AOL1432 N-Channel Enhancement Mode Field Effect Transistor General Description Features The AOL1432 uses advanced trench technology and design to provide excellent RDS(ON) with low gate charge. This device is suitable for use in PWM, load switching and general purpose applications. Standard product AOL1432 is Pb-free (meets ROHS & Sony 259 specifications). AOL1432L is a Green Product ordering option. AOL1432 and AOL1432L are electrically identical. VDS (V) =25V ID = 44 A (VGS = 10V) Ultra SO-8TM Top View RDS(ON) < 8.5 mΩ (VGS = 10V) RDS(ON) < 14 mΩ (VGS = 4.5V) D Fits SOIC8 footprint ! D Bottom tab connected to drain S G S G Absolute Maximum Ratings TA=25°C unless otherwise noted Parameter Maximum Symbol VDS Drain-Source Voltage 25 VGS Gate-Source Voltage ±20 TC=25°C 44 Continuous Drain Current TC=100°C 31 ID Pulsed Drain Current Continuous Drain Current G Avalanche Current C IDM TA=25°C TA=70°C C Repetitive avalanche energy L=0.3mH C TC=25°C B Power Dissipation TC=100°C TA=25°C Power Dissipation A TA=70°C Junction and Storage Temperature Range Thermal Characteristics Parameter Maximum Junction-to-Ambient A Maximum Junction-to-Ambient A Maximum Junction-to-Case B A IDSM 100 12 9 A IAR 25 A EAR 94 30 15 2.1 1.3 -55 to 175 mJ PD PDSM TJ, TSTG Symbol t ≤ 10s Steady-State Steady-State Alpha & Omega Semiconductor, Ltd. Units V V RθJA RθJC Typ 14.2 48 3.5 W W °C Max 20 60 5 Units °C/W °C/W °C/W AOL1432 Electrical Characteristics (T J=25°C unless otherwise noted) Symbol Parameter STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage ID=250uA, VGS=0V VDS=20V, VGS=0V IDSS Zero Gate Voltage Drain Current IGSS VGS(th) ID(ON) Gate-Body leakage current Gate Threshold Voltage On state drain current RDS(ON) Static Drain-Source On-Resistance gFS VSD IS VGS=4.5V, ID=20A VDS=5V, ID=10A Forward Transconductance IS=1A, VGS=0V Diode Forward Voltage Maximum Body-Diode Continuous Current DYNAMIC PARAMETERS Ciss Input Capacitance Coss Output Capacitance Crss Reverse Transfer Capacitance Rg Gate resistance SWITCHING PARAMETERS Qg(10V) Total Gate Charge Qg(4.5V) Total Gate Charge Qgs Gate Source Charge Qgd Gate Drain Charge tD(on) Turn-On DelayTime tr Turn-On Rise Time tD(off) Turn-Off DelayTime tf Turn-Off Fall Time trr Body Diode Reverse Recovery Time Qrr Body Diode Reverse Recovery Charge Min Conditions Typ Max 1.8 1 5 100 3 25 V TJ=55°C VDS=0V, VGS=±20V VDS=VGS, ID=250μA VGS=10V, VDS=5V VGS=10V, ID=30A 1 100 TJ=125°C VGS=0V, VDS=12.5V, f=1MHz VGS=0V, VDS=0V, f=1MHz VGS=10V, VDS=12.5V, ID=20A VGS=10V, VDS=12.5V, RL=0.6Ω, RGEN=3Ω IF=20A, dI/dt=100A/μs IF=20A, dI/dt=100A/μs Units μA nA V A 6.5 9.5 11.5 35 0.72 8.5 12 14 mΩ 1 55 S V A 1430 319 215 1.2 1716 26.4 13.5 3.9 7.75 6.5 10 22.7 6.2 32 nC nC nC nC ns ns ns ns 23.06 15.25 27.5 ns nC 2 mΩ pF pF pF Ω A: The value of R θJA is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T A =25°C. The Power dissipation PDSM is based on R θJA and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it. B. The power dissipation PD is based on TJ(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C: Repetitive rating, pulse width limited by junction temperature TJ(MAX)=175°C. D. The R θJA is the sum of the thermal impedence from junction to case R θJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300 μs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=175°C. G. Surface mounted on a 1 in 2 FR-4 board with 2oz. Copper. H. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C. The SOA curve provides a single pulse rating. THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Rev3:July 2005 Alpha & Omega Semiconductor, Ltd. AOL1432 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 100 60 5V 10V 4.5V 6V 80 VDS=5V 50 7V 40 VGS=4V ID(A) ID (A) 60 40 30 125°C 20 25°C 3.5V 20 10 3V 0 0 0 1 2 3 4 0 5 1 3 4 5 VGS(Volts) Figure 2: Transfer Characteristics VDS (Volts) Fig 1: On-Region Characteristics 18 1.8 Normalized On-Resistance 16 VGS=4.5V 14 RDS(ON) (mΩ) 2 12 10 8 VGS=10V 6 4 2 0 1.6 VGS=10V, 20A 1.4 1.2 VGS=4.5V, 20A 1 0.8 0 10 20 30 40 50 60 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage 0 25 50 75 100 125 150 175 Temperature (°C) Figure 4: On-Resistance vs. Junction Temperature 1.0E+02 30 ID=20A 1.0E+01 25 1.0E+00 IS (A) RDS(ON) (mΩ) 20 125°C 15 125°C 1.0E-01 1.0E-02 25°C 1.0E-03 10 25°C 1.0E-04 5 1.0E-05 0 0.0 2 4 6 8 10 VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage Alpha & Omega Semiconductor, Ltd. 0.2 0.4 0.6 0.8 1.0 VSD (Volts) Figure 6: Body-Diode Characteristics 1.2 AOL1432 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 10 2000 Ciss 1600 Capacitance (pF) VGS (Volts) 1800 VDS=12.5V ID=20A 8 6 4 1400 1200 1000 800 Coss 600 400 2 200 0 5 10 15 20 25 Qg (nC) Figure 7: Gate-Charge Characteristics 1000.0 10 15 20 VDS (Volts) Figure 8: Capacitance Characteristics 160 10μs 100μs 1m 10.0 RDS(ON) limited 5 25 200 Power (W) ID (Amps) 0 30 TJ(Max)=175°C, 100.0 10ms TJ(Max)=175°C TC=25°C 120 80 DC 1.0 40 0.1 0.1 1 10 100 Figure 9: Maximum Forward Biased Safe Operating Area (Note F) 10 D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC RθJC=5°C/W 0 0.0001 0.001 0.01 0.1 1 10 Pulse Width (s) Figure 10: Single Pulse Power Rating Junction-toCase (Note F) VDS (Volts) ZθJC Normalized Transient Thermal Resistance Crss 0 0 In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 1 PD 0.1 Ton Single Pulse 0.01 0.00001 0.0001 0.001 0.01 0.1 T 1 Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F) Alpha & Omega Semiconductor, Ltd. 10 100 AOL1432 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 40 40 Power Dissipation (W) ID(A), Peak Avalanche Current 50 30 TA=25°C 20 10 30 20 10 0 0 0.00001 0.0001 0 0.001 25 50 50 40 40 Power (W) Current rating ID(A) 75 100 125 150 175 TCASE (°C) Figure 13: Power De-rating (Note B) Time in avalanche, tA (s) Figure 12: Single Pulse Avalanche capability 30 20 10 TA=25°C 30 20 10 0 0 25 50 75 100 125 150 0 0.001 175 TCASE (°C) Figure 14: Current De-rating (Note B) 10 ZθJA Normalized Transient Thermal Resistance 50 1 D=Ton/T TJ,PK=TA+PDM.ZθJA.RθJA RθJA=60°C/W 0.01 0.1 1 10 100 1000 Pulse Width (s) Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H) In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 0.1 PD 0.01 Single Pulse Ton 0.001 0.00001 0.0001 0.001 0.01 0.1 1 T 10 Pulse Width (s) Figure 16: Normalized Maximum Transient Thermal Impedance (Note H) Alpha & Omega Semiconductor, Ltd. 100 1000