AN33016UA VIN = 5 to 39 V, VOUT = 1.2 to 9 V, 1-channel DC-DC Step down Regulator integrated N-channel Power MOSFET FEATURES DESCRIPTION z 1-channel DC-DC Step Down Regulator Circuit that employs Voltage Mode Switching Control System z Internal reference voltage is within ±1% accuracy z Input Voltage Range : PVCC , VCC: 5 V ~ 39 V z Adjustable Output Voltage Range with external Resistor : 1.2 V ~ 9 V z Adjustable Switching Frequency with external Resistor : 200 kHz ~ 2 MHz AN33016UA is 1-channnel DC-DC Step down Regulator integrated N-channel Power MOSFET and employs the voltage mode switching control system. This IC can be operated with wide input voltage range and is build in several protection functions, so this IC can provide high reliability power supply system. Since it is possible to use up to 2 MHz switching frequency and it is unnecessary to add external parts for High Side Switch, this IC realizes downsizing of set and reducing in the number of external parts. Output voltage is adjustable by user. Maximum current is 1.5 A. z Standby mode consumes less than 1 µA current z Output over voltage protection function z Output ground short protection function z Over current protection with adjustable threshold. z Under voltage lockout function (VREG) z Thermal Shut Down function z Adjustable soft-start function z SSOP024-P-0300F ( Size : 7.8 mm X 8.1 mm, 0.65 mm pitch ), 24pin Plastic Shrink Small Outline Package (SSOP Type) APPLICATIONS High Input Voltage Power Systems such as ・Car-Audio system ・Car-Navigation system ・OA Equipment ・Home Appliances etc. SIMPLIFIED APPLICATION EFFICIENCY CURVE PVIN 100 90 EN BTVCC VCC 80 VCC_S 70 PVCC1/2 VREG 1.0μF AN33016UA 130kΩ Efficiency (%) 20mΩ BT RT 0.1μF DCDCOUT LX1/2 SGND PGND COMP 24pF 0 300 600 Iload (mA) 900 1200 1500 Condition ) Vin = 6 , 12 , 25 V, Vout = 5 V, Lo = 10 µH, Co = 22 µF, Frequency = 490 kHz 30kΩ Notes) This application circuit is an example. The operation of mass production set is not guaranteed. You should perform enough evaluation and verification on the design of mass production set. You are fully responsible for the incorporation of the above application circuit and information in the design of your equipment. Publication date: October 2012 VCC=6V VCC=12V VCC=39V 30 0 7.5kΩ 2.2nF 7.5kΩ 40 10 22μF FB 50 20 SS 0.1μF 60 1 Ver. AEB AN33016UA ABSOLUTE MAXIMUM RATINGS Parameter Symbol Rating Unit Notes Supply voltage Vcc 40 V *1 Operating free-air temperature Topr – 40 to + 85 °C *2 Operating junction temperature Tj – 40 to + 150 °C *2 Storage temperature Tstg – 55 to + 150 °C *2 Input Voltage Range VCC_S,RS (Vcc-5.5) to (Vcc+0.3) V *1 *3 Input Voltage Range BT -0.3 to (Vcc+VREG) V *1 *4 Input Voltage Range EN -0.3 to (Vcc+0.3) V *1 *5 Input Voltage Range FB,BTVCC,TL_CTRL,SYNC -0.3 to 5.5 V *1 FLAG -0.3 to 5.5 V *1 LX1,LX2 – 0.3 to ( Vcc + 0.3 ) V *1 *5 HBM (Human Body Model) 2 kV — MM (Machine Model) 200 V — Output Voltage Range ESD Notes) Do not apply external currents and voltages to any pin not specifically mentioned. This product may sustain permanent damage if subjected to conditions higher than the above stated absolute maximum rating. This rating is the maximum rating and device operating at this range is not guaranteeable as it is higher than our stated recommended operating range. When subjected under the absolute maximum rating for a long time, the reliability of the product may be affected. Vcc is voltage for VCC, PVCC1 and PVCC2. VCC = PVCC1 = PVCC2. *1:The values under the condition not exceeding the above absolute maximum ratings and the power dissipation. *2:Except for the power dissipation, operating ambient temperature, and storage temperature, all ratings are for Ta = 25 °C. *3:( Vcc – 5.5 ) V must not be exceeded – 0.3 V, and ( Vcc + 0.3 ) V must not be exceeded 60 V *4:( Vcc + VREG ) V must not be exceeded 60 V *5:( Vcc + 0.3 ) V must not be exceeded 60 V POWER DISSIPATION RATING θJA PD ( Ta = 25 °C) PD ( Ta = 85 °C ) Notes 135.1 °C / W 0.925 W 0.481 W *1 PACKAGE 24 Pin Plastic Shrink Small Outline Package (SSOP Type) Note). For the actual usage, please