0 0 0 0 0 0 0 DDRF6 DDRF5 DDRF4 DDRF3 DDRF2 DDRF1 DDRF0 0 0 0 0 0 0 0 DDRG5 DDRG4 DDRG3 DDRG2 0 0 0 0 Read: $000D DDRF7 Port F Data Direction Register Write: (DDRF) Reset: 0 Read: $000E DDRG7 DDRG6 Port G Data Direction Register Write: (DDRG) Reset: 0 0 DDRG1 DDRG0 0 0 Figure 17-1. I/O Port Registers MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Input/Output (I/O) Ports 283 N O N - D I S C L O S U R E PTE7 Port E Data Register Write: (PTE) Reset: $0008 A G R E E M E N T Read: 17.3 Port A Port A is an 8-bit, general-purpose, bidirectional I/O port. 17.3.1 Port A Data Register The port A data register (PTA) contains a data latch for each of the eight port A pins. N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Input/Output (I/O) Ports Address: $0000 Bit 7 6 5 4 3 2 1 Bit 0 PTA7 PTA6 PTA5 PTA4 PTA3 PTA2 PTA1 PTA0 Read: Write: Reset: Unaffected by reset Figure 17-2. Port A Data Register (PTA) PTA[7:0] — Port A Data Bits These read/write bits are software programmable. Data direction of each port A pin is under the control of the corresponding bit in data direction register A. Reset has no effect on port A data. 17.3.2 Data Direction Register A Data direction register A (DDRA) determines whether each port A pin is an input or an output. Writing a logic 1 to a DDRA bit enables the output buffer for the corresponding port A pin. A logic 0 disables the output buffer. Address: $0004 Bit 7 6 5 4 3 2 1 Bit 0 DDRA7 DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 17-3. Data Direction Register A (DDRA) Advance Information 284 MC68HC(9)08PT48 — Rev. 2.0 Input/Output (I/O) Ports MOTOROLA DDRA7–DDRA0 — Data Direction Register A Bits These read/write bits control port A data direction. Reset clears DDRA7–DDRA0, configuring all port A pins as inputs. 1 = Corresponding port A pin configured as output 0 = Corresponding port A pin configured as input NOTE: Avoid glitches on port A pins by writing to the port A data register before changing data direction register A bits from 0 to 1. R E Q U I R E D Input/Output (I/O) Ports Port A READ DDRA INTERNAL DATA BUS WRITE DDRA RESET DDRAx WRITE PTA PTAx PTAx READ PTA A G R E E M E N T Figure 17-4 shows the port A I/O logic. When bit DDRAx is a logic 1, reading address $0000 reads the PTAx data latch. When bit DDRAx is a logic 0, reading address $0000 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 17-1 summarizes the operation of the port A pins. Table 17-1. Port A Pin Functions Accesses to DDRA DDRA Bit PTA Bit Accesses to PTA I/O Pin Mode Read/Write Read Write 0 X(1) Input, Hi-Z(2) DDRA7–DDRA0 Pin PTA7–PTA0(3) 1 X Output DDRA7–DDRA0 PTA7 – PTA0 PTA7–PTA0 Notes: 1. X = don’t care 2. Hi-Z = high impedance 3. Writing affects data register, but does not affect input. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Input/Output (I/O) Ports 285 N O N - D I S C L O S U R E Figure 17-4. Port A I/O Circuit 17.4 Port B Port B is an 8-bit, general-purpose, bidirectional I/O port. 17.4.1 Port B Data Register The port B data register (PTB) contains a data latch for each of the eight port pins. N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Input/Output (I/O) Ports Address: $0001 Bit 7 6 5 4 3 2 1 Bit 0 PTB7 PTB6 PTB5 PTB4 PTB3 PTB2 PTB1 PTB0 Read: Write: Reset: Unaffected by reset Figure 17-5. Port B Data Register (PTB) PTB7–PTB0 — Port B Data Bits These read/write bits are software-programmable. Data direction of each port B pin is under the control of the corresponding bit in data direction register B. Reset has no effect on port B data. 17.4.2 Data Direction Register B Data direction register B (DDRB) determines whether each port B pin is an input or an output. Writing a logic 1 to a DDRB bit enables the output buffer for the corresponding port B pin; a logic 0 disables the output buffer. Address: $0005 Bit 7 6 5 4 3 2 1 Bit 0 DDRB7 DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 17-6. Data Direction Register B (DDRB) Advance Information 286 MC68HC(9)08PT48 — Rev. 2.0 Input/Output (I/O) Ports MOTOROLA DDRB7–DDRB0 — Data Direction Register B Bits These read/write bits control port B data direction. Reset clears DDRB[7:0], configuring all port B pins as inputs. 1 = Corresponding port B pin configured as output 0 = Corresponding port B pin configured as input NOTE: Avoid glitches on port B pins by writing to the port B data register before changing data direction register B bits from 0 to 1. R E Q U I R E D Input/Output (I/O) Ports Port B READ DDRB INTERNAL DATA BUS WRITE DDRB RESET DDRBx WRITE PTB PTBx PTBx READ PTB A G R E E M E N T Figure 17-7 shows the port B I/O logic. When bit DDRBx is a logic 1, reading address $0001 reads the PTBx data latch. When bit DDRBx is a logic 0, reading address $0001 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 17-2 summarizes the operation of the port B pins. Table 17-2. Port B Pin Functions Accesses to DDRB DDRB Bit PTB Bit Accesses to PTB I/O Pin Mode Read/Write Read Write 0 X(1) Input, Hi-Z(2) DDRB7–DDRB0 Pin PTB7–PTB0(3) 1 X Output DDRB7–DDRB0 PTB7–PTB0 PTB7–PTB0 Notes: 1. X = don’t care 2. Hi-Z = high impedance 3. Writing affects data register, but does not affect input. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Input/Output (I/O) Ports 287 N O N - D I S C L O S U R E Figure 17-7. Port B I/O Circuit 17.5 Port C Port C is an 8-bit, general-purpose, bidirectional I/O port. 17.5.1 Port C Data Register The port C data register (PTC) contains a data latch for each of the port C pins. N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Input/Output (I/O) Ports Address: $0002 Bit 7 6 5 4 3 2 1 Bit 0 PTC7 PTC6 PTC5 PTC4 PTC3 PTC2 PTC1 PTC0 Read: Write: Reset: Unaffected by reset Figure 17-8. Port C Data Register (PTC) PTC7–PTC0 — Port C Data Bits These read/write bits are software-programmable. Data direction of each port C pin is under the control of the corresponding bit in data direction register C. 17.5.2 Data Direction Register C Data direction register C (DDRC) determines whether each port C pin is an input or an output. Writing a logic 1 to a DDRC bit enables the output buffer for the corresponding port C pin. A logic 0 disables the output buffer. Address: $0006 Bit 7 6 5 4 3 2 1 Bit 0 DDRC7 DDRC6 DDRC5 DDRC4 DDRC3 DDRC2 DDRC1 DDRC0 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 17-9. Data Direction Register C (DDRC) Advance Information 288 MC68HC(9)08PT48 — Rev. 2.0 Input/Output (I/O) Ports MOTOROLA DDRC7–DDRC0 — Data Direction Register C Bits These read/write bits control port C data direction. Reset clears DDRC7–DDRC0, configuring all port C pins as inputs. 1 = Corresponding port C pin configured as output 0 = Corresponding port C pin configured as input NOTE: Avoid glitches on port C pins by writing to the port C data register before changing data direction register C bits from 0 to 1. R E Q U I R E D Input/Output (I/O) Ports Port C READ DDRC INTERNAL DATA BUS WRITE DDRC RESET DDRCx WRITE PTC PTCx PTCx READ PTC A G R E E M E N T Figure 17-10 shows the port C I/O logic. When bit DDRCx is a logic 1, reading address $0002 reads the PTCx data latch. When bit DDRCx is a logic 0, reading address $0002 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 17-3 summarizes the operation of the port C pins. Table 17-3. Port C Pin Functions Accesses to DDRC DDRC Bit PTC Bit Accesses to PTC I/O Pin Mode Read/Write Read Write 0 X(1) Input, Hi-Z(2) DDRC7–DDRC0 Pin PTC7–PTC0(3) 1 X Output DDRC7–DDRC0 PTC7–PTC0 PTC7–PTC0 Notes: 1. X = don’t care 2. Hi-Z = high impedance 3. Writing affects data register, but does not affect input. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Input/Output (I/O) Ports 289 N O N - D I S C L O S U R E Figure 17-10. Port C I/O Circuit 17.6 Port D Port D is an 8-bit, general-purpose, bidirectional I/O port. 17.6.1 Port D Data Register The port D data register (PTD) contains a data latch for each of the eight port D pins. N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Input/Output (I/O) Ports Address: $0003 Bit 7 6 5 4 3 2 1 Bit 0 PTD7 PTD6 PTD5 PTD4 PTD3 PTD2 PTD1 PTD0 Read: Write: Reset: Unaffected by reset Figure 17-11. Port D Data Register (PTD) PTD[7:0] — Port D Data Bits These read/write bits are software programmable. Data direction of each port D pin is under the control of the corresponding bit in data direction register D. Reset has no effect on port D data. 17.6.2 Data Direction Register D Data direction register D (DDRD) determines whether each port D pin is an input or an output. Writing a logic 1 to a DDRD bit enables the output buffer for the corresponding port D pin. A logic 0 disables the output buffer. Address: $0007 Bit 7 6 5 4 3 2 1 Bit 0 DDRD7 DDRD6 DDRD5 DDRD4 DDRD4 DDRD3 DDRD1 DDRD0 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 17-12. Data Direction Register D (DDRD) Advance Information 290 MC68HC(9)08PT48 — Rev. 2.0 Input/Output (I/O) Ports MOTOROLA DDRD7–DDRD0 — Data Direction Register D Bits These read/write bits control port D data direction. Reset clears DDRD[7:0], configuring all port D pins as inputs. 1 = Corresponding port D pin configured as output 0 = Corresponding port D pin configured as input NOTE: Avoid glitches on port D pins by writing to the port D data register before changing data direction register D bits from 0 to 1. R E Q U I R E D Input/Output (I/O) Ports Port D READ DDRD INTERNAL DATA BUS WRITE DDRD RESET DDRDx WRITE PTD PTDx PTDx READ PTD A G R E E M E N T Figure 17-13 shows the port D I/O logic. When bit DDRDx is a logic 1, reading address $0003 reads the PTDx data latch. When bit DDRDx is a logic 0, reading address $0003 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 17-4 summarizes the operation of the port D pins. Table 17-4. Port D Pin Functions Accesses to DDRD DDRD Bit PTD Bit Accesses to PTD I/O Pin Mode Read/Write Read Write 0 X(1) Input, Hi-Z(2) DDRD7–DDRD0 Pin PTD7–PTD0(3) 1 X Output DDRD7–DDRD0 PTD7–PTD0 PTD7–PTD0 Notes: 1. X = don’t care 2. Hi-Z = high impedance 3. Writing affects data register, but does not affect input. