IRF IRG4PC60F-P

PD - 94440
IRG4PC60F-P
Fast Speed IGBT
INSULATED GATE BIPOLAR TRANSISTOR
C
Features
• Fast: Optimized for medium operating
frequencies ( 1-5 kHz in hard switching, >20
kHz in resonant mode).
• Generation 4 IGBT design provides tighter
parameter distribution and higher efficiency.
• Solder plated version of industry standard
TO-247AC package.
VCES = 600V
VCE(on) typ. = 1.50V
G
@VGE = 15V, IC = 60A
E
n-channel
Benefits
• Generation 4 IGBT's offer highest efficiency available.
• IGBT's optimized for specified application conditions.
• Solder plated version of the TO-247 allows the reflow
soldering of the package heatsink to a substrate material.
• Designed for best performance when used with IR
HEXFRED & IR FRED companion diodes.
TO-247AC
Absolute Maximum Ratings
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
VGE
EARV
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Parameter
Max.
Units
Collector-to-Emitter Breakdown Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current Q
Clamped Inductive Load Current R
Gate-to-Emitter Voltage
Reverse Voltage Avalanche Energy S
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torque, 6-32 or M3 screw
Maximum Reflow Temperature W
600
90
60
120
120
± 20
200
520
210
-55 to + 150
V
A
V
mJ
W
°C
300 (0.063 in. (1.6mm from case )
10 lbf•in (1.1N•m)
230 (Time above 183°C
should not exceed 100s)
°C
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
RθJA
Wt
www.irf.com
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient (Typical Socket Mount)
Junction-to-Ambient (PCB Mount, Steady State)V
Weight
Typ.
Max.
–––
0.24
–––
–––
6 (0.21)
0.24
–––
40
20
–––
Units
°C/W
g (oz)
1
04/26/02
IRG4PC60F-P
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ.
Collector-to-Emitter Breakdown Voltage
600
—
Emitter-to-Collector Breakdown Voltage T 16
—
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage —
0.13
—
1.5
VCE(ON)
Collector-to-Emitter Saturation Voltage
—
1.7
—
1.5
VGE(th)
Gate Threshold Voltage
3.0
—
∆VGE(th)/∆TJ Temperature Coeff. of Threshold Voltage
—
-11
gfe
Forward Transconductance U
36
69
—
—
ICES
Zero Gate Voltage Collector Current
—
—
—
—
IGES
Gate-to-Emitter Leakage Current
—
—
V(BR)CES
V(BR)ECS
Max. Units
Conditions
—
V
VGE = 0V, IC = 250µA
—
V
VGE = 0V, IC = 1.0A
—
V/°C VGE = 0V, IC = 1.0mA
VGE = 15V
1.8
IC = 60A
—
IC = 90A
See Fig.2, 5
V
—
IC = 60A , TJ = 150°C
6.0
VCE = VGE, IC = 250µA
— mV/°C VCE = VGE, IC = 250µA
—
S
VCE = 100V, IC = 60A
250
VGE = 0V, VCE = 600V
µA
2.0
VGE = 0V, VCE = 10V, TJ = 25°C
1000
VGE = 0V, VCE = 600V, TJ = 150°C
±100 nA VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
td(on)
tr
td(off)
tf
Ets
LE
Cies
Coes
Cres
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Notes:
Repetitive rating; VGE = 20V, pulse width limited by
max. junction temperature. ( See fig. 13b )
R VCC = 80%(VCES), VGE = 20V, Rg = 5.0W.
(See fig. 13a)
S Repetitive rating; pulse width limited by maximum
junction temperature.
T Pulse width ≤ 80µs; duty factor ≤ 0.1%.
Q
2
Min.
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Typ.