refer to the PD-Ta characteristics diagram in the package specification, follow the power supply voltage, load and ambient temperature conditions to ensure that there is enough margin and the thermal design does not exceed the allowable value. *1:Glass Epoxy Substrate(4 Layers) [Glass-Epoxy: 50 X 50 X 0.8t(mm)] CAUTION Although this has limited built-in ESD protection circuit, but permanent damage may occur on it. Therefore, proper ESD precautions are recommended to avoid electrostatic damage to the MOS gates 2 Ver. AEB AN33016UA RECOMMENDED OPERATING CONDITIONS Parameter Pin Name Min. Typ. Max. Unit Notes 5 12 25 V *1 Vcc – 5.5 — Vcc + 0.3 V *1 *2 VCC Supply voltage range PVCC1 PVCC2 VCC_S Input Voltage Range RS Input Voltage Range BT – 0.3 — Vcc + VREG V *1 *3 Input Voltage Range EN – 0.3 — Vcc + 0.3 V *1 *4 LX1,LX2 – 0.3 — Vcc + 0.3 V *1 *4 – 0.3 — 5.5 V *1 – 0.3 — 5.5 V *1 Output Voltage Range FB Input Voltage Range BTVCC TL_CTRL SYNC Output Voltage Range FLAG Note) Do not apply external currents and voltages to any pin not specifically mentioned. Voltage values, unless otherwise specified, are with respect to GND. GND is voltage for SGND, PGND. SGND = PGND Vcc is voltage for VCC, PVCC1 and PVCC2. VCC = PVCC1 = PVCC2. *1 : The values under the condition not exceeding the above absolute maximum ratings and the power dissipation. *2:( Vcc – 5.5 ) V must not be exceeded – 0.3 V, and ( Vcc + 0.3 ) V must not be exceeded 60 V *3:( Vcc + VREG ) V must not be exceeded 60 V *4:( Vcc + 0.3 ) V must not be exceeded 60 V 3 Ver. AEB AN33016UA ELECRTRICAL CHARACTERISTICS Co = 22 µF, Lo= 10 µH, VOUT Setting = 5.0 V, VCC = 12 V, RT = 130 kΩ, Ta = 25 °C ± 2 °C unless otherwise noted. Parameter Min Limits Typ Max No switching FB = 1.1 V EN = High (3.3 V) — 1.0 1.4 mA — ISTBY EN = Low — 0.01 1 μA — VREF FB connected to COMP with gain of 1.5 times 0.99 1.0 1.01 V — Symbol Condition Unit Note Current Consumption Quiescent current Standby current ICQ BGR Feedback voltage Enable (EN) Low input threshold VIL1 — — — 0.4 V — High input threshold VIH1 — 2.0 — — V — EN terminal input current VIC1 — 33 70 μA — EN = 3.3 V SYNCHRONIZATION (SYNC) Low input threshold VIL2 — — — 0.4 V — High input threshold VIH2 — 2.0 — — V — 465 490 515 kHz — 200 — 2000 kHz — Oscillator Oscillator frequency FOUT1 RT = 130 kΩ Oscillator frequency range FOUT2 External sync frequency range FSYNC RT = 130 kΩ Fout1 = 490 kHz 520 — 730 kHz — VOCP (VCC_S-VRS) 66 75 84 mV *1 Over-voltage threshold voltage for VFB VOVP1 For FB 1.14 1.22 1.30 V — Over-voltage threshold voltage for VCC VOVP2 For VCC 40 45 50 V — VREG CREG = 1 μF 4.5 5.0 5.3 V — VSCP monitor FB 0.15 0.3 0.45 V — Over-current protection Over-current threshold voltage Over-voltage protection Internal regulator Internal regulator output voltage GND short protection Short detection voltage Note) *1 : This parameter is tested with DC measurement. 4 Ver. AEB AN33016UA PIN CONFIGURATION Top View LX1 NC. PVCC1 PVCC2 RS VCC_S VCC NC. VREG SGND COMP FB 1 2 3 4 5 6 7 8 9 10 11 12 LX2 PGND BT BTVCC TL FLAG TL_CTRL SYNC EN CT RT SS 24 23 22 21 20 19 18 17 16 15 14 13 PIN FUNCTIONS Pin No. Pin name Type Description 1 LX1 Output 2 NC — 3 PVCC1 Power Supply Power supply pin for internal driver 4 PVCC2 Power Supply Power supply pin for internal driver 5 RS Input Connection to current sensing port for OCP 6 VCC_S Input VCC pin connection to current sensing port for OCP 7 VCC Power Supply 8 NC — 9 VREG Output Connect to an external capacitor for internal regulator 10 SGND Ground Ground pin 11 COMP Output Error amplifier output 12 FB Input 13 SS Output Soft-start capacitor connection pin 14 RT Output Connect to an external resistor for adjustment of oscillation frequency 15 CT Output Low Pass filter function pin for PLL 16 EN Input Enable pin 17 SYNC Input External clock input for adjustment of oscillation frequency 18 TL_CTRL Input Connect to high to disable shut-down function by OCP/SCP 19 FLAG Output Error flag output pin 20 TL Output Connect to an external capacitor for adjustment of over-current detection time 21 BTVCC Input Boot strap input pin 22 BT Input Connect to an external capacitor for Boot strap 23 PGND Ground Power ground pin 24 LX2 Output Connect to an external inductor and schottky diode Connect to an external inductor and schottky diode No connection Power supply pin No connection Error amplifier negative input Notes) Concerning detail about pin description, please refer to OPERATION and APPLICATION INFORMATION section. 