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Input/Output (I/O) Ports 291 N O N - D I S C L O S U R E Figure 17-13. Port D I/O Circuit 17.7 Port E Port E is an 8-bit special function port that shares four of its pins with the A/D and the other four pins with SPI. 17.7.1 Port E Data Register The port E data register (PTE) contains a data latch for each of the eight port pins. N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Input/Output (I/O) Ports Address: $0008 Bit 7 6 5 4 3 2 1 Bit 0 PTE7 PTE6 PTE5 PTE4 PTE3 PTE2 PTE1 PTE0 Read: Write: Reset: Unaffected by reset Figure 17-14. Port E Data Register (PTE) PTE7–PTE0 — Port E Data Bits These read/write bits are software-programmable. Data direction of each port E pin is under the control of the corresponding bit in data direction register E. Reset has no effect on port E data. 17.7.2 Data Direction Register E Data direction register E (DDRE) determines whether each port E pin is an input or an output. Writing a logic 1 to a DDRE bit enables the output buffer for the corresponding port E pin; a logic 0 disables the output buffer. Address: $000C Bit 7 6 5 4 3 2 1 Bit 0 DDRE7 DDRE6 DDRE5 DDRE4 DDRE3 DDRE2 DDRE1 DDRE0 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 17-15. Data Direction Register E (DDRE) Advance Information 292 MC68HC(9)08PT48 — Rev. 2.0 Input/Output (I/O) Ports MOTOROLA DDRE7–DDRE0 — Data Direction Register E Bits These read/write bits control port E data direction. Reset clears DDRE7–DDRE0, configuring all port E pins as inputs. 1 = Corresponding port E pin configured as output 0 = Corresponding port E pin configured as input NOTE: Avoid glitches on port E pins by writing to the port E data register before changing data direction register E bits from 0 to 1. R E Q U I R E D Input/Output (I/O) Ports Port E READ DDRE INTERNAL DATA BUS WRITE DDRE RESET DDREx WRITE PTE PTEx PTEx READ PTE A G R E E M E N T Figure 17-16 shows the port E I/O logic. When bit DDREx is a logic 1, reading address $0046 reads the PTEx data latch. When bit DDREx is a logic 0, reading address $0046 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 17-5 summarizes the operation of the port E pins. Table 17-5. Port E Pin Functions DDRE Bit PTE Bit 0 X(1) 1 X I/O Pin Mode Input, Hi-Z(2) Output Accesses to DDRE Accesses to PTE Read/Write Read Write DDRE7–DDRE0 Pin PTE7–PTE0(3) DDRE7–DDRE0 PTE7–PTE0 PTE7–PTE0 Notes: 1. X = don’t care 2. Hi-Z = high impedance 3. Writing affects data register, but does not affect input. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Input/Output (I/O) Ports 293 N O N - D I S C L O S U R E Figure 17-16. Port E I/O Circuit 17.8 Port F Port F is an 8-bit special function port that shares with the keyboard interrupts. 17.8.1 Port F Data Register The port F data register (PTF) contains a data latch for each of the port F pins. N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Input/Output (I/O) Ports Address: $0009 Bit 7 6 5 4 3 2 1 Bit 0 PTF7 PTF6 PTF5 PTF4 PTF3 PTF2 PTF1 PTF0 Read: Write: Reset: Unaffected by reset Figure 17-17. Port F Data Register (PTF) PTF7–PTF0 — Port F Data Bits These read/write bits are software-programmable. Data direction of each port F pin is under the control of the corresponding bit in data direction register F. 17.8.2 Data Direction Register F Data direction register F (DDRF) determines whether each port F pin is an input or an output. Writing a logic 1 to a DDRF bit enables the output buffer for the corresponding port F pin. A logic 0 disables the output buffer. Address: $000D Bit 7 6 5 4 3 2 1 Bit 0 DDRF7 DDRF6 DDRF5 DDRF4 DDRF3 DDRF2 DDRF1 DDRF0 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 17-18. Data Direction Register F (DDRF) Advance Information 294 MC68HC(9)08PT48 — Rev. 2.0 Input/Output (I/O) Ports MOTOROLA DDRF7–DDRF0 — Data Direction Register F Bits These read/write bits control port F data direction. Reset clears DDRF7–DDRF0, configuring all port F pins as inputs. 1 = Corresponding port F pin configured as output 0 = Corresponding port F pin configured as input NOTE: Avoid glitches on port F pins by writing to the port F data register before changing data direction register F bits from 0 to 1. R E Q U I R E D Input/Output (I/O) Ports Port F READ DDRF INTERNAL DATA BUS WRITE DDRF RESET DDRFx WRITE PTF PTFx PTFx READ PTF A G R E E M E N T Figure 17-19 shows the port F I/O logic. When bit DDRFx is a logic 1, reading address $0047 reads the PTFx data latch. When bit DDRFx is a logic 0, reading address $0047 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 17-6 summarizes the operation of the port F pins. Table 17-6. Port F Pin Functions Accesses to DDRF DDRF Bit PTF Bit Accesses to PTF I/O Pin Mode Read/Write Read Write 0 X(1) Input, Hi-Z(2) DDRF7–DDRF0 Pin PTF7–PTF0(3) 1 X Output DDRF7–DDRF0 PTF7–PTF0 PTF7–PTF0 Notes: 1. X = don’t care 2. Hi-Z = high impedance 3. Writing affects data register, but does not affect input. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Input/Output (I/O) Ports 295 N O N - D I S C L O S U R E Figure 17-19. Port F I/O Circuit 17.9 Port G Port G is am 8-bit special function port that shares five of its pins with the timer and two of its pins with SCI. 17.9.1 Port G Data Register The port G data register (PTG) contains a data latch for each of the port G pins. N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Input/Output (I/O) Ports Address: $000A Bit 7 6 5 4 3 2 1 Bit 0 PTG7 PTG6 PTG5 PTG4 PTG3 PTG2 PTG1 PTG0 Read: Write: Reset: Unaffected by reset Figure 17-20. Port G Data Register (PTG) PTG7–PTG0 — Port G Data Bits These read/write bits are software-programmable. Data direction of each port G pin is under the control of the corresponding bit in data direction register G. 17.9.2 Data Direction Register G Data direction register G (DDRG) determines whether each port G pin is an input or an output. Writing a logic 1 to a DDRG bit enables the output buffer for the corresponding port G pin. A logic 0 disables the output buffer. Address: $000E Bit 7 6 5 4 3 2 1 Bit 0 DDRG7 DDRG6 DDRG5 DDRG4 DDRG3 DDRG2 DDRG1 DDRG0 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 17-21. Data Direction Register G (DDRG) Advance Information 296 MC68HC(9)08PT48 — Rev. 2.0 Input/Output (I/O) Ports MOTOROLA DDRG7–DDRG0 — Data Direction Register G Bits These read/write bits control port G data direction. Reset clears DDRG7–DDRG0, configuring all port G pins as inputs. 1 = Corresponding port G pin configured as output 0 = Corresponding port G pin configured as input NOTE: Avoid glitches on port G pins by writing to the port G data register before changing data direction register G bits from 0 to 1. R E Q U I R E D Input/Output (I/O) Ports Port G READ DDRG INTERNAL DATA BUS WRITE DDRG RESET DDRGx WRITE PTG PTGx PTGx READ PTG A G R E E M E N T Figure 17-22 shows the port G I/O logic. When bit DDRGx is a logic 1, reading address $0048 reads the PTGx data latch. When bit DDRGx is a logic 0, reading address $0048 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 17-7 summarizes the operation of the port G pins. Table 17-7. Port G Pin Functions Accesses to DDRG DDRG Bit PTG Bit Accesses to PTG I/O Pin Mode Read/Write Read Write 0 X(1) Input, Hi-Z(2) DDRG7–DDRG0 Pin PTG7–PTG0(3) 1 X Output DDRG7–DDRG0 PTG7–PTG0 PTG7–PTG0 Notes: 1. X = don’t care 2. Hi-Z = high impedance 3. Writing affects data register, but does not affect input. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Input/Output (I/O) Ports 297 N O N - D I S C L O S U R E Figure 17-22. Port G I/O Circuit N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Input/Output (I/O) Ports Advance Information 298 MC68HC(9)08PT48 — Rev. 2.0 Input/Output (I/O) Ports MOTOROLA 18.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .299 18.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .299 18.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .300 18.4.1 Entering Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . .300 18.4.2 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .303 18.4.3 Echoing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .303 18.4.4 Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .304 18.4.5 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .304 18.4.6 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .308 18.2 Introduction This section describes the monitor ROM. The monitor ROM allows complete testing of the MCU through a single-wire interface with a host computer. 18.3 Features Features of the monitor ROM include: • Normal user-mode pin functionality • One pin dedicated to serial communication between monitor ROM and host computer • Standard mark/space non-return-to-zero (NRZ) communication with host computer • 4800 baud–28.8 kbaud communication with host computer • Execution of code in RAM or ROM MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Monitor ROM (MON) 299 R E Q U I R E D 18.1 Contents A G R E E M E N T Section 18. Monitor ROM (MON) N O N - D I S C L O S U R E Advance Information — MC68HC(9)08PT48 18.4 Functional Description The monitor ROM receives and executes commands from a host computer. Figure 18-1 shows a sample circuit used to enter monitor mode and communicate with a host computer via a standard RS-232 interface. Simple monitor commands can access any memory address. In monitor mode, the MCU can execute host-computer code in RAM while all MCU pins retain normal operating mode functions. All communication between the host computer and the MCU is through the PTA0 pin. A level-shifting and multiplexing interface is required between PTA0 and the host computer. PTA0 is used in a wired-OR configuration and requires a pullup resistor. 18.4.1 Entering Monitor Mode Table 18-1 shows the pin conditions for entering monitor mode. IRQ1 Pin PTC0 Pin PTC1 Pin PTA0 Pin PTC3 Pin Table 18-1. Mode Selection N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Monitor ROM (MON) Mode VDD + VHI 1 0 1 1 Monitor CGMVCLK CGMXCLK ----------------------------- or ----------------------------2 2 CGMOUT -------------------------2 VDD + VHI 1 0 1 0 Monitor CGMXCLK CGMOUT -------------------------2 CGMOUT Bus Frequency Enter monitor mode by either • Executing a software interrupt instruction (SWI) or • Applying a logic 0 and then a logic 1 to the RST pin The MCU sends a break signal (10 consecutive logic 0s) to the host computer, indicating that it is ready to receive a command. The break signal also provides a timing reference to allow the host to determine the necessary baud rate. Advance Information 300 MC68HC(9)08PT48 — Rev. 2.0 Monitor ROM (MON) MOTOROLA R E Q U I R E D Monitor ROM (MON) Functional Description VDD 68HC(9)08 10 kΩ RST 0.1 µF VDD + VHI 10 Ω A G R E E M E N T IRQ1 VDDA VDDA CGMXFC 1 0.1 µF 20 + + 3 18 4 17 + 2 19 DB-25 2 5 16 3 6 15 OSC1 4.9152 MHz (TTL OSC INPUT) + 10 µF 10 µF 10 µF OSC2 VDD VDD PTC0 PTC1 PTA7 VSS N O N - D I S C L O S U R E 10 µF MC145407 VDD VDD 0.1 µF 7 VDD 1 MC74HC125 VDD 14 2 3 6 5 10 kΩ PTA0 4 VDD 7 NOTE: Position A — Bus clock = CGMXCLK ÷ 4 or CGMVCLK ÷ 4 Position B — Bus clock = CGMXCLK ÷ 2 PTC3 10 kΩ A (See NOTE.) B Figure 18-1Monitor Mode Circuit MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Monitor ROM (MON) 301 R E Q U I R E D Monitor ROM (MON) A G R E E M E N T Monitor mode uses alternate vectors for reset, SWI, and break interrupt. The alternate vectors are in the $FE page instead of the $FF page and allow code execution from the internal monitor firmware instead of user code. The COP module is disabled in monitor mode as long as VDD + VHI is applied to either the IRQ1 pin or the RST pin. Burn-in can be accomplished by uploading code to RAM in monitor mode, then pulling PTA0 low and executing a reset. This causes a jump to RAM.