ROHM BD6184GUL

System LED Drivers for Mobile Phones
8 LEDs
LDO 4ch
BD6184GUL
No.10041EAT10
●Description
BD6184GUL is “Intelligent LED Driver” that is the most suitable for the cellular phone.
It has 3 ~ 8LED driver and output variable LDO4ch for LCD Backlight.
It can be developed widely from the High End model to the Low End model.
As it has charge pump circuit for LED power supply, it is no need to use coils, and it contributes to small space.
VCSP50L3 (3.15mm x 3.10mm 0.5mm pitch)
It adopts the very thin CSP package that is the most suitable for the slim phone.
●Features
1) Total 3 ~ 8LEDs driver for LCD Backlight
・It has 4LEDs (it can select 4LED or 3LED) for exclusire use of Main and 4LEDs which can chose independent control
or a main allotment by resister setting.
・“Main Group” can be controlled by external PWM signal.
・ON/ Off and a setup of LED current are possible at the time of the independent control by the independence.
2) Charge Pump DC/DC for LED driver
・It has x1/x1.5/ x2 mode that will be selected automatically.
・The most suitable voltage up magnification is controlled automatically by LED port voltage.
・Soft start functions,Over voltage protection (Auto-return type),Over current protection (Auto-return type) loading
3) 4ch Low Drop Out Series Regulator (LDO)
・It has 16 steps selectable output voltage by the register.
LDO1, LDO2, LDO3, LDO4: Iomax=150mA
4) Thermal shutdown
2
5) I C BUS FS mode (max 400 kHz) Compatibility
●Absolute Maximum Ratings (Ta=25℃)
Parameter
Symbol
Ratings
Unit
Maximum Voltage
VMAX
7
V
Power Dissipation
Pd
1430 note)
mW
Operating Temperature Range
Topr
-30 ~ +85
℃
Storage Temperature Range
Tstg
-55 ~ +150
℃
Limits
Unit
note) Power dissipation deleting is 11.44mW/ ℃, when it’s used in over 25 ℃.
(It’s deleting is on the board that is ROHM’s standard)
●Operating Conditions (VBAT≥VIO, Ta=-30 ~ 85 ℃)
Parameter
Symbol
VBAT Input Voltage
VIO Pin Voltage
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
VBAT
2.7 ~ 5.5
V
VIO
1.65 ~ 3.3
V
1/37
2010.07 - Rev.A
Technical Note
BD6184GUL
●Electrical Characteristics (Unless otherwise specified, Ta=25℃, VBAT=3.6V, VIO=1.8V)
Limits
Parameter
Symbol
Unit
Min.
Typ.
Max.
Conditions
【Circuit Current】
VBAT Circuit Current 1
IBAT1
-
0.1
3.0
μA
RESETB=0V, VIO= 0V
VBAT Circuit Current 2
IBAT2
-
0.5
3.0
μA
RESETB=0V, VIO=1.8V
VBAT Circuit Current 3
IBAT3
-
61
65
mA
DC/DC x1 mode, Io=60mA
VBAT=4.0V
VBAT Circuit Current 4
IBAT4
-
92
102
mA
DC/DC x1.5 mode, Io=60mA
VBAT=3.6V
VBAT Circuit Current 5
IBAT5
-
123
140
mA
DC/DC x2 mode, Io=60mA
VBAT=2.7V
VBAT Circuit Current 6
IBAT6
-
90
150
μA
LDO1,2=ON, ILDO=0mA
VBAT Circuit Current 7
IBAT7
-
90
150
μA
LDO3,4=ON, ILDO=0mA
【LED Driver】
LED Current Step (Setup)
ILEDSTP1
128
Step LED1 ~ 8
LED Current Step (At slope)
ILEDSTP2
256
Step LED1 ~ 8
LED Maximum Setup Current
IMAXWLED
-
25.6
-
mA
LED1 ~ 8
LED Current Accuracy
IWLED
-7%
15
+7%
mA
ILED=15mA setting, VLED=1.0V
LED Current Matching
ILEDMT
-
-
4
%
Between LED1 ~ 8 at VLED=1.0V,
ILED=15mA
LED OFF Leak Current
ILKLED
-
-
1.0
μA
VLED=4.5V
Output Voltage
VoCP
-
V
Vf is forward direction of LED
Drive Ability
IOUT
-
-
200
mA
Switching Frequency
fosc
0.8
1.0
1.2
MHz
-
Over Voltage Protection
Detect Voltage
OVP
-
5.6
-
V
-
Over Current Protection
Detect Current
OCP
-
250
375
mA
【DC/DC(Charge Pump)】
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
Vf+0.2 Vf+0.25
2/37
VBAT≥3.2V, VOUT=3.9V
VOUT=0V
2010.07 - Rev.A
Technical Note
BD6184GUL
●Electrical Characteristics (Unless otherwise specified, Ta=25℃, VBAT=3.6V, VIO=1.8V)
Limits
Parameter
Symbol
Unit
Min.
Typ.
Max.
Conditions
【Regulator (LDO1)】
Output Voltage
Vo1
1.164
1.261
1.455
1.552
1.746
2.134
2.328
2.425
2.522
2.619
2.716
2.813
2.910
3.007
3.104
3.201
1.20
1.30
1.50
1.60
1.80
2.20
2.40
2.50
2.60
2.70
2.80
2.90
3.00
3.10
3.20
3.30
1.236
1.339
1.545
1.648
1.854
2.266
2.472
2.575
2.678
2.781
2.884
2.987
3.090
3.193
3.296
3.399
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Output Current
Io1
-
-
150
mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA <Initial Voltage>
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Vo=1.8V
Dropout Voltage
Vsat1
-
0.2
0.3
V
Load Stability
ΔVo11
-
10
60
mV
Io=1 ~ 150mA, Vo=1.8V
VBAT=2.5V, Io=150mA, Vo=2.8V
Input Voltage Stability
ΔVo12
-
10
60
mV
Ripple Rejection Ratio
RR1
-
65
-
dB
Short Circuit Current Limit
Ilim1
-
200
400
mA
VBAT=3.4 ~ 4.5V, Io=50mA, Vo=1.8V
f=100Hz, Vin=200mVp-p, Vo=1.2V
Io=50mA, BW=20Hz ~ 20kHz
Vo=0V
Discharge Resister at OFF
ROFF1
-
1.0
1.5
kΩ
-
Output Voltage
Vo2
1.164
1.261
1.455
1.552
1.746
2.134
2.328
2.425
2.522
2.619
2.716
2.813
2.910
3.007
3.104
3.201
1.20
1.30
1.50
1.60
1.80
2.20
2.40
2.50
2.60
2.70
2.80
2.90
3.00
3.10
3.20
3.30
1.236
1.339
1.545
1.648
1.854
2.266
2.472
2.575
2.678
2.781
2.884
2.987
3.090
3.193
3.296
3.399
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Output Current
Io2
-
-
150
mA
【Regulator (LDO2)】
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA <Initial Voltage>
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Vo=2.5V
Dropout Voltage
Vsat2
-
0.2
0.3
V
Load Stability
ΔVo21
-
10
60
mV
Io=1 ~ 150mA, Vo=2.5V
Input Voltage Stability
ΔVo22
-
10
60
mV
Ripple Rejection Ratio
RR2
-
65
-
dB
Short Circuit Current Limit
Ilim2
-
200
400
mA
VBAT=3.4 ~ 4.5V, Io=50mA, Vo=2.5V
f=100Hz, Vin=200mVp-p, Vo=1.2V
Io=50mA, BW=20Hz ~ 20kHz
Vo=0V
Discharge Resister at OFF
ROFF2
-
1.0
1.5
kΩ
-
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
3/37
VBAT=2.5V, Io=150mA, Vo=2.8V
2010.07 - Rev.A
Technical Note
BD6184GUL
●Electrical Characteristics (Unless otherwise specified, Ta=25℃, VBAT=3.6V, VIO=1.8V)
Limits
Parameter
Symbol
Unit
Min.
Typ.
Max.
Conditions
【Regulator (LDO3)】
Output Voltage
Vo3
1.164
1.261
1.455
1.552
1.746
2.134
2.328
2.425
2.522
2.619
2.716
2.813
2.910
3.007
3.104
3.201
1.20
1.30
1.50
1.60
1.80
2.20
2.40
2.50
2.60
2.70
2.80
2.90
3.00
3.10
3.20
3.30
1.236
1.339
1.545
1.648
1.854
2.266
2.472
2.575
2.678
2.781
2.884
2.987
3.090
3.193
3.296
3.399
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Output Current
Io3
-
-
150
mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA <Initial Voltage>
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Vo=1.8V
Dropout Voltage
Vsat3
-
0.2
0.3
V
Load Stability
ΔVo31
-
10
60
mV
VBAT=2.5V, Io=150mA, Vo=2.8V
Io=1 ~ 150mA, Vo=1.8V
Input Voltage Stability
ΔVo32
-
10
60
mV
Ripple Rejection Ratio
RR3
-
65
-
dB
Short Circuit Current Limit
Ilim3
-
200
400
mA
VBAT=3.4 ~ 4.5V, Io=50mA, Vo=1.8V
f=100Hz, Vin=200mVp-p, Vo=1.2V
Io=50mA, BW=20Hz ~ 20kHz
Vo=0V
Discharge Resister at OFF
ROFF3
-
1.0
1.5
kΩ
-
Output Voltage
Vo4
1.164
1.261
1.455
1.552
1.746
2.134
2.328
2.425
2.522
2.619
2.716
2.813
2.910
3.007
3.104
3.201
1.20
1.30
1.50
1.60
1.80
2.20
2.40
2.50
2.60
2.70
2.80
2.90
3.00
3.10
3.20
3.30
1.236
1.339
1.545
1.648
1.854
2.266
2.472
2.575
2.678
2.781
2.884
2.987
3.090
3.193
3.296
3.399
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Output Current
Io4
-
-
150
mA
【Regulator (LDO4)】
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA <Initial Voltage>
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Vo=2.8V
Dropout Voltage
Vsat4
-
0.2
0.3
V
Load Stability
ΔVo41
-
10
60
mV
Io=1 ~ 150mA, Vo=2.8V
Input Voltage Stability
ΔVo42
-
10
60
mV
Ripple Rejection Ratio
RR4
-
65
-
dB
Short Circuit Current Limit
Ilim4
-
200
400
mA
VBAT=3.4 ~ 4.5V, Io=50mA, Vo=2.8V
f=100Hz, Vin=200mVp-p, Vo=1.2V
Io=50mA, BW=20Hz ~ 20kHz
Vo=0V
Discharge Resister at OFF
ROFF4
-
1.0
1.5
kΩ
-
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
4/37
VBAT=2.5V, Io=150mA, Vo=2.8V
2010.07 - Rev.A
Technical Note
BD6184GUL
●Electrical Characteristics (Unless otherwise specified, Ta=25℃, VBAT=3.6V, VIO=1.8V)
Limits
Parameter
Symbol
Unit
Min.