5 Ver. AEB AN33016UA FUNCTIONAL BLOCK DIAGRAM EN 16 VCC 7 VREG 9 N.C. 2 N.C. 8 BTVCC 21 6 VCC_S OVP (VCC) VREG OCP 5 RS UVLO TSD VREF (BGR) TL_CTRL 18 3 PVCC1 FLAG 19 Timer Latch 4 PVCC2 OVP SST CNT 22 BT SCP TL 20 PVCC SYNC 17 OSC RT 14 ERAMP PLL PWM 1 LX1 PRIDRV 24 LX2 15 CT 13 SS 12 FB 11 COMP 10 SGND 23 PGND Notes) This block diagram is for explaining functions. Part of the block diagram may be omitted, or it may be simplified. 6 Ver. AEB AN33016UA OPERATION 1. Power ON/OFF sequence Note) The characteristics listed below are reference values derived from the design of the IC and are not guaranteed. AN33016UA consists of one channel and it can be turned ON and OFF by using the EN pin. EN > 2.0 V EN < 0.4 V : Enabled : Disabled 1.Power ON Sequence : – VCC rises to a desired voltage level. (A 10 ms rise time or more is recommended to control and limit any abnormal current flow via the power transistor when VCC is rising.) – Apply a voltage level of 2.0 V or higher at EN pin after VCC is steady and the DCDC will begin to operate. (It is possible to connect the EN pin to VCC through a resistor, and, in that case, when VCC rises, DCDC will begin to operate.) – When VREG voltage reaches 4.9 V and above, and after a delay time (charging time of the soft start capacitor) decided by an external capacitor, the DCDC will start to operate. 2.Power OFF Sequence : – To turn OFF the DCDC output, apply a voltage of 0.4 V or lower to EN pin. – VOUT will drop after EN pin becomes Low. (The discharge time is dependent on the applied load current and the feedback resistance connected at the output.) – The DCDC will turn OFF if the VCC level becomes low even before EN pin becomes low. The above scenario occurs when the VREG voltage decreases to 4.0 V or less. (However, the DCDC output voltage will also decrease with VCC when the VCC level drops below a certain minimum level required to maintain the output voltage level.) 3.Points to take note of when re-starting the DCDC : – Please allow a waiting time of 10 ms or more for the discharge time of the soft start capacitor when starting up the DCDC again after turning it OFF. The output voltage might overshoot without the soft start function working properly if the DCDC is re-started immediately after it is turned OFF. 4. Points to take note of when shut down: – Please apply a voltage of Low level or lower to EN PIN when turn OFF the DCDC. 7 Ver. AEB AN33016UA OPERATION (Continued) 2. Start / Stop Control Timing Chart Note) The characteristics listed below are reference values derived from the design of the IC and are not guaranteed. • ON/OFF operation sequence by EN pin control. 10 μs or more VCC VOUT 4.3 V VREG EN SS 2.2 V t Figure : Power ON/OFF sequence by EN Note) All values given in the above figure are typical values. 8 Ver. AEB AN33016UA OPERATION (Continued) 2. Start / Stop Control Timing Chart Note) The characteristics listed below are reference values derived from the design of the IC and are not guaranteed. • ON/OFF operation sequence by VCC pin control (EN pin is connected to VCC). 10 μs or more VCC VOUT 4.3 V 4.0 V VREG EN SS 2.0 V 2.2 V t Figure : Power ON/OFF sequence by VCC/EN Note) All values given in the above figure are typical values. 