(See Section 7. System Integration Module (SIM) for more information on modes of operation.) NOTE: Holding the PTC3 pin low when entering monitor mode causes a bypass of a divide-by-two stage at the oscillator. The CGMOUT frequency is equal to the CGMXCLK frequency, and the OSC1 input directly generates internal bus clocks. In this case, the OSC1 signal must have a 50 percent duty cycle at maximum bus frequency. Table 18-2 is a summary of the differences between user mode and monitor mode. Table 18-2. Mode Differences N O N - D I S C L O S U R E Functions Modes COP Reset Vector High Reset Vector Low Break Vector High Break Vector Low SWI Vector High SWI Vector Low User Enabled $FFFE $FFFF $FFFC $FFFD $FFFC $FFFD Monitor Disabled(1) $FEFE $FEFF $FEFC $FEFD $FEFC $FEFD Note: 1. If the high voltage (VDD + VHI) is removed from the IRQ1 pin or the RST pin, the SIM asserts its COP enable output. The COP is a mask option enabled or disabled by the COPD bit in the mask option register. Advance Information 302 MC68HC(9)08PT48 — Rev. 2.0 Monitor ROM (MON) MOTOROLA 18.4.2 Data Format Communication with the monitor ROM is in standard non-return-to-zero (NRZ) mark/space data format. (See Figure 18-2 and Figure 18-3.) The data transmit and receive rate can be anywhere from 4800 baud to 28.8 kbaud. Transmit and receive baud rates must be identical. BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT 7 STOP BIT A G R E E M E N T BIT 0 NEXT START BIT Figure 18-2. Monitor Data Format $A5 START BIT BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT 7 BREAK START BIT BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT 7 STOP BIT STOP BIT NEXT START BIT NEXT START BIT Figure 18-3. Sample Monitor Waveforms 18.4.3 Echoing As shown in Figure 18-4, the monitor ROM immediately echoes each received byte back to the PTA0 pin for error checking. Any result of a command appears after the echo of the last byte of the command. SENT TO MONITOR READ READ ADDR. HIGH ADDR. HIGH ADDR. LOW ECHO ADDR. LOW DATA RESULT Figure 18-4. Read Transaction MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Monitor ROM (MON) 303 N O N - D I S C L O S U R E START BIT R E Q U I R E D Monitor ROM (MON) Functional Description R E Q U I R E D Monitor ROM (MON) 18.4.4 Break Signal A start bit followed by nine low bits is a break signal. (See Figure 18-5.) When the monitor receives a break signal, it drives the PTA0 pin high for the duration of two bits before echoing the break signal. MISSING STOP BIT 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 Figure 18-5. Break Transaction 18.4.5 Commands The monitor ROM uses these commands: N O N - D I S C L O S U R E A G R E E M E N T 2-STOP-BIT DELAY BEFORE ZERO ECHO • READ; read memory • WRITE; write memory • IREAD; indexed read • IWRITE; indexed write • READSP; read stack pointer • RUN; run user program A sequence of IREAD or IWRITE commands can access a block of memory sequentially over the full 64-Kbyte memory map. Advance Information 304 MC68HC(9)08PT48 — Rev. 2.0 Monitor ROM (MON) MOTOROLA R E Q U I R E D Monitor ROM (MON) Functional Description Table 18-3. READ (Read Memory) Command Description Read byte from memory Operand Specifies 2-byte address in high byte:low byte order Data Returned Returns contents of specified address Opcode $4A Command Sequence READ READ ADDR. HIGH ADDR. HIGH ADDR. LOW ADDR. LOW ECHO DATA RESULT Table 18-4. WRITE (Write Memory) Command Write byte to memory Operand Specifies 2-byte address in high byte:low byte order; low byte followed by data byte Data Returned None Opcode $49 N O N - D I S C L O S U R E Description Command Sequence SENT TO MONITOR WRITE WRITE ADDR. HIGH ADDR. HIGH ADDR. LOW ADDR. LOW DATA DATA ECHO MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Monitor ROM (MON) A G R E E M E N T SENT TO MONITOR 305 R E Q U I R E D Monitor ROM (MON) Table 18-5. READ (Indexed Read) Command Description Read next 2 bytes in memory from last address accessed Operand Specifies 2-byte address in high byte:low byte order Data Returned Returns contents of next two addresses Opcode $1A Command Sequence A G R E E M E N T SENT TO MONITOR IREAD IREAD DATA DATA RESULT ECHO N O N - D I S C L O S U R E Table 18-6. IWRITE (Indexed Write) Command Description Write to last address accessed + 1 Operand Specifies single data byte Data Returned None Opcode $19 Command Sequence SENT TO MONITOR IWRITE IWRITE DATA DATA ECHO Advance Information 306 MC68HC(9)08PT48 — Rev. 2.0 Monitor ROM (MON) MOTOROLA R E Q U I R E D Monitor ROM (MON) Functional Description Table 18-7. READSP (Read Stack Pointer) Command Description Reads stack pointer Operand None Data Returned Returns stack pointer in high byte:low byte order Opcode $0C Command Sequence READSP READSP SP HIGH A G R E E M E N T SENT TO MONITOR SP LOW RESULT ECHO Description Executes RTI instruction Operand None Data Returned None Opcode $28 N O N - D I S C L O S U R E Table 18-8. RUN (Run User Program) Command Command Sequence SENT TO MONITOR RUN RUN ECHO MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Monitor ROM (MON) 307 18.4.6 Baud Rate With a 4.9152-MHz crystal and the PTC3 pin at logic 1 during reset, data is transferred between the monitor and host at 4800 baud. If the PTC3 pin is at logic 0 during reset, the monitor baud rate is 9600. When the CGM output, CGMOUT, is driven by the PLL, the baud rate is determined by the MUL7–MUL4 bits in the PLL programming register (PPG). (See Section 4. Clock Generator Module (CGMB).) Table 18-9. Monitor Baud Rate Selection A G R E E M E N T R E Q U I R E D Monitor ROM (MON) VCO Frequency Multiplier (N) 2 3 4 5 6 4800 9600 14,400 19,200 24,000 28,800 N O N - D I S C L O S U R E Monitor Baud Rate 1 Advance Information 308 MC68HC(9)08PT48 — Rev. 2.0 Monitor ROM (MON) MOTOROLA 19.1 Contents 19.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .309 19.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .310 19.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .310 19.4.1 Flag Protection During Break Interrupts . . . . . . . . . . . . . .312 19.4.2 CPU During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . .312 19.4.3 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .312 19.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . .312 19.4.5 COP During Break. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .312 19.5 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .313 19.5.1 Break Status and Control Register . . . . . . . . . . . . . . . . . .313 19.5.2 Break Address Registers. . . . . . . . . . . . . . . . . . . . . . . . . .314 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314 19.2 Introduction This section describes the break module. The break module can generate a break interrupt that stops normal program flow at a defined address to enter a background program. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Break Module 309 N O N - D I S C L O S U R E 19.6 R E Q U I R E D Section 19. Break Module A G R E E M E N T Advance Information — MC68HC(9)08PT48 19.3 Features Features of the break module include: • Accessible I/O (input/output) registers during the break interrupt • CPU-generated break interrupts • Software-generated break interrupts • Computer operating properly (COP) disabling during break interrupts 19.4 Functional Description When the internal address bus matches the value written in the break address registers, the break module issues a breakpoint signal (BKPT) to the SIM. The SIM then causes the CPU to load the instruction register with a software interrupt instruction (SWI) after completion of the current CPU instruction. The program counter vectors to $FFFC and $FFFD ($FEFC and $FEFD in monitor mode). These events can cause a break interrupt to occur: N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Break Module • A CPU-generated address (the address in the program counter) matches the contents of the break address registers. • Software writes a logic 1 to the BRKA bit in the break status and control register. • Software writes a logic 1 to the break active bit (BRKA) in the break status and control register. When a CPU-generated address matches the contents of the break address registers, the break interrupt begins after the CPU completes its current instruction. A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU to normal operation. Figure 19-1 shows the structure of the break module. Advance Information 310 MC68HC(9)08PT48 — Rev. 2.0 Break Module MOTOROLA IAB[15:8] BREAK ADDRESS REGISTER HIGH 8-BIT COMPARATOR IAB[15:0] BKPT (TO SIM) CONTROL 8-BIT COMPARATOR BREAK ADDRESS REGISTER LOW IAB[7:0] Figure 19-1. Break Module Block Diagram Addr. Register Name Bit 7 6 5 4 3 2 1 Bit 0 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 0 0 0 0 0 0 0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Read: $FE0D Bit 15 Break Address Register High Write: (BRKH) Reset: 0 A G R E E M E N T R E Q U I R E D Break Module Functional Description $FE0E Break Address Register Low Write: (BRKL) Reset: Read: $FE0F BRKE Break Status/Control Register Write: (BRKSCR) Reset: 0 BRKA 0 = Unimplemented Figure 19-2. Break I/O Register Summary MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Break Module 311 N O N - D I S C L O S U R E Read: R E Q U I R E D Break Module 19.4.1 Flag Protection During Break Interrupts The system integration module (SIM) controls whether or not module status bits can be cleared during the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state. (See 7.8.3 SIM Break Flag Control Register and see the Break Interrupts subsection for each module.) A G R E E M E N T 19.4.2 CPU During Break Interrupts The CPU starts a break interrupt by: • Loading the instruction register with the SWI instruction • Loading the program counter with $FFFC:$FFFD ($FEFC:$FEFD in monitor mode) The break interrupt begins after completion of the CPU instruction in progress. If the break address register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately. N O N - D I S C L O S U R E 19.4.3 TIM During Break Interrupts A break interrupt stops the timer counter. 