Typ.
Max.
Condition
【SDA, SCL】(I2C Interface)
L level Input Voltage
VILI
-0.3
-
0.25×VIO
V
-
H level Input Voltage
VIHI
0.75×VIO
-
VBAT+0.3
V
-
Hysteresis of
Schmitt trigger Input
VhysI
0.05×VIO
-
-
V
-
L Level Output Voltage
VOLI
0
-
0.3
V
SDA Pin, IOL=3 mA
linI
-
-
1
μA
Input Voltage= 0.1×VIO ~ 0.9×VIO
L Level Input Voltage
VILR
-0.3
-
0.25×VIO
V
H Level Input Voltage
VIHR
0.75×VIO
-
VBAT+0.3
V
IinR
-
-
1
μA
L Level Input Voltage
VILA
-0.3
-
0.3
V
-
H level Input Voltage
VIHA
1.4
-
VBAT+0.3
V
-
Input Current
IinA
-
3.6
10
μA
Input Voltage = 1.8V
PWmin
250
-
-
μs
WPWMIN Pin
Input Current
【RESETB】(CMOS Input Pin)
Input Current
Input Voltage = 0.1×VIO ~ 0.9×VIO
【WPWMIN】(NMOS Input Pin)
PWM Input Minimum
High Pulse Width
●Power Dissipation (On the ROHM’s standard board)
1.6
Power Dissipation Pd (W)
1.4
1430mW
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0
25
50
75
100
125
150
Ta(℃)
Information of the ROHM’s standard board
Material : glass-epoxy
th
Size : 50mm×58mm×1.75mm(8 layer)
Wiring pattern figure Refer to after page.
Fig.1 Power Dissipation
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
5/37
2010.07 - Rev.A
Technical Note
BD6184GUL
●Block Diagram / Application Circuit Example 1
C2P
C2N
C1P
C1N
CPGND
1μF/10V
1μF/10V
VBAT
VBATCP
VOUT
Charge Pump
VBAT1
x1 / x1.5 / x2
1μF/10V
2.2µF/10V
LED1
LED2
OVP
Charge Pump
Mode Control
LED3
LED terminal voltage feedback
VIO
(
)(
LED4
)
8LED
Main Back Light
LED5
RESETB
LED6
SCL
SDA
I/O
TSD
2
Level
I C interface
Shift
Digital Control
LED7
LED8
WPWMIN
IREF
LEDGND
VREF
LDO1
LDO1O
LDO2
LDO2O
Vo selectable
Io=150mA
GND1
Vo selectable
Io=150mA
LDO3
1μF/6.3V
1μF/6.3V
LDO3O
1μF/6.3V
Vo selectable
Io=150mA
GND2
LDO4O
LDO4
1μF/6.3V
T3
(Open)
T1
(Open)
T4
T2
NC3
NC2
NC1
Vo selectable
Io=150mA
Fig.2 Block Diagram / Application Circuit Example 1
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
6/37
2010.07 - Rev.A
Technical Note
BD6184GUL
●Block Diagram / Application Circuit Example 2
C2P
C2N
C1P
C1N
CPGND
1μF/10V
1μF/10V
VBAT
VBATCP
VOUT
Charge Pump
VBAT1
x1 / x1.5 / x2
1μF/10V
2.2µF/10V
LED1
LED2
OVP
Charge Pump
Mode Control
LED terminal voltage feedback
LED3
VIO
(
)(
LED4
7LED
Main Back Light
)
LED5
RESETB
LED6
SCL
SDA
I/O
Level
I2C interface
Shift
Digital Control
TSD
LED7
1LED
Sub Back Light
LED8
WPWMIN
IREF
LEDGND
VREF
LDO1
LDO1O
LDO2
LDO2O
LDO3
LDO3O
Vo selectable
Io=150mA
GND1
Vo selectable
Io=150mA
Vo selectable
Io=150mA
GND2
LDO4
1μF/6.3V
1μF/6.3V
LDO4O
1μF/6.3V
T3
(Open)
T4
T1
(Open)
T2
NC3
NC2
NC1
Vo selectable
Io=150mA
1μF/6.3V
Fig.3 Block Diagram / Application Circuit Example 2
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
7/37
2010.07 - Rev.A
Technical Note
BD6184GUL
●Block Diagram / Application Circuit Example 3
C2P
C2N
C1P
C1N
CPGND
1µF/10V
1µF/10V
VBAT
VBATCP
VOUT
Charge Pump
VBAT1
x1 / x1.5 / x2
1µF/10V
2.2µF/10V
LED1
LED2
OVP
Charge Pump
Mode Control
LED terminal voltage feedback
VIO
(
)(
4LED
Main Back Light
LED3
LED4
)
RESETB
LED5
1LED
Sub Back Light
SCL
SDA
I/O
TSD
2
Level
I C interface
Shift
Digital Control
LED6
LED7
3LED
RGB Illumination
LED8
WPWMIN
IREF
LEDGND
VREF
LDO1
LDO1O
LDO2
LDO2O
LDO3
LDO3O
LDO4
LDO4O
Vo selectable
Io=150mA
Vo selectable
Io=150mA
GND1
Vo selectable
Io=150mA
GND2
1μF/6.3V
1μF/6.3V
1μF/6.3V
T3
(Open)
T1
(Open)
T4
T2
NC3
NC2
NC1
Vo selectable
Io=150mA
1μF/6.3V
Fig.4 Block Diagram / Application Circuit Example 3
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
8/37
2010.07 - Rev.A
Technical Note
BD6184GUL
●Pin Arrangement [Bottom View]
F
T4
LDO4O
LDO3O
LDO2O
LDO1O
T3
E
LED7
LED8
GND2
VBAT1
VIO
SCL
D
LED6
LEDGND
NC2
NC3
SDA
VOUT
C
LED5
LED4
NC1
C1P
C2P
B
LED3
LED2
GND1
RESETB
C2N
VBATCP
A
T1
LED1
WPWMIN
C1N
CPGND
T2
1
2
3
4
5
6
Index
Total 35 Ball
Fig.5 Pin Arrangement
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
9/37
2010.07 - Rev.A
Technical Note
BD6184GUL
●Package Outline
VCSP50L3 CSP small package
SIZE
: 3.15mm x 3.10mm(A difference in public:X,Y Both ±0.05mm)
Height
: 0.55mm max
A ball pitch : 0.5 mm
1PIN MARK
3.1±0.05
Lot No.
BD6184
0.05
S
0.3±0.05
35-φ0.25±0.05
A
AB
(φ0.15)INDEX POST
S
F
E
D
C
B
A
B
P=0.5×5
0.06
0.55MAX
0.1±0.05
3.15±0.05
1 2 3 4 5 6
0.325±0.05
P=0.5×5
(Unit: mm)
Fig.6 Package Outline
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
10/37
2010.07 - Rev.A
Technical Note
BD6184GUL
●Pin Functions
No Ball No.
Pin Name
I/O
ESD Diode
For Power
For Ground
Functions
Equivalent
Circuit
1
B6
VBATCP
-
-
GND
Battery is connected
A
2
E4
VBAT1
-
-
GND
Battery is connected
A
3
A1
T1
O
VBAT
GND
Test Output Pin (Open)
N
4
A6
T2
I
VBAT
GND
Test Input Pin (short to Ground)
S
5
F6
T3
O
VBAT
GND
Test Output Pin(Open)
M
6
F1
T4
I
VBAT
GND
Test Input Pin (short to Ground)
S
7
E5
VIO
-
VBAT
GND
I/O Power supply is connected
C
2
8
D5
SDA
I/O
VBAT
GND
I C data input / output
I
9
E6
SCL
I
VBAT
GND
I2C clock input
H
10
A5
CPGND
-
VBAT
-
11
B4
RESETB
I
VBAT
GND
Ground
B
Reset Input (L:Reset, H:Reset Cancel)
H
12
D2
LEDGND
-
VBAT
-
Ground
B
13
A4
C1N
I/O
VBAT
GND
Charge Pump capacitor is connected
F
14
C5
C1P
I/O
-
GND
Charge Pump capacitor is connected
G
15
B5
C2N
I/O
VBAT
GND
Charge Pump capacitor is connected
F
16
C6
C2P
I/O
-
GND
Charge Pump capacitor is connected
G
17
D6
VOUT
O
-
GND
Charge Pump output pin
A
18
A2
LED1
I
-
GND
LED is connected 1 for LCD Back Light
E
19
B2
LED2
I
-
GND
LED is connected 2 for LCD Back Light
E
20
B1
LED3
I
-
GND
LED is connected 3 for LCD Back Light
E
21
C2
LED4
I
-
GND
LED is connected 4 for LCD Back Light
E
22
C1
LED5
I
-
GND
LED is connected 5 for LCD Back Light
E
23
D1
LED6
I
-
GND
LED is connected 6 for LCD Back Light
E
24
E1
LED7
I
-
GND
LED is connected 7 for LCD Back Light
E
25
E2
LED8
I
-
GND
LED is connected 8 for LCD Back Light
E
26
C4
NC1
-
-
-
(Non connect)
-
27
D3
NC2
-
-
-
(Non connect)
-
28
D4
NC3
-
-
-
(Non connect)
-
29
B3
GND1
-
VBAT
-
Ground
B
30
E3
GND2
-
VBAT
-
Ground
B
31
A3
WPWMIN
I
VBAT
GND
External PWM input for Back Light *
L
32
F5
LDO1O
O
VBAT
GND
LDO1 output pin
Q
33
F4
LDO2O
O
VBAT
GND
LDO2 output pin
Q
34
F3
LDO3O
O
VBAT
GND
LDO3 output pin
Q
35
F2
LDO4O
O
VBAT
GND
LDO4 output pin
Q
* A setup of a register is separately necessary to make it effective.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
11/37
2010.07 - Rev.A
Technical Note
BD6184GUL
●Equivalent Circuit
A
B
C
VBAT
F
VBAT
G
J
VBAT
VIO
L
VBAT
Q
VBAT
VBAT
R
V
VBAT
VBAT
W
VBAT
E
H
VBAT
VIO
I
VBAT
M
VBAT
VBAT
N
VBAT
VBAT
S
VBAT
VBAT
U
VBAT
VIO
X
VoS
VBAT
Y
VBAT
VIO
VBAT
VIO
VBAT
Fig.7 Equivalent Circuit
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
12/37
2010.07 - Rev.A
Technical Note
BD6184GUL
●I2C BUS Format
2
The writing/reading operation is based on the I C slave standard.