9 Ver. AEB AN33016UA OPERATION (Continued) 3. Output voltage setting Note) The characteristics listed below are reference values derived from the design of the IC and are not guaranteed. The output voltage of AN33016UA is set with the external feedback resistance divider arranged between the terminal FB and GND between the DCDC output and the terminal FB. The output voltage is decided depending on the following equation. ⎡ Ra ⎤ Vout = 1.0 × ⎢1 + ⎣ Rb ⎥⎦ 4. Min/Max Duty Operation Note) The characteristics listed below are reference values derived from the design of the IC and are not guaranteed. MinDuty is decided by the minimum ON time. The minimum ON time, Ton (min), is the time that this IC can turn on the high side switch. This is decided by the gate capacitance of the high side switch and the internal timing delay. The following attention is necessary because in applications where the Input/Output voltage difference is great, and the switching frequency is high, there is a possibility to reach the limiting value of the minimum ON time. The minimum ON time, Ton (min), is about 200ns (max). This IC has the function of MaxDuty, which will not exceed a certain definite value for safety reasons in case of abnormal circumstances. The following attention is necessary because in applications where the Input/Output voltage difference is close, and the switching frequency is high, there is a possibility to reach the limiting value of the minimum OFF time. The minimum OFF time, Toff (min), is about 200ns (max). Vout 1 Ton (min) < × Vin F Toff (min) < (1 − Vout 1 )× Vin F *) F: Switching frequency When operating near the Min/Max limited duty, the ripple voltage and the inductor current ripple increases even if the output voltage is stabilized. It is recommended to use on the condition when the turn on switching time and turn off switching time are 200ns or more. *) Please take note of the output voltage setting when the switching frequency is high. 10 Ver. AEB AN33016UA OPERATION (Continued) 5. Oscillation Frequency Note) The characteristics listed below are reference values derived from the design of the IC and are not guaranteed. The switching frequency of the built-in oscillator circuit can be set from 200 kHz to 2000 kHz, determined by the resistance of the terminal RT, set by external resistance. The setting accuracy of the frequency is approximately ±5%. The equation and the corresponding table are described as follows. RT [KΩ] 22 24 27 30 33 36 39 43 47 51 56 62 68 75 82 OSC Frequency (KHz) 2067 1950 1789 1661 1550 1448 1365 1265 1176 1099 1024 943 873 799 737 RT [KΩ] 91 100 110 120 130 150 160 180 200 220 240 270 300 330 360 OSC Frequency (KHz) 675 622 572 525 490 430 404 361 329 301 272 248 225 205 187 OSC Frequency vs RT 2000 1800 OSC Frequency [KHz] 1600 1400 1200 1000 800 600 400 200 0 0 50 100 150 200 RT [KΩ] 250 300 350 400 Figure : switching frequency vs external resistance 11 Ver. AEB AN33016UA OPERATION (Continued) 6. Over-Current Protection Note) The characteristics listed below are reference values derived from the design of the IC and are not guaranteed. Over-current protection function (OCP) turns off the Power MOS in IC when the voltage difference of the external resistance Rsense exceeds 75mV(Typ.) to stop the supply of current from VCC to VOUT. Detection current Isense can be calculated as: Isense = 75 mV / Rsense The over-current protection function operates via pulse-by-pulse control, and Duty is limited during the over-current protection period. Moreover, because the over-current detects the peak current that flows through Rsense, it is necessary to convert it from desired output current Iout value (Refer to Figure ). Equation is shown below. VCC Rsense Comp PowerMOS LOGIC Iout VOUT Rload Figure : Over-Current Protection circuit block diagram Rsense ≈ 0.075 VOUT ⋅ (VCC − VOUT ) Iout + 2 ⋅ F ⋅ L ⋅VCC Average Current=Iout Inductor Current IL Iout IHigh Isense ILow Detected current level (Isense) Figure : Method of detection of Over-Current Protection function 12 Ver. AEB AN33016UA APPLICATIONS INFORMATION CVREG EN 16 VCC 7 VREG 9 BTVCC 21 N.C. 2 N.C. 8 6 VCC_S CVCC1 CVCC2 CVCC3 RRS 5 RS TL_CTRL 18 Pull-up 3 PVCC1 RFLAG FLAG 19 4 PVCC2 22 BT TL 20 CTL CBT SYNC 17 L1 1 LX1 Ext.CLK RT 14 24 LX2 RT1 15 CT CCT 13 SS CSS 12 FB 11 COMP 10 SGND D1 COUT1 23 PGND RC1_1 CC1_1 CC1_2 CC1_3 RC1_2 RC1_5+RC1_6 RC1_3+RC1_4 Figure : Application circuit Figure : Top Layer with silk screen ( Top View ) with Evaluation board Notes) Figure : Bottom Layer with silk screen ( Bottom View ) with Evaluation board This application circuit and layout is an example. The operation of mass production set is not guaranteed. You should perform enough evaluation and verification on the design of mass production set. You are fully responsible for the incorporation of the above application circuit and information in the design of your equipment. 