19.4.4 COP During Break Interrupts The COP is disabled during a break interrupt when VDD + VHI is present on the RST pin. 19.4.5 COP During Break If the RST pin is at 2 × VDD during a break, the COP counter stops. If the RST pin falls to logic 1 during break, the COP resumes operation. Advance Information 312 MC68HC(9)08PT48 — Rev. 2.0 Break Module MOTOROLA R E Q U I R E D Break Module Break Module Registers 19.5 Break Module Registers Three registers control and monitor operation of the break module: • Break status and control register (BRKSCR) • Break address register high (BRKH) • Break address register low (BRKL) Address: $FE0F Bit 7 6 BRKE BRKA 0 0 5 4 3 2 1 Bit 0 0 0 0 0 0 0 Read: Write: Reset: = Unimplemented Figure 19-3. Break Status and Control Register (BRKSCR) BRKE — Break Enable Bit This bit enables breaks on break address register matches. Clear BRKE by writing a logic 0 to bit 7. 1 = Breaks enabled on 16-bit address match 0 = Breaks disabled on 16-bit address match BRKA — Break Active Bit This status and control bit is set when a break address match occurs. Writing a logic 1 to BRKA generates a break interrupt. Clear BRKA by writing a logic 0 to it before exiting the break routine. 1 = Break address match 0 = No break address match MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Break Module 313 N O N - D I S C L O S U R E The break status and control register (BRKSCR) contains break module enable and status bits. A G R E E M E N T 19.5.1 Break Status and Control Register R E Q U I R E D Break Module 19.5.2 Break Address Registers The break address registers (BRKH and BRKL) contain the high and low bytes of the desired breakpoint address. Reset clears the break address registers. Address: $FE0D Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 0 0 0 0 0 0 0 0 N O N - D I S C L O S U R E A G R E E M E N T Read: Write: Reset: Figure 19-4. Break Address Register High (BRKH) Address: $FE0E Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 19-5. Break Address Register Low (BRKL) 19.6 Wait Mode If enabled, the break module is active in wait mode. In the break routine, the user can subtract one from the return address on the stack if SBSW is set. (see 7.8.1 SIM Break Status Register) Clear the SBSW bit by writing logic 0 to it. Advance Information 314 MC68HC(9)08PT48 — Rev. 2.0 Break Module MOTOROLA 20.1 Contents 20.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315 20.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315 20.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .316 IRQ1 Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .319 20.4.1 20.4.2 IRQ2 Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .320 20.5 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . .321 20.6 IRQ Status and Control Register . . . . . . . . . . . . . . . . . . . . . .321 20.2 Introduction N O N - D I S C L O S U R E This section describes the external interrupt module which supports external interrupt functions. 20.3 Features Features of the IRQ module include: • Two dedicated external interrupt pins (IRQ1 and IRQ2) • Separate IRQ1 and IRQ2 interrupt masks • Hysteresis buffers MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information External Interrupt Module (IRQ) R E Q U I R E D Section 20. External Interrupt Module (IRQ) A G R E E M E N T Advance Information — MC68HC(9)08PT48 315 20.4 Functional Description A logic 0 applied to any of the external interrupt pins can latch a CPU interrupt request. Figure 20-1 shows the structure of the IRQ module. Interrupt signals on the IRQ1 pin are latched into the IRQ1 latch. Interrupt signals on the IRQ2 pin are latched into the IRQ2 interrupt latch. An interrupt latch remains set until one of these actions occurs: A G R E E M E N T R E Q U I R E D External Interrupt Module (IRQ) • Vector fetch — A vector fetch automatically generates an interrupt acknowledge signal that clears the latch that caused the vector fetch. • Software clear — Software can clear an interrupt latch by writing to the appropriate acknowledge bit in the interrupt status and control register (ISCR). Writing a logic 1 to the ACK1 bit clears the IRQ1 latch. Writing a logic 1 to the ACK2 bit clears the IRQ2 interrupt latch. • Reset — A reset automatically clears both interrupt latches. N O N - D I S C L O S U R E All of the external interrupt pins are falling-edge-triggered and are software configurable to be both falling-edge and low-level-triggered. The MODE1 bit in the ISCR controls the triggering sensitivity of the IRQ1 pin. The MODE2 bit controls the triggering sensitivity of the IRQ2 interrupt pin. When an interrupt pin is edge-triggered only, the interrupt latch remains set until a vector fetch, software clear, or reset occurs. When an interrupt pin is both falling-edge and low-level-triggered, the interrupt latch remains set until both of these occur: • Vector fetch, software clear, or reset • Return of the interrupt pin to logic 1 Advance Information 316 MC68HC(9)08PT48 — Rev. 2.0 External Interrupt Module (IRQ) MOTOROLA R E Q U I R E D External Interrupt Module (IRQ) Functional Description ACK1 D CLR Q SYNCHRONIZER CK IRQ1 IRQ1 LATCH IRQ1 INTERRUPT REQUEST IMASK1 VDD ACK2 D CLR Q CK IRQ2 A G R E E M E N T MODE1 IRQ2 INTERRUPT LATCH SYNCHRONIZER IMASK2 IRQ2 INTERRUPT REQUEST MODE2 Figure 20-1. IRQ Module Block Diagram The vector fetch or software clear may occur before or after the interrupt pin returns to logic 1. As long as the pin is low, the interrupt request remains pending. When set, the IMASK1 and IMASK2 bits in the ISCR mask all external interrupt requests. A latched interrupt request is not presented to the interrupt priority logic unless the corresponding IMASK bit is clear. NOTE: The interrupt mask (I) in the condition code register (CCR) masks all interrupt requests, including external interrupt requests. (See Figure 20-2.) MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information External Interrupt Module (IRQ) 317 N O N - D I S C L O S U R E VDD R E Q U I R E D External Interrupt Module (IRQ) FROM RESET YES I BIT SET? NO YES A G R E E M E N T INTERRUPT? NO STACK CPU REGISTERS SET I BIT LOAD PC WITH INTERRUPT VECTOR N O N - D I S C L O S U R E FETCH NEXT INSTRUCTION SWI INSTRUCTION? YES NO RTI INSTRUCTION? YES UNSTACK CPU REGISTERS NO EXECUTE INSTRUCTION Figure 20-2. IRQ Interrupt Flowchart Advance Information 318 MC68HC(9)08PT48 — Rev. 2.0 External Interrupt Module (IRQ) MOTOROLA If the MODE1 bit is set, the IRQ1 pin is both falling-edge-sensitive and low-level-sensitive. With MODE1 set, both of these actions must occur to clear the IRQ1 latch: • Vector fetch, software clear, or reset — A vector fetch generates an interrupt acknowledge signal to clear the latch. Software may generate the interrupt acknowledge signal by writing a logic 1 to the ACK1 bit in the interrupt status and control register (ISCR). The ACK1 bit is useful in applications that poll the IRQ1 pin and require software to clear the IRQ1 latch. Writing to the ACK1 bit can also prevent spurious interrupts due to noise. Setting ACK1 does not affect subsequent transitions on the IRQ1 pin. A falling edge that occurs after writing to the ACK1 bit latches another interrupt request. If the IRQ1 mask bit, IMASK1, is clear, the CPU loads the program counter with the vector address at locations $FFFA and $FFFB. • Return of the IRQ1 pin to logic 1 — As long as the IRQ1 pin is at logic 0, the IRQ1 latch remains set. The vector fetch or software clear and the return of the IRQ1 pin to logic 1 may occur in any order. The interrupt request remains pending as long as the IRQ1 pin is at logic 0. If the MODE1 bit is clear, the IRQ1 pin is falling-edge-sensitive only. With MODE1 clear, a vector fetch or software clear immediately clears the IRQ1 latch. Use the BIH or BIL instruction to read the logic level on the IRQ1 pin. NOTE: When using the level-sensitive interrupt trigger, avoid false interrupts by masking interrupt requests in the interrupt routine. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information External Interrupt Module (IRQ) 319 A G R E E M E N T A logic 0 on the IRQ1 pin can latch an interrupt request into the IRQ1 latch. A vector fetch, software clear, or reset clears the IRQ1 latch. N O N - D I S C L O S U R E 20.4.1 IRQ1 Pin R E Q U I R E D External Interrupt Module (IRQ) Functional Description 20.4.2 IRQ2 Pin A logic 0 on the IRQ2 pin can latch an interrupt request into the IRQ2 interrupt latch. A vector fetch, software clear, or reset clears the IRQ2 interrupt latch. If the MODE2 bit is set, the IRQ2 pin is both falling-edge-sensitive and low-level-sensitive. With MODE2 set, both of these actions must occur to clear the IRQ2 interrupt latch: N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D External Interrupt Module (IRQ) • Vector fetch, software clear, or reset — A vector fetch generates an interrupt acknowledge signal to clear the latch. Software may generate the interrupt acknowledge signal by writing a logic 1 to the ACK2 bit in the interrupt status and control register (ISCR). The ACK2 bit is useful in applications that poll the IRQ2 pin and require software to clear the IRQ2 interrupt latch. Writing to the ACK2 bit can also prevent spurious interrupts due to noise. Setting ACK2 does not affect subsequent transitions on the IRQ2 pin. A falling edge that occurs after writing to the ACK2 bit latches another interrupt request. If the IRQ2 mask bit, IMASK2, is clear, the CPU loads the program counter with the vector address at locations $FFF8 and $FFF9. • Return of the IRQ2 pin to logic 1 — As long as the IRQ2 pin is at logic 0, the IRQ2 interrupt latch remains set. The vector fetch or software clear and the return of the IRQ2 pin to logic 1 may occur in any order. The interrupt request remains pending as long as the IRQ2 pin is at logic 0. If the MODE2 bit is clear, the IRQ2 pin is falling-edge-sensitive only. With MODE2 clear, a vector fetch or software clear immediately clears the IRQ2 interrupt latch. NOTE: When using the level-sensitive interrupt trigger, avoid false interrupts by masking interrupt requests in the interrupt routine. Advance Information 320 MC68HC(9)08PT48 — Rev. 2.0 External Interrupt Module (IRQ) MOTOROLA To allow software to clear the IRQ1 latch and the IRQ2 interrupt latch during a break interrupt, write a logic 1 to the BCFE bit. If a latch is cleared during the break state, it remains cleared when the MCU exits the break state. To protect the latches during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), writing to the ACK1 and ACK2 bits in the IRQ status and control register during the break state has no effect on the IRQ latches. (See 20.6 IRQ Status and Control Register.) 