・Slave address
A7
A6
1
1
A5
A4
A3
A2
A1
R/W
1
0
1
1
0
1/0
・Bit Transfer
SCL transfers 1-bit data during H. SCL cannot change signal of SDA during H at the time of bit transfer. If SDA changes
while SCL is H, START conditions or STOP conditions will occur and it will be interpreted as a control signal.
SDA
SCL
SDA a state of stability:
SDA
It can change
Data are effective
Fig.8
・START and STOP condition
When SDA and SCL are H, data is not transferred on the I2C- bus. This condition indicates, if SDA changes from H to L
while SCL has been H, it will become START (S) conditions, and an access start, if SDA changes from L to H while SCL
has been H, it will become STOP (P) conditions and an access end.
SDA
SCL
S
P
STOP condition
START condition
Fig.9
・Acknowledge
It transfers data 8 bits each after the occurrence of START condition. A transmitter opens SDA after transfer 8bits data,
and a receiver returns the acknowledge signal by setting SDA to L.
DATA OUTPUT
BY TRANSMITTER
not acknowledge
DATA OUTPUT
BY RECEIVER
acknowledge
SCL
S
1
2
8
9
clock pulse for
acknowledgement
START condition
Fig.10
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
13/37
2010.07 - Rev.A
Technical Note
BD6184GUL
・Writing protocol
A register address is transferred by the next 1 byte that transferred the slave address and the write-in command. The 3rd
byte writes data in the internal register written in by the 2nd byte, and after 4th byte or, the increment of register address is
carried out automatically. However, when a register address turns into the last address, it is set to 00h by the next
transmission. After the transmission end, the increment of the address is carried out.
*1
S X X X X X X X 0 A A7 A6 A5 A4 A3 A2 A1 A0 A D7 D6 D5 D4 D3 D2 D1 D0 A
slave address
register address
*1
D7 D6 D5 D4 D3 D2 D1 D0 A P
DATA
DATA
register address
increment
R/W=0(write)
register address
increment
A=acknowledge(SDA LOW)
A=not acknowledge(SDA HIGH)
S=START condition
P=STOP condition
*1: Write Timing
from master to slave
from slave to master
Fig.11
・Reading protocol
It reads from the next byte after writing a slave address and R/W bit. The register to read considers as the following
address accessed at the end, and the data of the address that carried out the increment is read after it. If an address turns
into the last address, the next byte will read out 00h. After the transmission end, the increment of the address is carried
out.
S X X X X X X X
1 A D7 D6 D5 D4 D3 D2 D1 D0 A
slave address
D7 D6 D5 D4 D3 D2 D1 D0 A P
DATA
DATA
register address
increment
register address
increment
R/W=1(read)
A=acknowledge(SDA LOW)
A=not acknowledge(SDA HIGH)
S=START condition
P=STOP condition
from master to slave
from slave to master
Fig.12
・Multiple reading protocols
After specifying an internal address, it reads by repeated START condition and changing the data transfer direction. The
data of the address that carried out the increment is read after it. If an address turns into the last address, the next byte will
read out 00h. After the transmission end, the increment of the address is carried out.
S X X X X X X X 0 A A7 A6A5A4A3A2 A1A0 A Sr X X X X X X X 1 A
slave address
register address
slave address
R/W=0(write)
R/W=1(read)
D7 D6 D5 D4 D3D2D1D0 A
DATA
D7 D6D5D4D3D2D1D0 A P
DATA
register address
increment
register address
increment
A=acknowledge(SDA LOW)
A=not acknowledge(SDA HIGH)
S=START condition
P=STOP condition
Sr=repeated START condition
from master to slave
from slave to master
Fig.13
As for reading protocol and multiple reading protocols, please do A(not acknowledge) after doing the final reading
operation. It stops with read when ending by A(acknowledge), and SDA stops in the state of Low when the reading data of
that time is 0. However, this state returns usually when SCL is moved, data is read, and A (not acknowledge) is done.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
14/37
2010.07 - Rev.A
Technical Note
BD6184GUL
●Timing Diagram
SDA
t BUF
t SU;DAT
t LOW
t HD;STA
SCL
t HD;STA
S
t SU;STO
t SU;STA
t HD;DAT
Sr
t HIGH
P
S
Fig.14
●Electrical Characteristics(Unless otherwise specified, Ta=25 ℃, VBAT=3.6V, VIO=1.8V)
Standard-mode
Parameter
Symbol
Min.
Typ.
Max.
Fast-mode
Min.
Typ.
Max.
Unit
【I2C BUS format】
SCL clock frequency
fSCL
0
-
100
0
-
400
kHz
LOW period of the SCL clock
tLOW
4.7
-
-
1.3
-
-
μs
HIGH period of the SCL clock
tHIGH
4.0
-
-
0.6
-
-
μs
Hold time (repeated) START condition
After this period, the first clock is generated
tHD;STA
4.0
-
-
0.6
-
-
μs
Set-up time for a repeated START condition
tSU;STA
4.7
-
-
0.6
-
-
μs
Data hold time
tHD;DAT
0
-
3.45
0
-
0.9
μs
Data set-up time
tSU;DAT
250
-
-
100
-
-
ns
Set-up time for STOP condition
tSU;STO
4.0
-
-
0.6
-
-
μs
Bus free time between a STOP
and START condition
tBUF
4.7
-
-
1.3
-
-
μs
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
15/37
2010.07 - Rev.A
Technical Note
BD6184GUL
●Register List
Address W/R
Register data
D7
D6
D5
D4
D3
D2
D1
D0
Function
00h
W
-
-
-
-
-
-
-
SFTRST
Software Reset
01h
W
-
-
W8MD
W7MD
W6MD
W5MD
W4MD
-
02h
W
WPWMEN
-
W8EN
W7EN
W6EN
W5EN
-
MLEDEN
LED Power Control
03h
W
-
IMLED(6)
IMLED(5)
IMLED(4)
IMLED(3)
IMLED(2)
IMLED(1)
IMLED(0)
Main group current setting
04h
-
-
-
-
-
-
-
-
-
05h
W
-
IW5(6)
IW5(5)
IW5(4)
IW5(3)
IW5(2)
IW5(1)
IW5(0)
LED5 current setting
06h
W
-
IW6(6)
IW6(5)
IW6(4)
IW6(3)
IW6(2)
IW6(1)
IW6(0)
LED6 current setting
07h
W
-
IW7(6)
IW7(6)
IW7(6)
IW7(6)
IW7(6)
IW7(6)
IW7(6)
LED7 current setting
08h
W
-
IW8(6)
IW8(6)
IW8(6)
IW8(6)
IW8(6)
IW8(6)
IW8(6)
LED8 current setting
09h
W
THL (3)
THL (2)
THL (1)
THL (0)
TLH (3)
TLH (2)
TLH (1)
TLH (0)
Main Current transition
0Ah
-
-
-
-
-
-
-
-
-
-
0Bh
-
-
-
-
-
-
-
-
-
-
0Ch
-
-
-
-
-
-
-
-
-
-
0Dh
-
-
-
-
-
-
-
-
-
-
0Eh
-
-
-
-
-
-
-
-
-
-
0Fh
-
-
-
-
-
-
-
-
-
-
10h
-
-
-
-
-
-
-
-
-
-
11h
-
-
-
-
-
-
-
-
-
-
12h
-
-
-
-
-
-
-
-
-
-
13h
W
-
-
-
-
LDO4EN
LDO3EN
LDO2EN
LDO1EN
14h
W LDO2VSEL3 LDO2VSEL2 LDO2VSEL1 LDO2VSEL0 LDO1VSEL3 LDO1VSEL2 LDO1VSEL1 LDO1VSEL0
LDO1 Vout Control
LDO2 Vout Control
15h
W LDO4VSEL3 LDO4VSEL2 LDO4VSEL1 LDO4VSEL0 LDO3VSEL3 LDO3VSEL2 LDO3VSEL1 LDO3VSEL0
LDO3 Vout Control
LDO4 Vout Control
LED Pin function setting
-
LDO Power Control
Input "0” for "-".
A free address has the possibility to assign it to the register for the test.
Access to the register for the test and the undefined register is prohibited.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
16/37
2010.07 - Rev.A
Technical Note
BD6184GUL
●Register Map
Address 00h < Software Reset >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
00h
W
-
-
-
-
-
-
-
SFTRST
Initial Value
00h
-
-
-
-
-
-
-
0
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
Bit[7:1] :
(Not used)
Bit0 :
SFTRST Software Reset
“0” :
Reset cancel
“1” :
Reset(All register initializing)
Refer to “Reset” for detail.
Address 01h < LED Pin function setting>
Address
R/W
Bit7
Bit6
01h
W
-
-
W8MD
W7MD
W6MD
W5MD
W4MD
-
Initial Value
02h
-
-
0
0
0
0
1
0
Bit[7:6] :
(Not used)
Bit5 :
W8MD
LED8 control setting (individual / Main group)
“0” :
LED8 individual control (Initial Value)
“1” :
LED8 Main group control
Refer to “LED Driver” for detail.