13 Ver. AEB AN33016UA APPLICATIONS INFORMATION ( Continued ) Reference Part Name Value Maker CBT,CCT,CSS,CTL GCM188R11C104KA01J 0.1μF Murata Setting Capacitor CC1_1 GCM1882C1H222JA01J 2.2nF Murata Compensation Capacitor CC1_2 GCM1882C1H240JA01J 24pF Murata Compensation Capacitor CC1_3 GCM1882C1H471JA01J 470pF Murata Compensation Capacitor CVREG GCM188R71C105KA49J 1μF Murata VREG Capacitor CVCC1,CVCC2, CVCC3 CKG57NX7R1H226MT 22μF TDK COUT1 TMK325C7226MM-T 22μF L1 IC1 D1 RC1_1 RC1_2 RC1_3 RC1_4 RC1_5 RC1_6 RVREG RFLAG RT1,RT2,RT3 RRS CDRH8D43-100NC AN33013UA DB24416 ERA3AEB752V ERA3AEB152V ERJ3GEY0R00V ERA3AEB303V ERJ3GEY0R00V ERA3AEB752V ERJ3GEY0R00V ERA3AEB204V ERA3AEB134V ERJ8BWFR030V 10μH R=7.5K R=1.5K R=0 R=30K R=0 R=7.5K R=0 R=200K R=130K R=30m Description Input Capacitor TAIYO,YUDEN Output Capacitor SUMIDA Panasonic Panasonic Panasonic Panasonic Panasonic Panasonic Panasonic Panasonic Panasonic Panasonic Panasonic Panasonic Inductor 1ch DCDC Converter Schottky Diode Compensation & Feedback Resistor Compensation & Feedback Resistor Compensation & Feedback Resistor Compensation & Feedback Resistor Compensation & Feedback Resistor Compensation & Feedback Resistor Pull-up Resistor OSC Setting Resistor OCP Sense Resistor Figure : Recommended component 14 Ver. AEB AN33016UA PACKAGE INFORMATION ( Reference Data ) Outline Drawing Unit : mm 15 Ver. AEB AN33016UA PACKAGE INFORMATION ( Reference Data ) Power dissipation (Supplementary explanation) 16 Ver. AEB AN33016UA IMPORTANT NOTICE 1.The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements. 2.When using the LSI for new models, verify the safety including the long-term reliability for each product. 3.When the application system is designed by using this LSI, be sure to confirm notes in this book. Be sure to read the notes to descriptions and the usage notes in the book. 4.The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information de-scribed in this book. 5.This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company. 6.This LSI is intended to be used for general electronic equipment. Consult our sales staff in advance for information on the following applications: Special applications in which exceptional quality and reliability are required, or if the failure or malfunction of this LSI may directly jeopardize life or harm the human body. Any applications other than the standard applications intended. (1) Space appliance (such as artificial satellite, and rocket) (2) Traffic control equipment (such as for automobile, airplane, train, and ship) (3) Medical equipment for life support (4) Submarine transponder (5) Control equipment for power plant (6) Disaster prevention and security device (7) Weapon (8) Others : Applications of which reliability equivalent to (1) to (7) is required It is to be understood that our company shall not be held responsible for any damage incurred as a result of or in connection with your using the LSI described in this book for any special application, unless our company agrees to your using the LSI in this book for any special application. 7.This LSI is neither designed nor intended for use in automotive applications or environments unless the specific product is designated by our company as compliant with the ISO/TS 16949 requirements. Our company shall not be held responsible for any damage incurred by you or any third party as a result of or in connection with your using the LSI in automotive application, unless our company agrees to your using the LSI in this book for such application. 8.If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed. 9. Please use this product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Our company shall not be held responsible for any damage incurred as a result of your using the LSI not complying with the applicable laws and regulations. 