20.6 IRQ Status and Control Register The IRQ status and control register (ISCR) controls and monitors operation of the IRQ module. ISCR has these functions: • Shows current state of the IRQ1 and IRQ2 interrupt flags • Clears the IRQ1 and IRQ2 interrupt latches • Masks IRQ1 and IRQ2 interrupt requests • Controls triggering sensitivity of the IRQ1 and IRQ2 interrupt pins MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information External Interrupt Module (IRQ) 321 A G R E E M E N T The system integration module (SIM) controls whether the IRQ1 and IRQ2 interrupt latches can be cleared during the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear the latches during the break state. (See 7.8.3 SIM Break Flag Control Register.) N O N - D I S C L O S U R E 20.5 IRQ Module During Break Interrupts R E Q U I R E D External Interrupt Module (IRQ) IRQ Module During Break Interrupts R E Q U I R E D External Interrupt Module (IRQ) Address: Read: $001D Bit 7 6 IRQF2 0 Write: Reset: 5 4 IMASK2 MODE2 3 2 IRQF1 0 ACK2 0 0 1 Bit 0 IMASK1 MODE1 0 0 ACK1 0 0 0 0 = Unimplemented A G R E E M E N T Figure 20-3. IRQ Status and Control Register (ISCR) IRQ2F — IRQ2 Flag Bit This read-only bit is high when an IRQ2 CPU interrupt is pending. 1 = IRQ2 pin interrupt pending 0 = IRQ2 pin interrupt not pending ACK2 — IRQ2 Interrupt Request Acknowledge Bit Writing a logic 1 to this write-only bit clears the IRQ2 interrupt latch. ACK2 always reads as logic 0. Reset clears ACK2. IMASK2 — IRQ2 Interrupt Mask Bit N O N - D I S C L O S U R E Writing a logic 1 to this read/write bit prevents the output of the IRQ2 interrupt latch from generating interrupt requests. Reset clears IMASK2. 1 = IRQ2 pin interrupt request disabled 0 = IRQ2 pin interrupt request enabled MODE2 — IRQ2 Interrupt Edge/Level Select Bit This read/write bit controls the triggering sensitivity of the IRQ2 interrupt pin. Reset clears MODE2. 1 = IRQ2 interrupt request on falling edges and low levels 0 = IRQ2 interrupt request on falling edges only IRQ1F — IRQ1 Flag Bit This read-only bit is high when an IRQ1 CPU interrupt is pending. 1 = IRQ1 pin interrupt pending 0 = IRQ1 pin interrupt not pending Advance Information 322 MC68HC(9)08PT48 — Rev. 2.0 External Interrupt Module (IRQ) MOTOROLA Writing a logic 1 to this write-only bit clears the IRQ1 latch. ACK1 always reads as logic 0. Reset clears ACK1. IMASK1 — IRQ1 Interrupt Mask Bit Writing a logic 1 to this read/write bit disables IRQ1 interrupt requests. Reset clears IMASK1. 1 = IRQ1 interrupt requests disabled 0 = IRQ1 interrupt requests enabled MODE1 — IRQ1 Edge/Level Select Bit N O N - D I S C L O S U R E This read/write bit controls the triggering sensitivity of the IRQ1 pin. Reset clears MODE1. 1 = IRQ1 interrupt request on falling edges and low levels 0 = IRQ1 interrupt request on falling edges only A G R E E M E N T ACK1 — IRQ1 Interrupt Request Acknowledge Bit R E Q U I R E D External Interrupt Module (IRQ) IRQ Status and Control Register MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information External Interrupt Module (IRQ) 323 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D External Interrupt Module (IRQ) Advance Information 324 MC68HC(9)08PT48 — Rev. 2.0 External Interrupt Module (IRQ) MOTOROLA 21.1 Contents 21.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .325 21.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .325 21.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .326 21.4.1 Alert Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .327 21.4.2 Sound Pressure Level Circuit . . . . . . . . . . . . . . . . . . . . . .328 21.4.3 Alert Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .329 21.2 Introduction N O N - D I S C L O S U R E This section describes the alert output generator (ALR), which provides 14 software selectable square-wave output frequencies. 21.3 Features Features of the ALR module include: • 14 software selectable audio alert tone outputs • 4-bit software-selectable, sound pressure level control MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Alert Output Generator (ALR) R E Q U I R E D Section 21. Alert Output Generator (ALR) A G R E E M E N T Advance Information — MC68HC(9)08PT48 325 R E Q U I R E D Alert Output Generator (ALR) 21.4 Functional Description This system will be used to generate alert tones as the output signal ALERT. The audio alert tone generator is controlled by the four control bits shown in 21.4.1 Alert Control Register. This allows 14 possible frequencies to drive the alert output. The zero state acts as an off mode and places the output in a high-impedance mode and an ON mode places the output in ground state. (See Table 21-1.). A G R E E M E N T NOTE: The alert module is enabled only when the on-chip phase-locked loop (PLL) is engaged. During wait mode, the alert control register (ALCR) register should be programmed with value $00 to ensure a three-state output and eliminate any residual output from the audio frequency generator. Table 21-1. Audio Alert Tone Generator divider Ratios Audio Alert Generator Frequencies at Given fOSC N O N - D I S C L O S U R E AL3–AL0 fOSC 32.768 kHz 32.000 kHz 38.4 kHz 0000 Off Hi-Z Hi-Z Hi-Z 0001 fOSC ÷ 32 1024 1000 1200 0010 fOSC ÷ 8 4096 4000 4800 0011 fOSC ÷ 16 2048 2000 2400 0100 fOSC ÷ 6 5461 5333 6400 0101 fOSC ÷ 12 2730 2666 3200 0110 fOSC ÷ 24 1365 1333 1600 0111 fOSC ÷ 48 683 667 800 1000 fOSC ÷ 10 3276 3200 3840 1001 fOSC ÷ 20 1638 1600 1920 1010 fOSC ÷ 40 819 800 960 1011 fOSC ÷ 80 410 400 480 1100 fOSC ÷ 14 2341 2285 2743 1101 fOSC ÷ 28 1170 1143 1371 1110 fOSC ÷ 56 585 571 686 1111 Off VSS VSS VSS Advance Information 326 MC68HC(9)08PT48 — Rev. 2.0 Alert Output Generator (ALR) MOTOROLA The alert control register (ALCR) bits are defined here. Address: Read: $0036 Bit 7 6 5 4 0 0 0 0 3 2 1 Bit 0 AL3 AL2 AL1 AL0 0 0 0 0 Write: Reset: 0 0 0 0 = Unimplemented Figure 21-1. Alert Control Register (ALCR) AL3–AL0 — Alert Frequency Select The values of these bits determine the frequency of the alert output (see Table 21-1). If these bits are set to all 0s, the ALERT output will be high impedance (off). If set to all 1s, the ALERT output will be at VSS (logic 0). N O N - D I S C L O S U R E Reset clears these bits, turning this output off to the high-impedance state. A G R E E M E N T 21.4.1 Alert Control Register R E Q U I R E D Alert Output Generator (ALR) Functional Description MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Alert Output Generator (ALR) 327 21.4.2 Sound Pressure Level Circuit The sound pressure level (SPL) control register is used to control the volume of the alert transducer. A high frequency clock signal is used to modulate the normal alert output frequency, this modulation reduces the amplitude of the frequency components in the audible range while adding new frequencies outside the audible range. This feature causes a significant reduction in the SPL of the transducer. A broad range of volume control is obtained by altering the duty cycle of the high frequency modulation signal. The SPL control register is software programmable to allow user to select different frequencies with different duty cycles. (See Figure 21-2.) A G R E E M E N T R E Q U I R E D Alert Output Generator (ALR) AUDIO SIGNAL SPL6 FREQUENCY SELECTION FMODHI M U X VCC SPLCLK DCMOD ÷1 ÷2 DIVIDER ÷4 ÷8 N O N - D I S C L O S U R E INTERNAL BUS CLOCK M U X DUTY CYCLE MODULATOR VO CGMXCLK Figure 21-2. Block Diagram of SPL Reduction Circuit Advance Information 328 MC68HC(9)08PT48 — Rev. 2.0 Alert Output Generator (ALR) MOTOROLA Address: $0037 Bit 7 6 5 4 3 2 1 Bit 0 SPL7 SPL6 SPL5 SPL4 SPL3 SPL2 SPL1 SPL0 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 21-3. Alert Data Register (ALDR) SPL7 This bit selects between 16-phase duty cycle modulation if bit SPL7 = 0 and 8-phase duty cycle modulation if bit SPL7 = 1. SPL6 This bit selects between the output (DCMOD) of the duty cycle modulator when SPL6 = 0 and the clock FMODHI when SPL6 = 1 to send to the output SPLCLK to modulate the alert output. (Refer to Figure 21-2.) SPL5 and SPL4 These bits are used to control the frequency divider selections (divided by 1, 2, and 4), and, along with bit SPL6 in one case where both SPL4 and SPL5 are high, to select between a CPU clock divided by eight and the crystal clock. (See Table 21-2.) Table 21-2. Clock Divider and Modulator Selections SPL6 SPL5 SPL4 FMODHI SPLCLK 0 0 0 Bus clock/1 DCMOD 0 0 1 Bus clock/2 DCMOD 0 1 0 Bus clock/4 DCMOD 0 1 1 Bus clock/8 DCMOD 1 0 0 Bus clock/1 FMODHI MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Alert Output Generator (ALR) 329 A G R E E M E N T The alert data register (ALDR) bits are defined here. N O N - D I S C L O S U R E 21.4.3 Alert Data Register R E Q U I R E D Alert Output Generator (ALR) Functional Description R E Q U I R E D Alert Output Generator (ALR) Table 21-2. Clock Divider and Modulator Selections (Continued) SPL6 SPL5 SPL4 FMODHI SPLCLK 1 0 1 Bus clock/2 FMODHI 1 1 0 Bus clock/4 FMODHI 1 1 1 CGMXCLK FMODHI SPL3–SPL0 A G R E E M E N T These bits control the duty cycle of the modulation signal, as shown in Table 21-3. N O N - D I S C L O S U R E Table 21-3. Duty Cycle Selection SPL3 SPL2 SPL1 SPL0 Duty Cycle 8-Phase Count (SPL7 = 1) Duty Cycle 16-Phase Count (SPL7 = 0) 0 0 0 0 SPL disabled SPL disabled 0 0 0 1 1/8 high 7/8 low 1/16 high 15/16 low 0 0 1 0 2/8 high 6/8 low 2/16 high 14/16 low 0 0 1 1 3/8 high 5/8 low 3/16 high 13/16 low 0 1 0 0 4/8 high 4/8 low 4/16 high 12/16 low 0 1 0 1 5/8 high 3/8 low 5/16 high 11/16 low 0 1 1 0 6/8 high 2/8 low 6/16 high 10/16 low 0 1 1 1 7/8 high 1/8 low 7/16 high 9/16 low 1 0 0 0 SPI disabled 8/16 high 8/16 low 1 0 0 1 1/8 high 7/8 low 9/16 high 7/16 low 1 0 1 0 2/8 high 6/8 low 10/16 high 6/16 low 1 0 1 1 3/8 high 5/8 low 11/16 high 5/16 low 1 1 0 0 4/8 high 4/8 low 12/16 high 4/16 low 1 1 0 1 5/8 high 3/8 low 13/16 high 3/16 low 1 1 1 0 6/8 high 2/8 low 14/16 high 2/16 low 1 1 1 1 7/8 high 1/8 low 15/16 high 1/16 low Advance Information 330 MC68HC(9)08PT48 — Rev. 2.0 Alert Output Generator (ALR) MOTOROLA 22.1 Contents 22.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .331 22.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . .332 22.4 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . .333 22.