Bit4 :
W7MD
LED7 control setting (individual / Main group)
“0” :
LED7 individual control (Initial Value)
“1” :
LED7 Main group control
Refer to “LED Driver” for detail.
Bit3 :
W6MD
LED6 control setting (individual / Main group)
“0” :
LED6 individual control (Initial Value)
“1” :
LED6 Main group control
Refer to “LED Driver” for detail.
Bit2 :
W5MD
LED5 control setting (individual / Main group)
“0” :
LED5 individual control (Initial Value)
“1” :
LED5 Main group control
Refer to “LED Driver” for detail.
Bit1 :
W4MD
LED4 Control Board setting (unuse / use)
“0” :
LED4 unuse
“1” :
LED4 use (Main group Control) (Initial Value)
Refer to “LED Driver” for detail.
Bit0 :
(Not used)
Set up a fixation in every design because it isn't presumed W*PW that it is changed dynamically.
And, do the setup of W*PW when each LED is Off.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
17/37
2010.07 - Rev.A
Technical Note
BD6184GUL
Address 02h < LED Power Control>
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
02h
W
WPWMEN
-
W8EN
W7EN
W6EN
W5EN
-
MLEDEN
Initial Value
00h
0
-
0
0
0
0
-
0
Bit7 :
WPWMEN
External PWM Input “WPWMIN” terminal Enable Control (Valid/Invalid)
“0” :
External PWM input invalid (Initial Value)
“1” :
External PWM input valid
Refer to “●Current Adjustment” for detail.
Bit6 :
(Not used)
Bit5 :
W8EN
“0” :
“1” :
LED8 Control (ON/OFF)
LED8 OFF (Initial Value)
LED8 ON(individual control)
Bit4 :
W7EN
“0” :
“1” :
LED7 Control (ON/OFF)
LED7 OFF (Initial Value)
LED7 ON(individual control)
Bit3 :
W6EN
“0” :
“1” :
LED6 Control (ON/OFF)
LED6 OFF (Initial Value)
LED6 ON(individual control)
Bit2 :
W5EN
“0” :
“1” :
LED5 Control (ON/OFF)
LED5 OFF (Initial Value)
LED5 ON(individual control)
Bit1 :
(Not used)
Bit0 :
MLEDEN
Main group LED Control (ON/OFF)
“0” :
Main group OFF (Initial Value)
“1” :
Main group ON
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
18/37
2010.07 - Rev.A
Technical Note
BD6184GUL
Address 03h < Main group LED Current setting(Normal Mode) >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
03h
W
-
IMLED(6)
IMLED(5)
IMLED(4)
IMLED(3)
IMLED(2)
IMLED(1)
IMLED(0)
Initial Value
00h
-
0
0
0
0
0
0
0
Bit7 :
(Not used)
Bit[6:0] :
IMLED (6:0)
Main Group LED Current Setting
“0000000” :
“0000001” :
“0000010” :
“0000011” :
“0000100” :
“0000101” :
“0000110” :
“0000111” :
“0001000” :
“0001001” :
“0001010” :
“0001011” :
“0001100” :
“0001101” :
“0001110” :
“0001111” :
“0010000” :
“0010001” :
“0010010” :
“0010011” :
“0010100” :
“0010101” :
“0010110” :
“0010111” :
“0011000” :
“0011001” :
“0011010” :
“0011011” :
“0011100” :
“0011101” :
“0011110” :
“0011111” :
“0100000” :
“0100001” :
“0100010” :
“0100011” :
“0100100” :
“0100101” :
“0100110” :
“0100111” :
“0101000” :
“0101001” :
“0101010” :
“0101011” :
“0101100” :
“0101101” :
“0101110” :
“0101111” :
“0110000” :
“0110001” :
“0110010” :
“0110011” :
“0110100” :
“0110101” :
“0110110” :
“0110111” :
“0111000” :
“0111001” :
“0111010” :
“0111011” :
“0111100” :
“0111101” :
“0111110” :
“0111111” :
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
0.2 mA (Initial Value)
0.4 mA
0.6 mA
0.8 mA
1.0 mA
1.2 mA
1.4 mA
1.6 mA
1.8 mA
2.0 mA
2.2 mA
2.4 mA
2.6 mA
2.8 mA
3.0 mA
3.2 mA
3.4 mA
3.6 mA
3.8 mA
4.0 mA
4.2 mA
4.4 mA
4.6 mA
4.8 mA
5.0 mA
5.2 mA
5.4 mA
5.6 mA
5.8 mA
6.0 mA
6.2 mA
6.4 mA
6.6 mA
6.8 mA
7.0 mA
7.2 mA
7.4 mA
7.6 mA
7.8 mA
8.0 mA
8.2 mA
8.4 mA
8.6 mA
8.8 mA
9.0 mA
9.2 mA
9.4 mA
9.6 mA
9.8 mA
10.0 mA
10.2 mA
10.4 mA
10.6 mA
10.8 mA
11.0 mA
11.2 mA
11.4 mA
11.6 mA
11.8 mA
12.0 mA
12.2 mA
12.4 mA
12.6 mA
12.8 mA
“1000000” :
“1000001” :
“1000010” :
“1000011” :
“1000100” :
“1000101” :
“1000110” :
“1000111” :
“1001000” :
“1001001” :
“1001010” :
“1001011” :
“1001100” :
“1001101” :
“1001110” :
“1001111” :
“1010000” :
“1010001” :
“1010010” :
“1010011” :
“1010100” :
“1010101” :
“1010110” :
“1010111” :
“1011000” :
“1011001” :
“1011010” :
“1011011” :
“1011100” :
“1011101” :
“1011110” :
“1011111” :
“1100000” :
“1100001” :
“1100010” :
“1100011” :
“1100100” :
“1100101” :
“1100110” :
“1100111” :
“1101000” :
“1101001” :
“1101010” :
“1101011” :
“1101100” :
“1101101” :
“1101110” :
“1101111” :
“1110000” :
“1110001” :
“1110010” :
“1110011” :
“1110100” :
“1110101” :
“1110110” :
“1110111” :
“1111000” :
“1111001” :
“1111010” :
“1111011” :
“1111100” :
“1111101” :
“1111110” :
“1111111” :
19/37
13.0 mA
13.2 mA
13.4 mA
13.6 mA
13.8 mA
14.0 mA
14.2 mA
14.4 mA
14.6 mA
14.8 mA
15.0 mA
15.2 mA
15.4 mA
15.6 mA
15.8 mA
16.0 mA
16.2 mA
16.4 mA
16.6 mA
16.8 mA
17.0 mA
17.2 mA
17.4 mA
17.6 mA
17.8 mA
18.0 mA
18.2 mA
18.4 mA
18.6 mA
18.8 mA
19.0 mA
19.2 mA
19.4 mA
19.6 mA
19.8 mA
20.0 mA
20.2 mA
20.4 mA
20.6 mA
20.8 mA
21.0 mA
21.2 mA
21.4 mA
21.6 mA
21.8 mA
22.0 mA
22.2 mA
22.4 mA
22.6 mA
22.8 mA
23.0 mA
23.2 mA
23.4 mA
23.6 mA
23.8 mA
24.0 mA
24.2 mA
24.4 mA
24.6 mA
24.8 mA
25.0 mA
25.2 mA
25.4 mA
25.6 mA
2010.07 - Rev.A
Technical Note
BD6184GUL
Address 05h < LED5 Current setting(Independence control) >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
05h
W
-
IW5(6)
IW5(5)
IW5(4)
IW5(3)
IW5(2)
IW5(1)
IW5(0)
Initial Value
00h
-
0
0
0
0
0
0
0
Bit7 :
(Not used)
Bit[6:0] :
IW5 (6:0)
LED5 Current setting
“0000000” :
“0000001” :
“0000010” :
“0000011” :
“0000100” :
“0000101” :
“0000110” :
“0000111” :
“0001000” :
“0001001” :
“0001010” :
“0001011” :
“0001100” :
“0001101” :
“0001110” :
“0001111” :
“0010000” :
“0010001” :
“0010010” :
“0010011” :
“0010100” :
“0010101” :
“0010110” :
“0010111” :
“0011000” :
“0011001” :
“0011010” :
“0011011” :
“0011100” :
“0011101” :
“0011110” :
“0011111” :
“0100000” :
“0100001” :
“0100010” :
“0100011” :
“0100100” :
“0100101” :
“0100110” :
“0100111” :
“0101000” :
“0101001” :
“0101010” :
“0101011” :
“0101100” :
“0101101” :
“0101110” :
“0101111” :
“0110000” :
“0110001” :
“0110010” :
“0110011” :
“0110100” :
“0110101” :
“0110110” :
“0110111” :
“0111000” :
“0111001” :
“0111010” :
“0111011” :
“0111100” :
“0111101” :
“0111110” :
“0111111” :
