AOT4N60/AOTF4N60

AOT4N60/AOTF4N60
600V,4A N-Channel MOSFET
General Description
Product Summary
The AOT4N60 & AOTF4N60 have been fabricated using
an advanced high voltage MOSFET process that is
designed to deliver high levels of performance and
robustness in popular AC-DC applications.
By providing low RDS(on), Ciss and Crss along with
guaranteed avalanche capability these parts can be
adopted quickly into new and existing offline power supply
designs.
VDS
ID (at VGS=10V)
[email protected]
4A
RDS(ON) (at VGS=10V)
< 2.2Ω
100% UIS Tested
100% Rg Tested
For Halogen Free add "L" suffix to part number:
AOT4N60L & AOTF4N60L
TO-220
Top View
G
TO-220F
D
G
G
D
D
S
S
S
AOTF4N60
AOT4N60
Absolute Maximum Ratings TA=25°C unless otherwise noted
Parameter
AOT4N60
Symbol
Drain-Source Voltage
VDS
600
Gate-Source Voltage
±30
Continuous Drain
Current
VGS
TC=25°C
TC=100°C
AOTF4N60
V
4
ID
Units
V
4*
2.7
2.7*
A
Pulsed Drain Current C
IDM
16
Avalanche Current C
IAR
2.5
A
Repetitive avalanche energy C
EAR
94
mJ
Single plused avalanche energy G
MOSFET dv/dt ruggedness
Peak diode recovery dv/dt
TC=25°C
Power Dissipation B Derate above 25oC
Junction and Storage Temperature Range
Maximum lead temperature for soldering
purpose, 1/8" from case for 5 seconds
Thermal Characteristics
Parameter
Maximum Junction-to-Ambient A,D
EAS
188
50
5
mJ
dv/dt
PD
35
W
0.28
-55 to 150
W/ oC
°C
300
°C
TL
AOT4N60
65
AOTF4N60
65
Units
°C/W
0.5
1.2
-3.6
°C/W
°C/W
Maximum Case-to-sink A
Maximum Junction-to-Case
RθJC
* Drain current limited by maximum junction temperature.
Rev.10.0: October 2013
104
0.83
TJ, TSTG
Symbol
RθJA
RθCS
V/ns
www.aosmd.com
Page 1 of 6
Electrical Characteristics (TJ=25°C unless otherwise noted)
Symbol
Parameter
Conditions
Min
ID=250µA, VGS=0V, TJ=25°C
600
Typ
Max
Units
STATIC PARAMETERS
BVDSS
Drain-Source Breakdown Voltage
BVDSS
/∆TJ
Breakdown Voltage Temperature
Coefficient
IDSS
Zero Gate Voltage Drain Current
ID=250µA, VGS=0V, TJ=150°C
700
ID=250µA, VGS=0V
V
V/ oC
0.69
VDS=600V, VGS=0V
1
VDS=480V, TJ=125°C
10
IGSS
Gate-Body leakage current
VDS=0V, VGS=±30V
VGS(th)
Gate Threshold Voltage
VDS=5V ID=250µA
RDS(ON)
Static Drain-Source On-Resistance
gFS
Forward Transconductance
VSD
Diode Forward Voltage
IS=1A,VGS=0V
0.77
IS
ISM
µA
±100
4
4.5
nΑ
V
VGS=10V, ID=2A
1.9
2.2
Ω
VDS=40V, ID=2A
7.4
1
V
Maximum Body-Diode Continuous Current
4
A
Maximum Body-Diode Pulsed Current
16
A
DYNAMIC PARAMETERS
Input Capacitance
Ciss
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
Rg
Gate resistance
VGS=0V, VDS=25V, f=1MHz
VGS=0V, VDS=0V, f=1MHz
SWITCHING PARAMETERS
Qg
Total Gate Charge
Qgs
Gate Source Charge
VGS=10V, VDS=480V, ID=4A
3
S
400
511
615
pF
40
51
65
pF
3.5
4.4
5.3
pF
3.3
4.2
6.3
Ω
15
18
nC
3
3.6
nC
Qgd
Gate Drain Charge
7.6
9.1
nC
tD(on)
Turn-On DelayTime
20.2
30
ns
tr
Turn-On Rise Time
28.7
42
ns
tD(off)
Turn-Off DelayTime
VGS=10V, VDS=300V, ID=4A,
RG=25Ω
36
51
ns
tf
trr
Turn-Off Fall Time
27
40
ns
IF=4A,dI/dt=100A/µs,VDS=100V
212
254
Qrr
Body Diode Reverse Recovery Charge IF=4A,dI/dt=100A/µs,VDS=100V
1.6
1.9
ns
µC
Body Diode Reverse Recovery Time
A. The value of R θJA is measured with the device in a still air environment with T A =25°C.
B. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper
dissipation limit for cases where additional heatsinking is used.
C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C, Ratings are based on low frequency and duty cycles to keep initial
TJ =25°C.