290
40
100
42
66
310
170
0.30
4.6
4.9
39
66
470
300
8.8
13
6050
360
66
Max. Units
Conditions
340
IC = 40A
47
nC
VCC = 400V
See Fig. 8
130
VGE = 15V
—
—
TJ = 25°C
ns
360
IC = 60A, VCC = 480V
220
VGE = 15V, RG = 5.0Ω
—
Energy losses include "tail"
—
mJ
See Fig. 10, 11, 13, 14
6.3
—
TJ = 150°C,
—
IC = 60A, VCC = 480V
ns
—
VGE = 15V, RG = 5.0Ω
—
Energy losses include "tail"
—
mJ
See Fig. 13, 14
—
nH
Measured 5mm from package
—
VGE = 0V
—
pF
VCC = 30V
See Fig. 7
—
ƒ = 1.0MHz
U Pulse width 5.0µs, single shot.
V When mounted on 1" square PCB ( FR-4 or G-10
Material ). For recommended footprint and soldering
techniques refer to application note #AN-994.
W Refer to application note # 1023, "Surface Mounting of
Larger Devices."
www.irf.com
IRG4PC60F-P
80
Duty cycle : 50%
Tj = 125°C
Tsink = 90°C Ta = 55°C
Gate drive as specified
Turn-on losses include effects of
reverse recovery
Power Dissipation = 73W for Heatsink Mount
Power Dissipation = 3.5W for typical
PCB socket Mount
70
Load Current ( A )
60
60% of rated
voltage
50
40
Ideal diodes
30
20
10
0
0.1
1
10
100
f , Frequency ( kHz )
Fig. 1 - Typical Load Current vs. Frequency
(For square wave, I=IRMS of fundamental; for triangular wave, I=IPK)
1000
IC, Collector-to-Emitter Current (A)
IC , Collector t-to-Emitter Current (A)
1000
T J = 150°C
100
10
1
T J = 25°C
0.1
VGE = 15V
20µs PULSE WIDTH
100
T J = 150°C
10
1
T J = 25°C
0.1
VCC = 10V
5µs PULSE WIDTH
0.01
0.01
0.0
1.0
2.0
3.0
4.0
5.0
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
4
5
6
7
8
9
10
11
VGE, Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
IRG4PC60F-P
3.0
100
V GE = 15V
VCE , Collector-to Emitter Voltage (V)
Maximum DC Collector Current (A)
90
80
70
60
50
40
30
20
10
VGE = 15V
80µs PULSE WIDTH
IC = 120A
2.0
IC = 60A
IC = 30A
1.0
0
25
50
75
100
125
150
-60 -40 -20
0
20
40
60
80 100 120 140 160
T J , Junction Temperature (°C)
T C , Case Temperature (°C)
Fig. 4 - Maximum Collector Current vs. Case
Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
) thJC
1
D = 0.50
Thermal Response (Z
0.1
0.20
0.10
0.05
0.01
0.02
0.01
P DM
SINGLE PULSE
(THERMAL RESPONSE)
t1
t2
Notes:
0.001
0.00001
0.0001
0.001
0.01
1. Duty factor D =
t1 / t 2
2. Peak T J = P DM
x Z thJC
+T C
0.1
1
t 1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4PC60F-P
100000
V CC = 400V
IC
Coes = Cce + Cgc
10000
= 40A
15
Cies
VGE, Gate-to-Emitter Voltage (V)
Capacitance (pF)
20
VGE = 0V,
f = 1 MHZ
Cies = Cge + Cgc, Cce SHORTED
Cres = Cce
1000
Coes
100
Cres
10
5
10
0
100
200
300
400
0
500
0
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
100
150
200
250
300
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
100
8.00
RG = 5.0 Ω
VGE = 15V
VCC = 480V
VGE = 15V
TJ = 25°C
I C = 60A
7.00
Total Switching Losses (mJ)
Total Switching Losses (mJ)
50
QG , Total Gate Charge (nC)
VCE (V)
6.00
5.00
VCC = 480V
IC = 120A
10
IC = 60A
IC = 30A
1
4.00
0
10
20
30
40
R G, Gate Resistance (Ω )
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
www.irf.com
50
-60 -40 -20
0
20
40
60
80 100 120 140 160
T J, Junction Temperature (°C)
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
IRG4PC60F-P
1000
RG = 5.0Ω
TJ = 150°C
VGE = 15V
IC , Collector-to-Emitter Current (A)
Total Switching Losses (mJ)
30.0
VCC = 480V
20.0
10.0
0.0
100
SAFE OPERATING AREA
10
1
30
50
70
90
110
IC , Collector Current (A)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
6
VGE = 20V
T J = 125°
130
0.1
1
10
100
1000
VDS , Drain-to-Source Voltage (V)
Fig. 12 - Turn-Off SOA
www.irf.com
IRG4PC60F-P
L
D .U .T.