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
0.2 mA (Initial Value)
0.4 mA
0.6 mA
0.8 mA
1.0 mA
1.2 mA
1.4 mA
1.6 mA
1.8 mA
2.0 mA
2.2 mA
2.4 mA
2.6 mA
2.8 mA
3.0 mA
3.2 mA
3.4 mA
3.6 mA
3.8 mA
4.0 mA
4.2 mA
4.4 mA
4.6 mA
4.8 mA
5.0 mA
5.2 mA
5.4 mA
5.6 mA
5.8 mA
6.0 mA
6.2 mA
6.4 mA
6.6 mA
6.8 mA
7.0 mA
7.2 mA
7.4 mA
7.6 mA
7.8 mA
8.0 mA
8.2 mA
8.4 mA
8.6 mA
8.8 mA
9.0 mA
9.2 mA
9.4 mA
9.6 mA
9.8 mA
10.0 mA
10.2 mA
10.4 mA
10.6 mA
10.8 mA
11.0 mA
11.2 mA
11.4 mA
11.6 mA
11.8 mA
12.0 mA
12.2 mA
12.4 mA
12.6 mA
12.8 mA
“1000000” :
“1000001” :
“1000010” :
“1000011” :
“1000100” :
“1000101” :
“1000110” :
“1000111” :
“1001000” :
“1001001” :
“1001010” :
“1001011” :
“1001100” :
“1001101” :
“1001110” :
“1001111” :
“1010000” :
“1010001” :
“1010010” :
“1010011” :
“1010100” :
“1010101” :
“1010110” :
“1010111” :
“1011000” :
“1011001” :
“1011010” :
“1011011” :
“1011100” :
“1011101” :
“1011110” :
“1011111” :
“1100000” :
“1100001” :
“1100010” :
“1100011” :
“1100100” :
“1100101” :
“1100110” :
“1100111” :
“1101000” :
“1101001” :
“1101010” :
“1101011” :
“1101100” :
“1101101” :
“1101110” :
“1101111” :
“1110000” :
“1110001” :
“1110010” :
“1110011” :
“1110100” :
“1110101” :
“1110110” :
“1110111” :
“1111000” :
“1111001” :
“1111010” :
“1111011” :
“1111100” :
“1111101” :
“1111110” :
“1111111” :
20/37
13.0 mA
13.2 mA
13.4 mA
13.6 mA
13.8 mA
14.0 mA
14.2 mA
14.4 mA
14.6 mA
14.8 mA
15.0 mA
15.2 mA
15.4 mA
15.6 mA
15.8 mA
16.0 mA
16.2 mA
16.4 mA
16.6 mA
16.8 mA
17.0 mA
17.2 mA
17.4 mA
17.6 mA
17.8 mA
18.0 mA
18.2 mA
18.4 mA
18.6 mA
18.8 mA
19.0 mA
19.2 mA
19.4 mA
19.6 mA
19.8 mA
20.0 mA
20.2 mA
20.4 mA
20.6 mA
20.8 mA
21.0 mA
21.2 mA
21.4 mA
21.6 mA
21.8 mA
22.0 mA
22.2 mA
22.4 mA
22.6 mA
22.8 mA
23.0 mA
23.2 mA
23.4 mA
23.6 mA
23.8 mA
24.0 mA
24.2 mA
24.4 mA
24.6 mA
24.8 mA
25.0 mA
25.2 mA
25.4 mA
25.6 mA
2010.07 - Rev.A
Technical Note
BD6184GUL
Address 06h < LED6 Current setting(Independence control) >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
06h
W
-
IW6(6)
IW6(5)
IW6(4)
IW6(3)
IW6(2)
IW6(1)
IW6(0)
Initial Value
00h
-
0
0
0
0
0
0
0
Bit7 :
(Not used)
Bit[6:0] :
IW6 (6:0)
LED6 Current setting
“0000000” :
“0000001” :
“0000010” :
“0000011” :
“0000100” :
“0000101” :
“0000110” :
“0000111” :
“0001000” :
“0001001” :
“0001010” :
“0001011” :
“0001100” :
“0001101” :
“0001110” :
“0001111” :
“0010000” :
“0010001” :
“0010010” :
“0010011” :
“0010100” :
“0010101” :
“0010110” :
“0010111” :
“0011000” :
“0011001” :
“0011010” :
“0011011” :
“0011100” :
“0011101” :
“0011110” :
“0011111” :
“0100000” :
“0100001” :
“0100010” :
“0100011” :
“0100100” :
“0100101” :
“0100110” :
“0100111” :
“0101000” :
“0101001” :
“0101010” :
“0101011” :
“0101100” :
“0101101” :
“0101110” :
“0101111” :
“0110000” :
“0110001” :
“0110010” :
“0110011” :
“0110100” :
“0110101” :
“0110110” :
“0110111” :
“0111000” :
“0111001” :
“0111010” :
“0111011” :
“0111100” :
“0111101” :
“0111110” :
“0111111” :
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
0.2 mA (Initial Value)
0.4 mA
0.6 mA
0.8 mA
1.0 mA
1.2 mA
1.4 mA
1.6 mA
1.8 mA
2.0 mA
2.2 mA
2.4 mA
2.6 mA
2.8 mA
3.0 mA
3.2 mA
3.4 mA
3.6 mA
3.8 mA
4.0 mA
4.2 mA
4.4 mA
4.6 mA
4.8 mA
5.0 mA
5.2 mA
5.4 mA
5.6 mA
5.8 mA
6.0 mA
6.2 mA
6.4 mA
6.6 mA
6.8 mA
7.0 mA
7.2 mA
7.4 mA
7.6 mA
7.8 mA
8.0 mA
8.2 mA
8.4 mA
8.6 mA
8.8 mA
9.0 mA
9.2 mA
9.4 mA
9.6 mA
9.8 mA
10.0 mA
10.2 mA
10.4 mA
10.6 mA
10.8 mA
11.0 mA
11.2 mA
11.4 mA
11.6 mA
11.8 mA
12.0 mA
12.2 mA
12.4 mA
12.6 mA
12.8 mA
“1000000” :
“1000001” :
“1000010” :
“1000011” :
“1000100” :
“1000101” :
“1000110” :
“1000111” :
“1001000” :
“1001001” :
“1001010” :
“1001011” :
“1001100” :
“1001101” :
“1001110” :
“1001111” :
“1010000” :
“1010001” :
“1010010” :
“1010011” :
“1010100” :
“1010101” :
“1010110” :
“1010111” :
“1011000” :
“1011001” :
“1011010” :
“1011011” :
“1011100” :
“1011101” :
“1011110” :
“1011111” :
“1100000” :
“1100001” :
“1100010” :
“1100011” :
“1100100” :
“1100101” :
“1100110” :
“1100111” :
“1101000” :
“1101001” :
“1101010” :
“1101011” :
“1101100” :
“1101101” :
“1101110” :
“1101111” :
“1110000” :
“1110001” :
“1110010” :
“1110011” :
“1110100” :
“1110101” :
“1110110” :
“1110111” :
“1111000” :
“1111001” :
“1111010” :
“1111011” :
“1111100” :
“1111101” :
“1111110” :
“1111111” :
21/37
13.0 mA
13.2 mA
13.4 mA
13.6 mA
13.8 mA
14.0 mA
14.2 mA
14.4 mA
14.6 mA
14.8 mA
15.0 mA
15.2 mA
15.4 mA
15.6 mA
15.8 mA
16.0 mA
16.2 mA
16.4 mA
16.6 mA
16.8 mA
17.0 mA
17.2 mA
17.4 mA
17.6 mA
17.8 mA
18.0 mA
18.2 mA
18.4 mA
18.6 mA
18.8 mA
19.0 mA
19.2 mA
19.4 mA
19.6 mA
19.8 mA
20.0 mA
20.2 mA
20.4 mA
20.6 mA
20.8 mA
21.0 mA
21.2 mA
21.4 mA
21.6 mA
21.8 mA
22.0 mA
22.2 mA
22.4 mA
22.6 mA
22.8 mA
23.0 mA
23.2 mA
23.4 mA
23.6 mA
23.8 mA
24.0 mA
24.2 mA
24.4 mA
24.6 mA
24.8 mA
25.0 mA
25.2 mA
25.4 mA
25.6 mA
2010.07 - Rev.A
Technical Note
BD6184GUL
Address 07h < LED7 Current setting(Independence control) >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
07h
W
-
IW7(6)
IW7(5)
IW7(4)
IW7(3)
IW7(2)
IW7(1)
IW7(0)
Initial Value
00h
-
0
0
0
0
0
0
0
Bit7 :
(Not used)
Bit[6:0] :
IW7 (6:0)
LED7 Current setting
“0000000” :
“0000001” :
“0000010” :
“0000011” :
“0000100” :
“0000101” :
“0000110” :
“0000111” :
“0001000” :
“0001001” :
“0001010” :
“0001011” :
“0001100” :
“0001101” :
“0001110” :
“0001111” :
“0010000” :
“0010001” :
“0010010” :
“0010011” :
“0010100” :
“0010101” :
“0010110” :
“0010111” :
“0011000” :
“0011001” :
“0011010” :
“0011011” :
“0011100” :
“0011101” :
“0011110” :
“0011111” :
“0100000” :
“0100001” :
“0100010” :
“0100011” :
“0100100” :
“0100101” :
“0100110” :
“0100111” :
“0101000” :
“0101001” :
“0101010” :
“0101011” :
“0101100” :
“0101101” :
“0101110” :
“0101111” :
“0110000” :
“0110001” :
“0110010” :
“0110011” :
“0110100” :
“0110101” :
“0110110” :
“0110111” :
“0111000” :
“0111001” :
“0111010” :
“0111011” :
“0111100” :
“0111101” :
“0111110” :
“0111111” :
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
0.2 mA (Initial Value)
0.4 mA
0.6 mA
0.8 mA
1.0 mA