D. The R θJA is the sum of the thermal impedence from junction to case R θJC and case to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max.
F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a
maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse rating.
G. L=60mH, IAS=2.5A, VDD=150V, RG=25Ω, Starting TJ=25°C
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Rev.10.0: October 2013
www.aosmd.com
Page 2 of 6
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
100
8
10V
6.5V
VDS=40V
6
-55°C
10
ID(A)
ID (A)
6V
4
125°C
1
2
VGS=5.5V
25°C
0
0
5
10
15
20
25
0.1
30
2
4
VDS (Volts)
Fig 1: On-Region Characteristics
3
3.5
2.5
Normalized On-Resistance
4.0
RDS(ON) (Ω)
3.0
VGS=10V
2.5
2.0
1.5
1
2
3
4
5
6
8
10
7
8
VGS=10V
ID=2A
2
1.5
1
0.5
0
-100
1.0
0
6
VGS(Volts)
Figure 2: Transfer Characteristics
9
-50
0
50
100
150
200
Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
ID (A)
Figure 3: On-Resistance vs. Drain Current and Gate
Voltage
1.0E+02
1.2
40
1.0E+00
IS (A)
BVDSS (Normalized)
1.0E+01
1.1
1
125°C
1.0E-01
1.0E-02
25°C
1.0E-03
0.9
1.0E-04
0.8
-100
1.0E-05
-50
0
50
100
150
200
TJ (°C)
Figure 5: Break Down vs. Junction Temperature
Rev.10.0: October 2013
www.aosmd.com
0.0
0.2
0.4
0.6
0.8
1.0
VSD (Volts)
Figure 6: Body-Diode Characteristics (Note E)
Page 3 of 6
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
15
10000
VDS=480V
ID=4A
Ciss
1000
Capacitance (pF)
VGS (Volts)
12
9
6
Coss
100
10
Crss
3
0
1
0
5
10
15
20
0.1
100
10
100
100
10
10
RDS(ON)
limited
1
100µs
1ms
DC
0.1
ID (Amps)
10µs
ID (Amps)
1
VDS (Volts)
Figure 8: Capacitance Characteristics
Qg (nC)
Figure 7: Gate-Charge Characteristics
10µs
RDS(ON)
limited
1
100µs
1ms
10ms
10ms
TJ(Max)=150°C
TC=25°C
TJ(Max)=150°C
TC=25°C
0.1
0.01
DC
0.1s
1s
0.01
1
10
100
1000
1
10
100
VDS (Volts)
VDS (Volts)
Figure 9: Maximum Forward Biased Safe
Operating Area for AOT4N60 (Note F)
Figure 10: Maximum Forward Biased Safe
Operating Area for AOTF4N60 (Note F)
1000
5
Current rating ID(A)
4
3
2
1
0
0
25
50
75
100
125
150
TCASE (°C)
Figure 11: Current De-rating (Note B)
Rev.10.0: October 2013
www.aosmd.com
Page 4 of 6
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
ZθJC Normalized Transient
Thermal Resistance
10
1
D=Ton/T
TJ,PK=TC+PDM.ZθJC.RθJC
RθJC=1.2°C/W
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
0.1
PD
Ton
0.01
T
Single Pulse
0.001
1E-05
0.0001
0.001
0.01
0.1
1
10
100
Pulse Width (s)
Figure 12: Normalized Maximum Transient Thermal Impedance for AOT4N60 (Note F)
ZθJC Normalized Transient
Thermal Resistance
10
1
D=Ton/T
TJ,PK=TC+PDM.ZθJC.RθJC
RθJC=3.6°C/W
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
0.1
PD
0.01
Ton
T
Single Pulse
0.001
1E-05
0.0001
0.001
0.01
0.1
1
10
100
Pulse Width (s)
Figure 13: Normalized Maximum Transient Thermal Impedance for AOTF4N60 (Note F)
Rev.10.0: October 2013
www.aosmd.com
Page 5 of 6
Gate Charge Test Circuit & Waveform
Vgs
Qg
10V
+
+
VDC
-
VDC
DUT
Qgs
Vds
Qgd
-
Vgs
Ig
Charge
Res istive Switching Test Circuit & Waveforms
RL
Vds
Vds
DUT
Vgs
+
VDC
90%
Vdd
-
Rg
10%
Vgs
Vgs
t d(on)
tr
t d(off)
t on
tf
t off
Unclamped Inductive Switching (UIS) Test Circuit & Waveforms
L
EAR= 1/2 LI
Vds
2
AR
BVDSS
Vds
Id
+
Vgs
Vgs
VDC
-
Rg
Vdd
I AR
Id
DUT
Vgs
Vgs
Diode Recovery Tes t Circuit & Waveforms
Qrr = - Idt
Vds +
DUT
Vgs
Vds -
Isd
Vgs
Ig
Rev.10.0: October 2013
L
Isd
+ Vdd
trr
dI/dt
IRM
Vdd
VDC
-
IF
Vds
www.aosmd.com
Page 6 of 6