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .333 22.6 3.0-Volt DC Electrical Characteristics. . . . . . . . . . . . . . . . . . .334 22.7 2.0-Volt DC Electrical Characteristics. . . . . . . . . . . . . . . . . . .335 22.8 RAM Retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .336 22.9 3.0-Volt Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .336 22.10 2.0-Volt Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .336 22.11 3.0-Volt SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . .337 R E Q U I R E D Section 22. Electrical Specifications A G R E E M E N T Advance Information — MC68HC(9)08PT48 22.13 PLL2P12M Electrical Specifications . . . . . . . . . . . . . . . . . . . .341 22.14 PLL2P12M Component Specifications . . . . . . . . . . . . . . . . . .341 22.15 Bus Clock PLL Acquisition/Lock Time Specifications . . . . . . .342 22.16 2-K FLASH Memory Electrical Characteristics . . . . . . . . . . . .343 22.17 48-K FLASH Memory Electrical Characteristics . . . . . . . . . . .343 22.18 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .344 22.2 Introduction This section contains electrical and timing specifications. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Electrical Specifications 331 N O N - D I S C L O S U R E 22.12 2.0-Volt SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . .338 22.3 Absolute Maximum Ratings Maximum ratings are the extreme limits to which the MCU can be exposed without permanently damaging it. The MCU contains circuitry to protect the inputs against damage from high static voltages; however, do not apply voltages higher than those shown in this table. Keep VIn and VOut within the range VSS ≤ (VIn or VOut) ≤ VDD. Connect unused inputs to the appropriate voltage level, either VSS or VDD. A G R E E M E N T R E Q U I R E D Electrical Specifications Rating Symbol Value Unit Supply voltage VDD –0.3 to +3.6 V Input voltage VIn VSS –0.3 to VDD +0.3 V I ± 25 mA Storage temperature TSTG –55 to +150 °C Maximum current out of VSS IMVSS 100 mA Maximum current into VDD IMVDD 100 mA Maximum current per pin excluding VDD and VSS N O N - D I S C L O S U R E Note: Voltages are referenced to VSS. NOTE: This device is not guaranteed to operate properly at the maximum ratings. Refer to 22.6 3.0-Volt DC Electrical Characteristics and 22.7 2.0-Volt DC Electrical Characteristics for guaranteed operating conditions. Advance Information 332 MC68HC(9)08PT48 — Rev. 2.0 Electrical Specifications MOTOROLA Symbol Value Unit TA –20 to +65 °C VDD 2.0 ± 10% 3.0 ± 10% V Symbol Value Unit Thermal resistance, 80 pin LQFP θJA 57 °C/W I/O pin power dissipation PI/O User Determined W Power dissipation(1) PD PD = (IDD x VDD) + PI/O = K/(TJ + 273 °C) W Constant(2) K PD x (TA + 273 °C) + (PD2 x θJA) W/°C Average junction temperature TJ Operating temperature range Operating voltage range(1) Note: 1. LCD charge pump optimized for given ranges 22.5 Thermal Characteristics Characteristic Maximum junction temperature TJM TA = PD × θJA 100 °C °C Note: 1. Power dissipation is a function of temperature 2. K is a constant unique to the device. K can be determined from a known TA and measured PD. With this value of K, PD and TJ can be determined for any value of TA. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Electrical Specifications 333 N O N - D I S C L O S U R E Rating A G R E E M E N T 22.4 Functional Operating Range R E Q U I R E D Electrical Specifications Functional Operating Range A G R E E M E N T R E Q U I R E D Electrical Specifications 22.6 3.0-Volt DC Electrical Characteristics Symbol Min Typ(2) Max Unit Output high voltage (ILoad = –0.4 mA) all ports VOH 0.7 x VDD — — V Output low voltage (ILoad = 0.8 mA) all ports VOL — — 0.3 x VDD V Input high voltage All ports, IRQs, RESET, OSC1 VIH 0.7 x VDD — VDD V Input low voltage All ports, IRQs, RESET, OSC1 VIL VSS — 0.3 x VDD V VDD supply current Run (3) Wait (4) Stop(5) IDD — — — — — — 4 2 10 mA mA µA I/O ports Hi-Z leakage current IIL — — ± 10 µA Input current IIN — — 1 µA Capacitance Ports (as input or output) COUT CIN — — — — 12 8 pF POR re-arm voltage(6) VPOR 0 — 200 mV VPORRST 0 700 800 mV RPOR 0.02 — — V/ms Characteristic(1) N O N - D I S C L O S U R E POR reset voltage(7) POR rise time ramp rate(8) Notes: 1. VDD = 3.0 Vdc ± 10%, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted. 2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only. 3. Run (operating) IDD measured using external square wave clock source (fop = 4.0 MHz). Measurements represent total current drain on EVDD/VDD/VDDA power supply pins. EVDD = VDD = VDDA. All inputs at 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects Run IDD. Measured with CGM (PLL off) disabled. 4. Wait IDD measured using external square wave clock source (fop = 4.0 MHz). Measurements represent total current drain on EVDD/VDD/VDDA power supply pins. EVDD = VDD = VDDA. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects Wait IDD. Measured with CGM (PLL off) module disabled. 5. Stop IDD measured with OSC1 = VSS. 6. Maximum is highest voltage that POR is guaranteed. 7. Maximum is highest voltage that POR is possible. 8. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum VDD is reached. Advance Information 334 MC68HC(9)08PT48 — Rev. 2.0 Electrical Specifications MOTOROLA Min Typ(2) Max Unit Output high voltage (ILoad = -0.4 mA) all ports VOH 0.7 x VDD — — V Output low voltage (ILoad = 0.8 mA) all ports VOL — — 0.3 x VDD V Input high voltage All ports, IRQs, RESET, OSC1 VIH 0.7 x VDD — VDD V Input low voltage All ports, IRQs, RESET, OSC1 VIL VSS — 0.3 x VDD V VDD supply current Run (3) Wait (4) Stop(5) IDD — — — — — — 2 1 8 mA mA µA I/O ports Hi-Z leakage current IIL — — ± 10 µA Input current IIN — — 1 µA Capacitance Ports (as input or output) COUT CIN — — — — 12 8 pF POR re-arm voltage(6) VPOR 0 — 200 mV VPORRST 0 700 800 mV RPOR 0.02 — — V/ms POR reset voltage(7) POR rise time ramp rate(8) Notes: 1. VDD = 2.0 Vdc ± 10%, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted. 2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only. 3. Run (operating) IDD measured using external square wave clock source (fop = 2.0 MHz). Measurements represent total current drain on EVDD/VDD/VDDA power supply pins. EVDD = VDD = VDDA. All inputs at 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects Run IDD. Measured with CGM (PLL off) disabled. 4. Wait IDD measured using external square wave clock source (fop = 2.0 MHz). Measurements represent total current drain on EVDD/VDD/VDDA power supply pins. EVDD = VDD = VDDA. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects Wait IDD. Measured with CGM (PLL off) module disabled. 5. Stop IDD measured with OSC1 = VSS. 6. Maximum is highest voltage that POR is guaranteed. 7. Maximum is highest voltage that POR is possible. 8. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum VDD is reached. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Electrical Specifications 335 A G R E E M E N T Symbol Characteristic(1) N O N - D I S C L O S U R E 22.7 2.0-Volt DC Electrical Characteristics R E Q U I R E D Electrical Specifications 2.0-Volt DC Electrical Characteristics N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Electrical Specifications 22.8 RAM Retention Characteristic RAM data retention voltage Symbol Min Typ Max Unit VRDR 0.7 — — V 22.9 3.0-Volt Control Timing Characteristic(1) Symbol Min Max Unit Frequency of operation crystal option(2) fOSC 32 100 kHz Internal operating frequency fOP — 4.0 MHz RESET input pulse width low(3) tIRL 125 — ns IRQ interrupt pulse width low(4) (edge-triggered) tILIH 125 — ns Notes: 1. VSS = 0 Vdc; timing shown with respect to 20% VDD and 70% VDD unless noted 2. See 22.14 PLL2P12M Component Specifications for more information 3. Minimum pulse width reset is guaranteed to be recognized; it is possible for a smaller pulse width to cause a reset. 4. Minimum pulse width is for guaranteed interrupt; it is possible for a smaller pulse width to be recognized 22.10 2.0-Volt Control Timing Characteristic(1) Symbol Min Max Unit Frequency of operation crystal option(2) fOSC 32 100 kHz Internal operating frequency fOP — 2.0 MHz RESET input pulse width low(3) tIRL 125 — ns IRQ interrupt pulse width low(4) (edge-triggered) tILIH 125 — ns Notes: 1. VSS = 0 Vdc; timing shown with respect to 20% VDD and 70% VDD unless noted 2. See 22.14 PLL2P12M Component Specifications for more information 3. Minimum pulse width reset is guaranteed to be recognized; it is possible for a smaller pulse width to cause a reset. 4. Minimum pulse width is for guaranteed interrupt; it is possible for a smaller pulse width to be recognized. Advance Information 336 MC68HC(9)08PT48 — Rev. 2.0 Electrical Specifications MOTOROLA 22.11 3.0-Volt SPI Characteristics Diagram Number(1) Characteristic(2) Min Max Unit Operating frequency Master Slave fOP(M) fOP(S) fOP/128 fOP/2 fOP MHz DC 1 Cycle time Master Slave tCYC(M) tCYC(S) 2 1 128 — tCYC 2 Enable lead time tLead(S) 30 — ns 3 Enable lag time tLag(S) 30 — ns 4 Clock (SCK) high time Master Slave tSCKH(M) tSCKH(S) 200 100 — — ns 5 Clock (SCK) low time Master Slave tSCKL(M) tSCKL(S) 200 100 — — ns 6 Data setup time (inputs) Master Slave tSU(M) tSU(S) 90 10 — — ns 7 Data hold time (inputs) Master Slave tH(M) tH(S) 0 30 — — ns 8 Access time, slave(3) CPHA = 0 CHPA = 1 tA(CP0) tA(CP1) 0 0 80 40 ns 9 Disable time, slave(4) tDIS(S) — 50 ns 10 Data valid time (after enable edge) Master Slave(5) tV(M) tV(S) — — 20 80 ns 11 Data hold time (outputs, after enable edge) Master Slave tHO(M) tHO(S) 0 10 — — ns N O N - D I S C L O S U R E A G R E E M E N T Symbol Notes: 1. Numbers refer to dimensions in Figure 22-1 and Figure 22-2. 2. All timing is shown with respect to 20% VDD and 70% VDD, unless noted; assumes 100 pF load on all SPI pins. 3. Time to data active from high-impedance state 4. Hold time to high-impedance state 5. With 100 pF on all SPI pins MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Electrical Specifications R E Q U I R E D Electrical Specifications 3.0-Volt SPI Characteristics 337 22.12 2.0-Volt SPI Characteristics Diagram Number(1) N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Electrical Specifications Characteristic(2) Symbol Min Max Unit Operating frequency Master Slave fOP(M) fOP(S) fOP/128 fOP/2 fOP MHz DC 1 Cycle time Master Slave tCYC(M) tCYC(S) 2 1 128 — tCYC 2 Enable lead time tLead(S) 60 — ns 3 Enable lag time tLag(S) 60 — ns 4 Clock (SCK) high time Master Slave tSCKH(M) tSCKH(S) 400 200 — — ns 5 Clock (SCK) low time Master Slave tSCKL(M) tSCKL(S) 400 200 — — ns 6 Data setup time (inputs) Master Slave tSU(M) tSU(S) 180 20 — — ns 7 Data hold time (inputs) Master Slave tH(M) tH(S) 0 60 — — ns 8 Access time, slave(3) CPHA = 0 CHPA = 1 tA(CP0) tA(CP1) 0 0 160 80 ns 9 Disable time, slave(4) tDIS(S) — 100 ns 10 Data valid time (after enable edge) Master Slave(5) tV(M) tV(S) — — 40 160 ns 11 Data hold time (outputs, after enable edge) Master Slave tHO(M) tHO(S) 0 2 — — ns Notes: 1. Numbers refer to dimensions in Figure 22-1 and Figure 22-2. 