1.2 mA
1.4 mA
1.6 mA
1.8 mA
2.0 mA
2.2 mA
2.4 mA
2.6 mA
2.8 mA
3.0 mA
3.2 mA
3.4 mA
3.6 mA
3.8 mA
4.0 mA
4.2 mA
4.4 mA
4.6 mA
4.8 mA
5.0 mA
5.2 mA
5.4 mA
5.6 mA
5.8 mA
6.0 mA
6.2 mA
6.4 mA
6.6 mA
6.8 mA
7.0 mA
7.2 mA
7.4 mA
7.6 mA
7.8 mA
8.0 mA
8.2 mA
8.4 mA
8.6 mA
8.8 mA
9.0 mA
9.2 mA
9.4 mA
9.6 mA
9.8 mA
10.0 mA
10.2 mA
10.4 mA
10.6 mA
10.8 mA
11.0 mA
11.2 mA
11.4 mA
11.6 mA
11.8 mA
12.0 mA
12.2 mA
12.4 mA
12.6 mA
12.8 mA
“1000000” :
“1000001” :
“1000010” :
“1000011” :
“1000100” :
“1000101” :
“1000110” :
“1000111” :
“1001000” :
“1001001” :
“1001010” :
“1001011” :
“1001100” :
“1001101” :
“1001110” :
“1001111” :
“1010000” :
“1010001” :
“1010010” :
“1010011” :
“1010100” :
“1010101” :
“1010110” :
“1010111” :
“1011000” :
“1011001” :
“1011010” :
“1011011” :
“1011100” :
“1011101” :
“1011110” :
“1011111” :
“1100000” :
“1100001” :
“1100010” :
“1100011” :
“1100100” :
“1100101” :
“1100110” :
“1100111” :
“1101000” :
“1101001” :
“1101010” :
“1101011” :
“1101100” :
“1101101” :
“1101110” :
“1101111” :
“1110000” :
“1110001” :
“1110010” :
“1110011” :
“1110100” :
“1110101” :
“1110110” :
“1110111” :
“1111000” :
“1111001” :
“1111010” :
“1111011” :
“1111100” :
“1111101” :
“1111110” :
“1111111” :
22/37
13.0 mA
13.2 mA
13.4 mA
13.6 mA
13.8 mA
14.0 mA
14.2 mA
14.4 mA
14.6 mA
14.8 mA
15.0 mA
15.2 mA
15.4 mA
15.6 mA
15.8 mA
16.0 mA
16.2 mA
16.4 mA
16.6 mA
16.8 mA
17.0 mA
17.2 mA
17.4 mA
17.6 mA
17.8 mA
18.0 mA
18.2 mA
18.4 mA
18.6 mA
18.8 mA
19.0 mA
19.2 mA
19.4 mA
19.6 mA
19.8 mA
20.0 mA
20.2 mA
20.4 mA
20.6 mA
20.8 mA
21.0 mA
21.2 mA
21.4 mA
21.6 mA
21.8 mA
22.0 mA
22.2 mA
22.4 mA
22.6 mA
22.8 mA
23.0 mA
23.2 mA
23.4 mA
23.6 mA
23.8 mA
24.0 mA
24.2 mA
24.4 mA
24.6 mA
24.8 mA
25.0 mA
25.2 mA
25.4 mA
25.6 mA
2010.07 - Rev.A
Technical Note
BD6184GUL
Address 08h < LED8 Current setting(Independence control) >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
08h
W
-
IW8(6)
IW8(5)
IW8(4)
IW8(3)
IW8(2)
IW8(1)
IW8(0)
Initial Value
00h
-
0
0
0
0
0
0
0
Bit7 :
(Not used)
Bit[6:0] :
IW8 (6:0)
LED8 Current setting
“0000000” :
“0000001” :
“0000010” :
“0000011” :
“0000100” :
“0000101” :
“0000110” :
“0000111” :
“0001000” :
“0001001” :
“0001010” :
“0001011” :
“0001100” :
“0001101” :
“0001110” :
“0001111” :
“0010000” :
“0010001” :
“0010010” :
“0010011” :
“0010100” :
“0010101” :
“0010110” :
“0010111” :
“0011000” :
“0011001” :
“0011010” :
“0011011” :
“0011100” :
“0011101” :
“0011110” :
“0011111” :
“0100000” :
“0100001” :
“0100010” :
“0100011” :
“0100100” :
“0100101” :
“0100110” :
“0100111” :
“0101000” :
“0101001” :
“0101010” :
“0101011” :
“0101100” :
“0101101” :
“0101110” :
“0101111” :
“0110000” :
“0110001” :
“0110010” :
“0110011” :
“0110100” :
“0110101” :
“0110110” :
“0110111” :
“0111000” :
“0111001” :
“0111010” :
“0111011” :
“0111100” :
“0111101” :
“0111110” :
“0111111” :
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
0.2 mA (Initial Value)
0.4 mA
0.6 mA
0.8 mA
1.0 mA
1.2 mA
1.4 mA
1.6 mA
1.8 mA
2.0 mA
2.2 mA
2.4 mA
2.6 mA
2.8 mA
3.0 mA
3.2 mA
3.4 mA
3.6 mA
3.8 mA
4.0 mA
4.2 mA
4.4 mA
4.6 mA
4.8 mA
5.0 mA
5.2 mA
5.4 mA
5.6 mA
5.8 mA
6.0 mA
6.2 mA
6.4 mA
6.6 mA
6.8 mA
7.0 mA
7.2 mA
7.4 mA
7.6 mA
7.8 mA
8.0 mA
8.2 mA
8.4 mA
8.6 mA
8.8 mA
9.0 mA
9.2 mA
9.4 mA
9.6 mA
9.8 mA
10.0 mA
10.2 mA
10.4 mA
10.6 mA
10.8 mA
11.0 mA
11.2 mA
11.4 mA
11.6 mA
11.8 mA
12.0 mA
12.2 mA
12.4 mA
12.6 mA
12.8 mA
“1000000” :
“1000001” :
“1000010” :
“1000011” :
“1000100” :
“1000101” :
“1000110” :
“1000111” :
“1001000” :
“1001001” :
“1001010” :
“1001011” :
“1001100” :
“1001101” :
“1001110” :
“1001111” :
“1010000” :
“1010001” :
“1010010” :
“1010011” :
“1010100” :
“1010101” :
“1010110” :
“1010111” :
“1011000” :
“1011001” :
“1011010” :
“1011011” :
“1011100” :
“1011101” :
“1011110” :
“1011111” :
“1100000” :
“1100001” :
“1100010” :
“1100011” :
“1100100” :
“1100101” :
“1100110” :
“1100111” :
“1101000” :
“1101001” :
“1101010” :
“1101011” :
“1101100” :
“1101101” :
“1101110” :
“1101111” :
“1110000” :
“1110001” :
“1110010” :
“1110011” :
“1110100” :
“1110101” :
“1110110” :
“1110111” :
“1111000” :
“1111001” :
“1111010” :
“1111011” :
“1111100” :
“1111101” :
“1111110” :
“1111111” :
23/37
13.0 mA
13.2 mA
13.4 mA
13.6 mA
13.8 mA
14.0 mA
14.2 mA
14.4 mA
14.6 mA
14.8 mA
15.0 mA
15.2 mA
15.4 mA
15.6 mA
15.8 mA
16.0 mA
16.2 mA
16.4 mA
16.6 mA
16.8 mA
17.0 mA
17.2 mA
17.4 mA
17.6 mA
17.8 mA
18.0 mA
18.2 mA
18.4 mA
18.6 mA
18.8 mA
19.0 mA
19.2 mA
19.4 mA
19.6 mA
19.8 mA
20.0 mA
20.2 mA
20.4 mA
20.6 mA
20.8 mA
21.0 mA
21.2 mA
21.4 mA
21.6 mA
21.8 mA
22.0 mA
22.2 mA
22.4 mA
22.6 mA
22.8 mA
23.0 mA
23.2 mA
23.4 mA
23.6 mA
23.8 mA
24.0 mA
24.2 mA
24.4 mA
24.6 mA
24.8 mA
25.0 mA
25.2 mA
25.4 mA
25.6 mA
2010.07 - Rev.A
Technical Note
BD6184GUL
Address 09h < Main Current slope time setting >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
09h
W
THL(3)
THL(2)
THL(1)
THL(0)
TLH(3)
TLH(2)
TLH(1)
TLH(0)
Initial Value
C7h
1
1
0
0
0
1
1
1
Bit[7:4] :
THL (3:0)
Main LED current Down transition per 0.2mA step
“0000” :
0.256 ms
“0001” :
0.512 ms
“0010” :
1.024 ms
“0011” :
2.048 ms
“0100” :
4.096 ms
“0101” :
8.192 ms
“0110” :
16.38 ms
“0111” :
32.77 ms
“1000” :
65.54 ms
“1001” :
131.1 ms
“1010” :
196.6 ms
“1011” :
262.1 ms
“1100” :
327.7 ms (Initial Value)
“1101” :
393.2 ms
“1110” :
458.8 ms
“1111” :
524.3 ms
Setting time is counted based on the switching frequency of Charge Pump.
The above value becomes the value of the Typ (1MHz) time.
Refer to “●Slope Process”for detail.
Bit[3:0] :
TLH (3:0) Main LED current Up transition per 0.2mA step
“0000” :
0.256 ms
“0001” :
0.512 ms
“0010” :
1.024 ms
“0011” :
2.048 ms
“0100” :
4.096 ms
“0101” :
8.192 ms
“0110” :
16.38 ms
“0111” :
32.77 ms (Initial Value)
“1000” :
65.54 ms
“1001” :
131.1 ms
“1010” :
196.6 ms
“1011” :
262.1 ms
“1100” :
327.7 ms
“1101” :
393.2 ms
“1110” :
458.8 ms
“1111” :
524.3 ms
Setting time is counted based on the switching frequency of Charge Pump.
The above value becomes the value of the Typ (1MHz) time.