VC *
50V
RL =
0 - 480V
1 00 0V
480V
4 X [email protected]°C
480µF
960V
Q
R
* Driver s am e ty pe as D .U .T.; Vc = 80% of V ce (m ax )
* Note: D ue to the 50V pow er s upply, pulse w idth a nd inductor
w ill inc rea se to obta in ra ted Id.
Fig. 13a - Clamped Inductive
Fig. 13b - Pulsed Collector
Load Test Circuit
Current Test Circuit
IC
L
D river*
D .U .T.
VC
Fig. 14a - Switching Loss
Test Circuit
50V
1000V
Q
* Driver same type
as D.U.T., VC = 480V
R
S
Q
R
9 0%
1 0%
S
VC
90 %
Fig. 14b - Switching Loss
t d (o ff)
10 %
IC 5%
Waveforms
tf
tr
t d (o n )
t=5µ s
E on
E o ff
E ts = ( Eo n +E o ff )
www.irf.com
7
IRG4PC60F-P
Case Outline and Dimensions — TO-247AC
3 .6 5 (.1 4 3 )
3 .5 5 (.1 4 0 )
0 .2 5 (.0 1 0 ) M D B M
1 5 .9 0 (.6 2 6 )
1 5 .3 0 (.6 0 2 )
-B-
-A5 .5 0 (.2 1 7)
2 0 .3 0 (.8 0 0 )
1 9 .7 0 (.7 7 5 )
2X
1
2
-D-
5 .3 0 ( .2 0 9 )
4 .7 0 ( .1 8 5 )
2 .5 0 (.0 8 9 )
1 .5 0 (.0 5 9 )
4
5 .5 0 (.2 17 )
4 .5 0 (.1 77 )
LEAD
1234-
3
-C-
*
1 4 .8 0 (.5 8 3 )
1 4 .2 0 (.5 5 9 )
2 .4 0 ( .0 9 4 )
2 .0 0 ( .0 7 9 )
2X
5 .4 5 (.2 1 5 )
2X
4 .3 0 (.1 7 0 )
3 .7 0 (.1 4 5 )
3X
1 .4 0 (.0 5 6 )
1 .0 0 (.0 3 9 )
0 .2 5 (.0 1 0 ) M
3 .4 0 (.1 3 3 )
3 .0 0 (.1 1 8 )
N O TE S :
1 D IM E N S IO N S & T O L E R A N C IN G
P E R A N S I Y 14 .5 M , 1 9 8 2 .
2 C O N T R O L L IN G D IM E N S IO N : IN C H .
3 D IM E N S IO N S A R E S H O W N
M ILL IM E T E R S (IN C H E S ).
4 C O N F O R M S T O JE D E C O U T L IN E
T O -2 4 7 A C .
*
A S S IG N M E N T S
GATE
COLLE CTO R
E M IT T E R
COLLE CTO R
L O N G E R L E A D E D (2 0m m )
V E R S IO N A V A IL A B LE (T O -24 7 A D )
T O O R D E R A D D "-E " S U F F IX
T O P A R T N U M B ER
0 .8 0 (.0 3 1 )
0 .4 0 (.0 1 6 )
2 .6 0 ( .1 0 2 )
2 .2 0 ( .0 8 7 )
3X
C A S
CONFORMS TO JEDEC OUTLINE TO-247AC (TO-3P)
D im e n s ion s in M illim e te rs a n d (In c h es )
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.04/02
8
www.irf.com