2. All timing is shown with respect to 20% VDD and 70% VDD, unless noted; assumes 100 pF load on all SPI pins 3. Time to data active from high-impedance state. 4. Hold time to high-impedance state. 5. With 100 pF on all SPI pins. Advance Information 338 MC68HC(9)08PT48 — Rev. 2.0 Electrical Specifications MOTOROLA SS INPUT R E Q U I R E D Electrical Specifications 2.0-Volt SPI Characteristics SS pin of master held high. 1 NOTE SCK (CPOL = 1) OUTPUT NOTE 5 4 5 4 6 MISO INPUT BITS 6–1 MSB IN 10 11 MOSI OUTPUT MASTER MSB OUT 7 LSB IN 10 A G R E E M E N T SCK (CPOL = 0) OUTPUT 11 BITS 6–1 MASTER LSB OUT NOTE: This first clock edge is generated internally, but is not seen at the SCK pin. a) SPI Master Timing (CPHA = 0) SS INPUT SS pin of master held high. SCK (CPOL = 1) OUTPUT 5 NOTE 4 5 NOTE 4 6 MISO INPUT 10 MOSI OUTPUT BITS 6–1 MSB IN 11 MASTER MSB OUT N O N - D I S C L O S U R E 1 SCK (CPOL = 0) OUTPUT 7 LSB IN 10 BITS 6–1 11 MASTER LSB OUT NOTE: This last clock edge is generated internally, but is not seen at the SCK pin. b) SPI Master Timing (CPHA = 1) Figure 22-1. SPI Master Timing MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Electrical Specifications 339 R E Q U I R E D Electrical Specifications SS INPUT 3 1 SCK (CPOL = 0) INPUT 11 5 4 2 SCK (CPOL = 1) INPUT 5 4 9 8 A G R E E M E N T MISO INPUT SLAVE MSB OUT 6 MOSI OUTPUT BITS 6–1 7 NOTE 11 11 10 MSB IN SLAVE LSB OUT BITS 6–1 LSB IN NOTE: Not defined but normally MSB of character just received a) SPI Slave Timing (CPHA = 0) SS INPUT 1 SCK (CPOL = 0) INPUT 5 4 N O N - D I S C L O S U R E 2 SCK (CPOL = 1) INPUT 8 MISO OUTPUT MOSI INPUT 3 5 4 10 NOTE 9 SLAVE MSB OUT 6 7 BITS 6–1 11 10 MSB IN SLAVE LSB OUT BITS 6–1 LSB IN NOTE: Not defined but normally LSB of character previously transmitted b) SPI Slave Timing (CPHA = 1) Figure 22-2. SPI Slave Timing Advance Information 340 MC68HC(9)08PT48 — Rev. 2.0 Electrical Specifications MOTOROLA Symbol Min Typ Max CGMXCLK reference frequency (Hz) fRCLK — 38.4 k — Range nominal multiplier (Hz) fNOM — 38.4 k — VCO center-of-range frequency (Hz) fVRS 38.4 k 38.4 k — 20.0 M 10.0 M VCO range linear range multiplier L 1 64 255 VCO power-of-two range multiplier 2E 1 1 8 VCO multiply factor N 1 64 4095 VCO prescale multiplier 2P 1 1 8 Reference divider factor R 1 1 15 VCO operating frequency fVCLK fVRSMIN — fVRSMAX Bus operating frequency (Hz) fBUS — — 4M 2M Notes 2.7–3.3 V, VDD only 1.8–2.7 V, VDD only 2.7–3.3 V, VDD only 1.8–2.7 V, VDD only 22.14 PLL2P12M Component Specifications Characteristic Symbol Min Typ Max Crystal load capacitance CL — — — Consult crystal manufacturer’s data Crystal fixed capacitance C1 — 2*CL — Consult crystal manufacturer’s data Crystal tuning capacitance C2 — 2*CL — Consult crystal manufacturer’s data Feedback bias resistor RB — 22 MΩ — Series resistor RS 0 330 kΩ 1MΩ Filter capacitor CF — CFACT* (VDDA/fXCLK) — Bypass capacitor CBYP — 0.1 µF MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA — Notes Not required CBYP must provide low AC impedance from f = fXCLK/100 to 100*fVCLK, so series resistance must be considered. Advance Information Electrical Specifications 341 A G R E E M E N T Description N O N - D I S C L O S U R E 22.13 PLL2P12M Electrical Specifications R E Q U I R E D Electrical Specifications PLL2P12M Electrical Specifications N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Electrical Specifications 22.15 Bus Clock PLL Acquisition/Lock Time Specifications Specifications for the entry and exit of acquisition and tracking modes, as well as required manual mode delay times are provided here. Description Symbol Min Typ Max Filter capacitor multiply factor CFACT — 0.0145 — F/sV Acquisition mode time factor KACQ — 0.117 — V Tracking mode time factor KTRK — 0.021 — V Manual mode time to stable tACQ — 10 ms — CF = 0.1 µF(1) tAL — 20 ms — CF = 0.1 µF(1) Manual acquisition time tLock — tACQ + tAL — Tracking mode entry frequency tolerance ∆TRK 0 — ± 3.6% Acquisition mode entry frequency tolerance ∆ACQ ± 6.3% — ± 7.2% LOCK entry frequency tolerance ∆Lock 0 — ± 0.9% LOCK exit frequency tolerance ∆UNL ± 0.9% — ± 1.8% Reference cycles per acquisition mode measurement nACQ — 32 — Reference cycles per tracking mode measurement nTRK — 128 — Automatic mode time to stable tACQ — 10 ms — CF = 0.1 µF(1) tAL — 15 ms — CF = 0.1 µF(1) tLock — tACQ + tAL — Manual stable to lock time Automatic stable to lock time Automatic lock time Notes Note: 1. Refer to 22.14 PLL2P12M Component Specifications for information on calculating CF. Advance Information 342 MC68HC(9)08PT48 — Rev. 2.0 Electrical Specifications MOTOROLA Min Recommended Max Units Erase time 100 — 110 ms tKill High voltage kill time 200 200 — µs tHVD Return to read mode time 50 50 — µs tStep(1) Program step size 0.8 1.0 1.2 ms Pulses Number of program pulses/page 1 — 5 ms 10,000 — — Cycles tErase Endurance(2) Description Erase/program cycles fCP2 Charge pump clock frequency for 2-K FLASH 1.0 2.0 2.5 MHz tHVTV HVEN low to VERF high time 50 — — µs tVTP VERF high to PGM low time 150 — — µs Notes: 1. tStep is defined as the amount of time during a program cycle in which the HVEN bit is set. 2. Minimum endurance means the part is guaranteed to work up to this many erase/program cycles. 22.17 48-K FLASH Memory Electrical Characteristics Parameter Min Recommended Max Units Erase time 100 — 110 ms tKill High voltage kill time 200 200 — µs tHVD Return to read mode time 50 50 — µs tStep(1) Program step size 0.8 1.0 1.2 ms Pulses Number of program pulses/page 1 — 5 ms Erase/program cycles 100 — — Cycles fCP2 Charge pump clock frequency for 48-K FLASH 1.8 2.0 2.5 MHz tHVTV HVEN low to VERF high time 50 — — µs tVTP VERF high to PGM low time 150 — — µs tErase Endurance(2) Description Notes: 1. tStep is defined as the amount of time during a program cycle in which the HVEN bit is set. 2. Minimum endurance means the part is guaranteed to work up to this many erase/program cycles. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Electrical Specifications 343 A G R E E M E N T Parameter N O N - D I S C L O S U R E 22.16 2-K FLASH Memory Electrical Characteristics R E Q U I R E D Electrical Specifications 2-K FLASH Memory Electrical Characteristics N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Electrical Specifications 22.18 ADC Characteristics Characteristic Symbol Min Typ Max Notes Supply voltage VDDA2 1.8 3.3 V VDDA2 should be tied to the same potential as VDD via separate traces. Input voltages VADIN VREFH 0 1.5 VREFH VDDA2 V Resolution BAD 7 7 Bits ADC internal clock fADIC 500 k 1.048 M Hz Conversion range RAD VSSA2 VREFH V Power-up time tADPU 16 — tAIC cycles Conversion time tADC 16 17 tAIC cycles Sample time tADS 5 — tAIC cycles Monotocity MAD Zero input reading ZADI Full-scale reading FADI Input capacitance CADI Guaranteed 00 — — Hex VIn = VSSA2 FF Hex VIn = VREFH 20 pF Not tested Advance Information 344 tAIC = 1/fADIC MC68HC(9)08PT48 — Rev. 2.0 Electrical Specifications MOTOROLA 23.1 Contents 23.2 23.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .345 80-Pin LQFP (Case 917-01) . . . . . . . . . . . . . . . . . . . . . . . . . .346 23.2 Introduction This section describes the dimensions of the 80-pin quad flat pack (LQFP). • Local Motorola Sales Office • Motorola Fax Back System (Mfax™) – Phone 1-602-244-6609 – EMAIL [email protected]; http://sps.motorola.com/mfax/ • Worldwide Web (wwweb) home page at http://www.motsps.com/cgi-bin-cases N O N - D I S C L O S U R E 23.3 80-Pin LQFP (Case 917-01) shows the latest package at the time of this publication. To make sure that you have the latest package specifications, contact one of the following: Follow Mfax or wwweb on-line instructions to retrieve the current mechanical specifications. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA General Release Specification Mechanical Data R E Q U I R E D Section 23. Mechanical Data A G R E E M E N T General Release Specification — MC68HC(9)08PT48 345 R E Q U I R E D Mechanical Data 23.3 80-Pin LQFP (Case 917-01) B D B D/2 D1 D1/2 PIN 1 IDEx 80 VIEW Y e/2 61 1 X 60 X=A, B, or D VIEW Y 3 PLACES A G R E E M E N T E/2 b1 E E1 A B E1/2 c ÉÉÉÉ ÇÇÇÇ ÇÇÇÇ ÉÉÉÉ ÇÇÇÇ ÉÉÉÉ 0.08 20 41 21 4X 8X q2 0.200 H A–B D 4X VIEW P H N O N - D I S C L O S U R E 0.1 C A A1 76X BASE METAL SECTION B±B 0.200 C A–B D A2 c1 80 PLACES ROTATED 90 _ CLOCKWISE 40 D M b C A–B D PLATING e C SEATING PLANE S q1 R (R1) R (R2) GAGE PLANE q (L2) 0.25 L (L1) NOTES: 1. ALL DIMENSIONS AND TOLERANCES TO CONFORM TO ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE. 4. DATUMS A, B AND D TO BE DETERMINED AT DATUM PLANE H. 5. DIMENSIONS D AND E TO BE DETERMINED AT SEATING PLANE DATUM C. 6. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H. 7. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. THE DAMBAR PROTRUSION SHALL NOT CAUSE THE D DIMENSION TO EXCEED 0.35. DIM A A1 A2 D D1 E E1 L L1 L2 R1 R2 S b b1 c c1 e q q1 q2 MILLIMETERS MIN MAX ––– 1.60 0.05 0.15 1.35 1.45 14.000 BSC 12.00 BSC 14.000 BSC 12.00 BSC 0.45 0.75 1.00 REF 0.50 REF 0.20 REF 0.20 REF 0.17 REF 0.17 0.27 0.17 0.23 0.12 0.20 0.12 0.16 0.50 BSC 0_ 7_ 0_ ––– 10 _ 14 _ VIEW P General Release Specification 346 MC68HC(9)08PT48 — Rev. 2.0 Mechanical Data MOTOROLA 24.2 MCU Ordering Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347 24.3 Application Program Media. . . . . . . . . . . . . . . . . . . . . . . . . . .348 24.4 ROM Program Verification . . . . . . . . . . . . . . . . . . . . . . . . . . .349 24.5 ROM Verification Units (RVUs). . . . . . . . . . . . . . . . . . . . . . . .350 24.6 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .350 24.2 MCU Ordering Forms To initiate an order for a ROM-based MCU, first obtain the current ordering form for the MCU from a Motorola representative. Submit the following items when ordering MCUs: • A current MCU ordering form that is completely filled out (Contact your Motorola sales office for assistance.) • A copy of the customer specification if it deviates from the Motorola specification for the MCU • Customer’s application program on one of the media listed in 24.3 Application Program Media The current MCU ordering form is also available through the Motorola Freeware Bulletin Board Service (BBS). The telephone number is (512) 891-FREE. After making the connection, type bbs in lowercase letters. Then press the return key to start the BBS software. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Ordering Information 347 R E Q U I R E D 24.1 Contents A G R E E M E N T Section 24. Ordering Information N O N - D I S C L O S U R E Advance Information — MC68HC(9)08PT48 24.3 Application Program Media Deliver the application program to Motorola in one of these media: A G R E E M E N T R E Q U I R E D Ordering Information • Macintosh®1 3-1/2-inch diskette (double-sided 800 K or double-sided high-density 1.4 M) • MS-DOS®2 or PC-DOSTM3 3 1/2-inch diskette (double-sided 720 K or double-sided high-density 1.44 M) • MS-DOS® or PC-DOS 5 1/4-inch diskette (double-sided double-density 360 K or double-sided high-density 1.2 M) Use positive logic for data and addresses. N O N - D I S C L O S U R E When submitting the application program on a diskette, clearly label the diskette with the following information: • Customer name • Customer part number • Project or product name • File name of object code • Date • Name of operating system that formatted diskette • Formatted capacity of diskette On diskettes, the application program must be in Motorola’s S-record format (S1 and S9 records), a character-based object file format generated by M6805 cross assemblers and linkers. Begin the application program at the first user ROM location. Program addresses must correspond exactly to the available on-chip user ROM addresses as shown in the memory map. Write $00 in all non-user ROM locations or leave all non-user ROM locations blank. Refer to the current MCU ordering form for additional requirements. Motorola may request pattern resubmission if non-user areas contain any nonzero code. 1. Macintosh is a registered trademark of Apple Computer, Inc. 2. MS-DOS is a registered trademark of Microsoft Corporation. 3. PC-DOS is a trademark of International Business Machines Corporation. Advance Information 348 MC68HC(9)08PT48 — Rev. 2.0 Ordering Information MOTOROLA 24.4 ROM Program Verification The primary use for the on-chip ROM is to hold the customer’s application program. The customer develops and debugs the application program and then submits the MCU order along with the application program. Motorola enters the customer’s application program code into a computer program that generates a listing verify file. The listing verify file represents the memory map of the MCU. The listing verify file contains the user ROM code and may also contain non-user ROM code, such as selfcheck code. Motorola sends the customer a computer printout of the listing verify file along with a listing verify form. To aid the customer in checking the listing verify file, Motorola programs the listing verify file into customer-supplied, blank, preformatted Macintosh or DOS disks. All original pattern media are filed for contractual purposes and are not returned. Check the listing verify file thoroughly, then complete and sign the listing verify form and return the listing verify form to Motorola. The signed listing verify form constitutes the contractual agreement for the creation of the custom mask. MC68HC(9)08PT48 — Rev. 2.0 MOTOROLA Advance Information Ordering Information 349 A G R E E M E N T In addition to the object code, a file containing the source code can be included. Motorola keeps this code confidential and uses it only to expedite ROM pattern generation in case of any difficulty with the object code. Label the diskette with the filename of the source code. N O N - D I S C L O S U R E If the memory map has two user ROM areas with the same addresses, then write the two areas in separate files on the diskette. Label the diskette with both filenames. R E Q U I R E D Ordering Information ROM Program Verification 24.5 ROM Verification Units (RVUs) After receiving the signed listing verify form, Motorola manufactures a custom photographic mask. The mask contains the customer’s application program and is used to process silicon wafers. The application program cannot be changed after the manufacture of the mask begins. Motorola then produces 10 MCUs, called RVUs, and sends the RVUs to the customer. RVUs are usually packaged in unmarked ceramic and tested to 5 Vdc at room temperature. RVUs are not tested to environmental extremes because their sole purpose is to demonstrate that the customer’s user ROM pattern was properly implemented. The 10 RVUs are free of charge with the minimum order quantity. These units are not to be used for qualification or production. RVUs are not guaranteed by Motorola Quality Assurance. 24.6 MC Order Numbers Table 24-1. MC Order Numbers MC Order Number MC68HC(9)08PT48CFU(1) N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Ordering Information Operating Temperature Range –40 °C to + 85 °C 1. FU = plastic quad flat pack package Advance Information 350 MC68HC(9)08PT48 — Rev. 2.0 Ordering Information MOTOROLA Home Page: RoHS-compliant and/or Pb- free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb- free www.freescale.com counterparts. For further information, see http://www.freescale.com or contact your email: Freescale sales representative. [email protected] USA/Europe or Locations Not Listed: For information on Freescale.s Environmental Products program, go to Freescale Semiconductor http://www.freescale.com/epp. Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 (800) 521-6274 480-768-2130 [email protected] Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) [email protected] Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F Information in this document is provided solely to enable system and software 1-8-1, Shimo-Meguro, Meguro-ku implementers to use Freescale Semiconductor products. There are no express or Tokyo 153-0064, Japan implied copyright licenses granted hereunder to design or fabricate any integrated 0120 191014 circuits or integrated circuits based on the information in this document. +81 2666 8080 Freescale Semiconductor reserves the right to make changes without further notice to [email protected] any products herein. Freescale Semiconductor makes no warranty, representation or Asia/Pacific: guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of Freescale Semiconductor Hong Kong Ltd. any product or circuit, and specifically disclaims any and all liability, including without Technical Information Center limitation consequential or incidental damages. “Typical” parameters which may be 2 Dai King Street provided in Freescale Semiconductor data sheets and/or specifications can and do Tai Po Industrial Estate, vary in different applications and actual performance may vary over time. All operating Tai Po, N.T., Hong Kong parameters, including “Typicals” must be validated for each customer application by +800 2666 8080 customer’s technical experts. Freescale Semiconductor does not convey any license [email protected] under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for For Literature Requests Only: surgical implant into the body, or other applications intended to support or sustain life, Freescale Semiconductor or Motorola for any other which the failure of the Freescale Semiconductor Motorola reserves the right to make changes without further notice to any products herein. makesapplication no warranty,inrepresentation or guarantee regarding the suitability of its product Literature Distribution Center could createora use situation or deathdisclaims may occur. Should Buyer products for any particular purpose, nor does Motorola assume any liability arising out of the application of any where productpersonal or circuit, injury and specifically any and all liability, P.O. Box 5405 or useinFreescale Semiconductor for can anyand such or including without limitation consequential or incidental damages. "Typical" parameters whichpurchase may be provided Motorola data sheets and/or products specifications do unintended vary in different Denver, Colorado 80217 Buyer indemnify andby hold Freescale Semiconductor applications and actual performance may vary over time. All operating parameters, includingunauthorized "Typicals" mustapplication, be validated for eachshall customer application customer's technical experts. 441-2447 and products its officers, employees, affiliates,forand harmless against all Motorola does not convey(800) any license under its patent rights nor the rights of others. Motorola are not designed, subsidiaries, intended, or authorized usedistributors as components in systems 303-675-2140 claims, and expenses, reasonable attorney fees arising intended for surgical implant into the body, or other applications intended to support or sustain life, orcosts, for any damages, other application in which the and failure of the Motorola product could createout a of, directly for or any indirectly, any claim personal application, injury or death with such Fax:or303-675-2150 situation where personal injury death may occur. Should Buyer purchase or use Motorola products such unintended or of unauthorized Buyerassociated shall indemnify and hold unintended unauthorized use,expenses, even if such claim alleges thatfees Freescale Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,or costs, damages, and and reasonable attorney arising out of, LDCForFreescaleSemiconductor directly or indirectly, any claim of personal injury or death associated with such unintendedSemiconductor or unauthorized use, if such regarding claim alleges Motorola was negligent of regarding the waseven negligent thethat design or manufacture the part. @hibbertgroup.com design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. How to reach us: USA/EUROPE/Locations Not Listed: Motorola Literature Distribution, P.O. Box 5405, Denver, Colorado 80217, 1-800-441-2447 or 1-303-675-2140. Customer Focus Center, 1-800-521-6274 JAPAN: Motorola Japan Ltd.: SPD, Strategic Planning Office, 141, 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan. 03-5487-8488 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd., 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298 Mfax™, Motorola Fax Back System: [email protected]; http://sps.motorola.com/mfax/; TOUCHTONE, 1-602-244-6609; US and Canada ONLY, 1-800-774-1848 HOME PAGE: http://motorola.com/sps/ Mfax is a trademark of Motorola, Inc. © Motorola, Inc., 1998 MC68HC08PT48/D