Refer to “●Slope Process”for detail.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
24/37
2010.07 - Rev.A
Technical Note
BD6184GUL
Address 13h <LDO Power Control>
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
13h
W/R
-
-
-
-
LDO4EN
LDO3EN
LDO2EN
LDO1EN
Initial Value
00h
-
-
-
-
0
0
0
0
Bit4
Bit3
Bit2
Bit1
Bit0
Bit[7:4]
: (Not used)
Bit3 :
LDO4EN
LDO4 control (ON/OFF)
“0” :
LDO4 OFF (Initial Value)
“1” :
LDO4 ON
Bit2 :
LDO3EN
LDO3 control (ON/OFF)
“0” :
LDO3 OFF (Initial Value)
“1” :
LDO3 ON
Bit1 :
LDO2EN
LDO2 control (ON/OFF)
“0” :
LDO2 OFF (Initial Value)
“1” :
LDO2 ON
Bit0 :
LDO1EN
LDO1 control (ON/OFF)
“0” :
LDO1 OFF (Initial Value)
“1” :
LDO1 ON
Address 14h < LDO1 Vout Control, LDO2 Vout Control >
Address
R/W
Bit7
Bit6
Bit5
14h
Initial Value
R/W LDO2VSEL3 LDO2VSEL2 LDO2VSEL1 LDO2VSEL0 LDO1VSEL3 LDO1VSEL2 LDO1VSEL1 LDO1VSEL0
74h
0
1
Bit[7:4] :
LDO2VSEL [3:0]
“0000” : 1.20 V
“0001” : 1.30 V
“0010” : 1.50 V
“0011” : 1.60 V
“0100” : 1.80 V
“0101” : 2.20 V
“0110” : 2.40 V
“0111” : 2.50 V (Initial Value)
“1000” : 2.60 V
“1001” : 2.70 V
“1010” : 2.80 V
“1011” : 2.90 V
“1100” : 3.00 V
“1101” : 3.10 V
“1110” : 3.20 V
“1111” : 3.30 V
Bit[3:0] :
LDO1VSEL [3:0]
“0000” : 1.20 V
“0001” : 1.30 V
“0010” : 1.50 V
“0011” : 1.60 V
“0100” : 1.80 V (Initial Value)
“0101” : 2.20 V
“0110” : 2.40 V
“0111” : 2.50 V
“1000” : 2.60 V
“1001” : 2.70 V
“1010” : 2.80 V
“1011” : 2.90 V
“1100” : 3.00 V
“1101” : 3.10 V
“1110” : 3.20 V
“1111” : 3.30 V
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
1
1
25/37
0
1
0
0
2010.07 - Rev.A
Technical Note
BD6184GUL
Address 15h < LDO3 Vout Control, LDO4 Vout Control >
Address
R/W
Bit7
Bit6
Bit5
15h
Initial Value
Bit4
Bit3
Bit2
Bit1
Bit0
R/W LDO4VSEL3 LDO4VSEL2 LDO4VSEL1 LDO4VSEL0 LDO3VSEL3 LDO3VSEL2 LDO3VSEL1 LDO3VSEL0
A4h
1
0
Bit[7:4] :
LDO4VSEL [3:0]
“0000” : 1.20 V
“0001” : 1.30 V
“0010” : 1.50 V
“0011” : 1.60 V
“0100” : 1.80 V
“0101” : 2.20 V
“0110” : 2.40 V
“0111” : 2.50 V
“1000” : 2.60 V
“1001” : 2.70 V
“1010” : 2.80 V (Initial Value)
“1011” : 2.90 V
“1100” : 3.00 V
“1101” : 3.10 V
“1110” : 3.20 V
“1111” : 3.30 V
Bit[3:0] :
LDO3VSEL [3:0]
“0000” : 1.20 V
“0001” : 1.30 V
“0010” : 1.50 V
“0011” : 1.60 V
“0100” : 1.80 V (Initial Value)
“0101” : 2.20 V
“0110” : 2.40 V
“0111” : 2.50 V
“1000” : 2.60 V
“1001” : 2.70 V
“1010” : 2.80 V
“1011” : 2.90 V
“1100” : 3.00 V
“1101” : 3.10 V
“1110” : 3.20 V
“1111” : 3.30 V
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
1
0
26/37
0
1
0
0
2010.07 - Rev.A
Technical Note
BD6184GUL
●Reset
There are two kinds of reset, software reset and hardware reset
(1) Software reset
・All the registers are initialized by SFTRST="1".
・SFTRST is an automatically returned to "0". (Auto Return 0).
(2) Hardware reset
・It shifts to hardware reset by changing RESETB pin “H” → “L”.
・The condition of all the registers under hardware reset pin is returned to the Initial Value, and it stops accepting all address.
・It’s possible to release from a state of hardware reset by changing RESETB pin “L” → “H”.
・RESETB pin has delay circuit. It doesn’t recognize as hardware reset in “L” period under 5μs.
(3) Reset Sequence
・When hardware reset was done during software reset, software reset is canceled when hardware reset is canceled.
(Because the Initial Value of software reset is “0”)
●VIODET
The decline of the VIO voltage is detected, and faulty operation inside the IC is prevented by giving resetting to Levelsift block
Image Block Diagram
VIO
VBAT
DEToutput
2.6V
Inside reset
Reset by
VIODET
VBAT
(typ)1.0V
VIO
VIODET
RESETB
RESETB
R
Digital
pin
I/O
LEVEL
SHIFT
DET output
Inside reset
Fig.15
Fig.16
When the VIO voltage becomes more than typ1.0V(Vth of NMOS in the IC), VIODET is removed.
On the contrary, when VIO is as follows 1.0V, it takes reset. (The VBAT voltage being a prescribed movement range)
●Thermal Shut Down
A thermal shutdown function is effective in the following block.
DC/DC (Charge Pump)
LED Driver
LDO1, LDO2, LDO3, LDO4
The thermal shutdown function is detection temperature that it works is about 195℃.
Detection temperature has a hysteresis, and detection release temperature is about 175 oC.
(Design reference value)
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
27/37
2010.07 - Rev.A
Technical Note
BD6184GUL
●DC/DC
Start
DC/DC circuit operates when any LED turns ON. (DCDCFON=0)
When the start of theDC/DC circuit is done, it has the soft start function to prevent a rush current.
Force of VBAT and VIO is to go as follows.
VBAT
VIO
TVIOON=min 0.1ms
TVIOOFF=min 0.1ms
RESETB
TRSTB=min 0.1ms
TRST=min 0ms
EN (*)
TSOFT
VOUT
LEDcurrent
(*) An EN signal means the following in the upper figure.
EN = “MLEDEN” or “W*EN”
(= LED The LED lighting control of a setup of connection VOUT)
But, as for Ta > TTSD (typ : 195° C), a protection function functions, and an EN signal doesn't become effective.
TSOFT changes by the capacitor connected to VOUT and inside OSC.
TSOFT is Typ 200μs (when the output capacitor of VOUT =1.0μF).
Fig.17
Over Voltage protection / Over Current protection
DC/DC circuit output (VOUT) is equipped with the over-voltage protection and the over current protection function.
A VOUT over-voltage detection voltage is about 5.6V(typ). (VOUT at the time of rise in a voltage)
A detection voltage has a hysteresis, and a detection release voltage is about 5.4V(typ).
And, when VOUT output short to ground, input current of the battery terminal is limited by an over current protection
function.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
28/37
2010.07 - Rev.A
Technical Note
BD6184GUL
Mode transition
The transition of boosts multiple transits automatically by VBAT Voltage and the VOUT Pin Voltage.
STANDBY
ALL off
condition①
MLEDEN=”1” or W*EN=”1”
①
and
Ta<TTSD
SOFT
CP x1.0 mode
After detecting VOUT>1.5V(typ), 128µs(typ) wait
X1.0
CP x1.0 mode
mode up=”H”
mode down=”H”
X1.5
CP x1.5 mode
mode up=”H”
mode down=”H”
X2.0
CP x2.0 mode
Fig.18
The mode transition of the charge pump works as follows.
<x1.0→x1.5→x2.0 Mode transition>
The transition of the mode is done when VOUT was compared with VBAT and the next condition was satisfied.
x1.0→x1.5 Mode transition
VBAT ≤ VOUT + (Ron10×Iout)
(LED Pin feedback:VOUT = Vf+0.2(Typ))
x1.5→x2.0 Mode transition
VBAT×1.5 ≤ VOUT +(Ron15×Iout)
(LED Pin feedback:VOUT = Vf+0.2(Typ))
Ron10: x1 Charge pump on resistance 1.2Ω(Typ)
Ron15: x1.5 Charge pump on resistance 7.1Ω(Typ)
<x2.0→x1.5→x1.0 Mode transition>
The transition of the mode is done when the ratio of VOUT and VBAT is detected and it exceeds a fixed voltage ratio.
x1.5→x1.0 Mode transition
VBAT / VOUT =1.16(Design value)
x2.0→x1.5 Mode transition
VBAT / VOUT =1.12(Design value)
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
29/37
2010.07 - Rev.A
Technical Note
BD6184GUL
●LED Driver
The LED driver of 8ch is constructed as the ground plan.
Equivalence control is possible with LED1 ~ 4(LED4 can choose use/un-use with a register W4MD.).
LED5, LED6, LED7, LED8 is controllable individually.
As for LED5 ~ 8, grouping setting to the main control is possible, and main control becomes effective for the main group in
the allotment. LED5 ~ 8 are setups of grouping to the main control.
When LED5 ~ 8 are used by the individual control, a slope time setup (register THL and TLH) doesn't become effective.
LED1
LED2
IMLED[6:0]
MLEDEN
LED3
MLEDMD
WPWMIN
LED4
W4MD
1
IW5[6:0]
LED5
0
W5EN
W5MD
1
IW6[6:0]
LED6
0
W6EN
W6MD
1
IW7[6:0]
LED7
0
W7EN
W7MD
1
IW8[6:0]
LED8
0
W8EN
W8MD
Fig.19
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
30/37
2010.07 - Rev.A
Technical Note
BD6184GUL
LED Composition which can be set up is the following.
The main, other1 and other2 are controllable to each.(Enable and current setting)
Main
(PWM)
Other1
Other2
Other3
Other4
8LEDs
-
-
-
-
7LEDs
-
-
-
-
7LEDs
1LED
-
-
-
6LEDs
-
-
-
-
6LEDs
1 LED
-
-
-
6LEDs
2 LEDs
-
-
-
6LEDs
1 LED
1LED
-
-
5LEDs
-
-
-
-
5LEDs
1 LED
-
-
-
5LEDs
2 LEDs
-
-
-
5LEDs
1 LED
1LED
-
-
5LEDs
3 LEDs
-
-
-
5LEDs
2 LEDs
1LED
-
-
5LEDs
1 LED
1LED
1LED
-
4LEDs
-
-
-
-
4LEDs
1 LED
-
-
-
4LEDs
2 LEDs
-
-
-
4LEDs
1 LED
1LED
-
-
4LEDs
3 LEDs
-
-
-
4LEDs
2 LEDs
1LED
-
-
4LEDs
1 LED
1LED
1LED
-
4LEDs
4LEDs
-
-
-
4LEDs
3 LEDs
1LED
-
-
4LEDs
2 LEDs
1LED
1LED
-
4LEDs
1 LED
1LED
1LED
1LED
3LEDs
-
-
-
-
3LEDs
1 LED
-
-
-
3LEDs
2 LEDs
-
-
-
3LEDs
1 LED
1LED
-
-
3LEDs
3 LEDs
-
-
-
3LEDs
2 LEDs
1LED
-
-
3LEDs
1 LED
1LED
1LED
-
3LEDs
4LEDs
-
-
-
3LEDs
3 LEDs
1LED
-
-
3LEDs
2 LEDs
1LED
1LED
-
3LEDs
1 LED
1LED
1LED
1LED
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
31/37
2010.07 - Rev.A
Technical Note
BD6184GUL
●Current Adjustment
・When the register setting permits it, PWM drive by the external terminal (WPWMIN) is possible.