17 Ver. AEB AN33016UA USAGE NOTES 1. When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment. Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products. 2. Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages. 3. Pay attention to the direction of LSI. When mounting it in the wrong direction onto the PCB (printed-circuit-board), it might smoke or ignite. 4. Pay attention in the PCB (printed-circuit-board) pattern layout in order to prevent damage due to short circuit between pins. In addition, refer to the Pin Description for the pin configuration. 5. Perform a visual inspection on the PCB before applying power, otherwise damage might happen due to problems such as a solder-bridge between the pins of the semiconductor device. Also, perform a full technical verification on the assembly quality, because the same damage possibly can happen due to conductive substances, such as solder ball, that adhere to the LSI during transportation. 6. Take notice in the use of this product that it might break or occasionally smoke when an abnormal state occurs such as output pin-VCC short (Power supply fault), output pin-GND short (Ground fault), or output-to-output-pin short (load short) . And, safety measures such as an installation of fuses are recommended because the extent of the abovementioned damage and smoke emission will depend on the current capability of the power supply. 7. The protection circuit is for maintaining safety against abnormal operation. Therefore, the protection circuit should not work during normal operation. Especially for the thermal protection circuit, if the area of safe operation or the absolute maximum rating is momentarily exceeded due to output pin to VCC short (Power supply fault), or output pin to GND short (Ground fault), the LSI might be damaged before the thermal protection circuit could operate. 8. Unless specified in the product specifications, make sure that negative voltage or excessive voltage are not applied to the pins because the device might be damaged, which could happen due to negative voltage or excessive voltage generated during the ON and OFF timing when the inductive load of a motor coil or actuator coils of optical pick-up is being driven. 9. The product which has specified ASO (Area of Safe Operation) should be operated in ASO 10. Verify the risks which might be caused by the malfunctions of external components. 11. Connect the metallic plates on the back side of the LSI with their respective potentials (AGND, PVIN, LX). The thermal resistance and the electrical characteristics are guaranteed only when the metallic plates are connected with their respective potentials. 18 Ver. AEB Request for your special attention and precautions in using the technical information and semiconductors described in this book (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed. (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book. (3) The products described in this book are intended to be used for general applications (such as office equipment, communications equipment, measuring instruments and household appliances), or for specific applications as expressly stated in this book. Consult our sales staff in advance for information on the following applications: – Special applications (such as for airplanes, aerospace, automotive equipment, traffic signaling equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body. It is to be understood that our company shall not be held responsible for any damage incurred as a result of or in connection with your using the products described in this book for any special application, unless our company agrees to your using the products in this book for any special application. (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements. (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment. Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products. (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages. (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company. 20100202