Register: WPWMEN
・It is suitable for the intensity correction by external control, because PWM based on Main LED current of register.
WPWMEN (Register)
0
1
WPWMIN(External Pin)
Main group LED current
L
Normal operation
H
Normal operation
L
Forced OFF
H
Normal operation
" Normal operation " depends on the setup of each register.
EN(*)
Internal Soft-Start Time
DC/DC Output
WPWMIN input
WPWMEN
LED Current
EN(*) : it means “MLEDEN” or “W*EN”.
It is possible to make it a WPWMIN input and WPWMEN=1 in front of EN(*).
A PWM drive becomes effective after the time of an LED current standup.
When rising during PWM operation, as for the standup time of a DC/DC output, only the rate of
PWM Duty becomes late. Appearance may be influenced when extremely late frequency and
extremely low Duty are inputted.
Please secure 250 μs or more of H sections at the time of PWM pulse Force.
Fig.20
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
32/37
2010.07 - Rev.A
Technical Note
BD6184GUL
Current Data which is set
LED Current
Main LED current
●Slope Process
・Slope process is given to LED current to dim naturally.
・LED current changes in the 256Step gradation in sloping.
・Up(dark→bright),Down(bright→dark)
LED current transition speed are set individually.
Register : THL(3:0)
Register : TLH(3:0)
・Main LED current changes as follows at the time as the slope.
TLH (THL) is setup of time of the current step 2/256.
THL (3:0)
TLH(3:0)
Up/Down transition Speed
is set individually
TLH
time
25.6mA
=0.1mA
256
THL
Zoom
Main LED current
Fig.21
TLH(3:0)
time
●I/O
When the RESETB pin is Low, the input buffers (SDA and SCL) are disabling for the Low consumption power.
When RESETB=L, output is fixed at “H.”
SCL
(SDA)
Level shifter
Logic
EN
RESETB
Fig.22
Special care should be taken because a current path may be formed via a terminal protection diode, depending on an I/O
power-on sequence or an input level.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
33/37
2010.07 - Rev.A
Technical Note
BD6184GUL
●About the Start of LDO1 ~ LDO4
It must start as follows.
VBAT
TVBATON= min 0.1ms
TVBATOFF= min 0.1ms
VIO
TVIOON= min 0.1ms
LDO1EN or LDO2EN or
LDO3EN or LDO4EN
TRISE = max 1ms
LDO1O or LDO2O or
LDO3O or LDO4O
(LDO output)
Fig.23
<Start Sequence>
VBAT ON (Enough rise up) → VIO ON (Enough rise up) → Reset release → LDO ON (Register access acceptable)
<End Sequence>
LDO OFF → Reset → VIO OFF (Enough fall down) → VBAT OFF
●About the pin management of the function that isn't used and test pins
Setting it as follows is recommended with the test pin and the pin which isn't used.
Set up pin referring to the “Equivalent circuit diagram” so that there may not be a problem under the actual use.
T2, T4
Short to GND because pin for test input
T1, T3
OPEN because pin for test output
Short to GND (Must)
But, the setup of a register concerned with LED that isn’t used is prohibited.
Short to ground
(A Pull-Down resistance built-in terminal is contained, too.)
Non-used LED Pin
WPWMIN
●Operation Settings (Flow Example)
Backlight: Fade-in/Fade-out
Apply supply voltage.
Backlight: Various settings
Backlight setting.
Slow time setting.
MLEDEN=1
The backlight turns on.
(Rise at designated slope time)
Set the minimum current.
(Rise at designated slope time)
MLEDEN=0
The backlight turns off.
Fig.24
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
34/37
2010.07 - Rev.A
Technical Note
BD6184GUL
●PCB pattern of the Power Dissipation Measuring Board
1st layer(component)
2nd layer
3rd layer
4th layer
5th layer
6th layer
7th layer
8th layer(solder)
Fig.25 PCB Pattern
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
35/37
2010.07 - Rev.A
Technical Note
BD6184GUL
●Notes for Use
(1) Absolute Maximum Ratings
An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can
break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit. If any
special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical safety
measures including the use of fuses, etc.
(2) Power supply and ground line
Design PCB pattern to provide low impedance for the wiring between the power supply and the ground lines. Pay attention
to the interference by common impedance of layout pattern when there are plural power supplies and ground lines.
Especially, when there are ground pattern for small signal and ground pattern for large current included the external
circuits, please separate each ground pattern. Furthermore, for all power supply pins to ICs, mount a capacitor between
the power supply and the ground pin. At the same time, in order to use a capacitor, thoroughly check to be sure the
characteristics of the capacitor to be used present no problem including the occurrence of capacity dropout at a low
temperature, thus determining the constant.
(3) Ground voltage
Make setting of the potential of the ground pin so that it will be maintained at the minimum in any operating state.
Furthermore, check to be sure no pins are at a potential lower than the ground voltage including an actual electric
transient.
(4) Short circuit between pins and erroneous mounting
In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can
break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between pins or between the pin
and the power supply or the ground pin, the ICs can break down.
(5) Operation in strong electromagnetic field
Be noted that using ICs in the strong electromagnetic field can malfunction them.
(6) Input pins
In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the
parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the
input pin. Therefore, pay thorough attention not to handle the input pins, such as to apply to the input pins a voltage lower
than the ground respectively, so that any parasitic element will operate. Furthermore, do not apply a voltage to the input
pins when no power supply voltage is applied to the IC. In addition, even if the power supply voltage is applied, apply to
the input pins a voltage lower than the power supply voltage or within the guaranteed value of electrical characteristics.
(7) External capacitor
In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a
degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc.
(8) Thermal Shut Down Circuit (TSD)
This IC builds in a thermal shutdown (TSD) circuit. When junction temperatures become detection temperature or higher,
the thermal shutdown circuit operates and turns a switch OFF. The thermal shutdown circuit, which is aimed at isolating
the IC from thermal runaway as much as possible, is not aimed at the protection or guarantee of the IC. Therefore, do not
continuously use the IC with this circuit operating or use the IC assuming its operation.
(9) Thermal design
Perform thermal design in which there are adequate margins by taking into account the permissible dissipation (Pd) in
actual states of use.
(10) LDO
Use each output of LDO by the independence. Don’t use under the condition that each output is short-circuited because it
has the possibility that an operation becomes unstable.
(11) About the pin for the test, the un-use pin
Prevent a problem from being in the pin for the test and the un-use pin under the state of actual use. Please refer to a
function manual and an application notebook. And, as for the pin that doesn't specially have an explanation, ask our
company person in charge.
(12) About the rush current
For ICs with more than one power supply, it is possible that rush current may flow instantaneously due to the internal
powering sequence and delays. Therefore, give special consideration to power coupling capacitance, power wiring, width
of ground wiring, and routing of wiring.
(13) About the function description or application note or more.
The function description and the application notebook are the design materials to design a set. So, the contents of the
materials aren't always guaranteed. Please design application by having fully examination and evaluation include the
external elements.
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
36/37
2010.07 - Rev.A
Technical Note
BD6184GUL
●Ordering Part Number
B
D
6
Part No.
1
8
4
Part No.
G
U
L
-
Package
GUL: VCSP50L3
E
2
Packaging and forming specification
E2: Embossed tape and reel
VCSP50L3(BD6184GUL)
0.1± 0.05
A
0.05 A B
F
E
D
C
B
A
B
1 2 3 4 5
0.325±0.05
Embossed carrier tape
Quantity
2500pcs
Direction
of feed
E2
The direction is the 1pin of product is at the upper left when you hold
( reel on the left hand and you pull out the tape on the right hand
)
P=0.5 × 5
0.06 S
35- φ 0.25±0.05
(φ0.15)INDEX POST
S
Tape
0.3± 0.05
3.15±0.05
0.55MAX
3.1± 0.05
<Tape and Reel information>
1PIN MARK
6
1pin
P=0.5×5
(Unit : mm)
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
Reel
37/37
Direction of feed
∗ Order quantity needs to be multiple of the minimum quantity.
2010.07 - Rev.A
Notice
Notes
No copying or reproduction of this document, in part or in whole, is permitted without the
consent of ROHM Co.,Ltd.
The content specified herein is subject to change for improvement without notice.
The content specified herein is for the purpose of introducing ROHM's products (hereinafter
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,
which can be obtained from ROHM upon request.
Examples of application circuits, circuit constants and any other information contained herein
illustrate the standard usage and operations of the Products. The peripheral conditions must
be taken into account when designing circuits for mass production.
Great care was taken in ensuring the accuracy of the information specified in this document.
However, should you incur any damage arising from any inaccuracy or misprint of such
information, ROHM shall bear no responsibility for such damage.
The technical information specified herein is intended only to show the typical functions of and
examples of application circuits for the Products. ROHM does not grant you, explicitly or
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the
use of such technical information.
The Products specified in this document are intended to be used with general-use electronic
equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).
The Products specified in this document are not designed to be radiation tolerant.
While ROHM always makes efforts to enhance the quality and reliability of its Products, a
Product may fail or malfunction for a variety of reasons.
Please be sure to implement in your equipment using the Products safety measures to guard
against the possibility of physical injury, fire or any other damage caused in the event of the
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed
scope or not in accordance with the instruction manual.
The Products are not designed or manufactured to be used with any equipment, device or
system which requires an extremely high level of reliability the failure or malfunction of which
may result in a direct threat to human life or create a risk of human injury (such as a medical
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuelcontroller or other safety device). ROHM shall bear no responsibility in any way for use of any
of the Products for the above special purposes. If a Product is intended to be used for any
such special purpose, please contact a ROHM sales representative before purchasing.
If you intend to export or ship overseas any Product or technology specified herein that may
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to
obtain a license or permit under the Law.
Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact us.
ROHM Customer Support System
http://www.rohm.com/contact/
www.rohm.com
© 2010 ROHM Co., Ltd. All rights reserved.
R1010A