STMICROELECTRONICS STPS130U

STPS130A/U

SCHOTTKY RECTIFIER
MAIN PRODUCT CHARACTERISTICS
IF(AV)
1A
VRRM
30 V
VF (max)
0.46 V
FEATURES AND BENEFITS
LOW DROP FORWARD VOLTAGE FOR LESS
POWER DISSIPATION AND LOW LEAKAGE
OPTIMIZED CONDUCTION / REVERSE
LOSSES TRADE-OFF ALLOWING THE HIGHEST EFFICIENCY IN APPLICATION
SURFACE MOUNT MINIATURE PACKAGE
SMA
STPS130A
SMB
STPS130U
DESCRIPTION
Single Schottky rectifier suited to Switched Mode
Power Supplies and high frequency DC/DC converters.
Packaged in SMA or SMB(*), this device is especially intended for use in parallel with MOSFETs in
synchronous rectification and low voltage secondary rectification.
(*) in accordance with DO214AA and DO214AC JEDEC
ABSOLUTE RATINGS (limiting values)
Symbol
Parameter
Value
Unit
VRRM
Repetitive peak reverse voltage
30
V
IF(RMS)
RMS forward current
7
A
IF(AV)
Average forward current
TL = 135°C
δ = 0.5
1
A
IFSM
Surge non repetitive forward current
tp = 10 ms
Sinusoidal
45
A
IRRM
Repetitive peak reverse current
tp = 2 µs
F = 1kHz
1
A
IRSM
Non repetitive peak reverse current
tp = 100µs square
1
A
Tstg
Storage temperature range
- 65 to + 150
°C
Tj
dV/dt
Maximum junction temperature
Critical rate of rise of reverse voltage
July 1998 - Ed: 5A
150
10000
V/µs
1/6
STPS130A/U
THERMAL RESISTANCES
Symbol
Parameter
Junction to lead
Rth (j-l)
Value
Unit
SMA
30
°C/W
SMB
25
STATIC ELECTRICAL CHARACTERISTICS
Symbol
Tests Conditions
Tests Conditions
IR *
Reverse leakage current
Tj = 25°C
Min.
VR = 30V
Tj = 125°C
VF **
Forward voltage drop
Pulse test :
Typ.
1.5
Tj = 25°C
IF = 1 A
Tj = 125°C
IF = 1 A
Tj = 25°C
IF = 2 A
Tj = 125°C
IF = 2 A
0.37
Max.
Unit
10
µA
10
mA
0.55
V
0.46
0.63
0.45
0.55
* tp = 380 µs, δ < 2%
** tp = 5ms, δ < 2%
To evaluate the maximum conduction losses use the following equation :
P = 0.37 x IF(AV) + 0.090 x IF2(RMS)
Fig. 1: Average forward power dissipation versus
average forward current.
Fig. 2: Average forward current versus ambient
temperature (δ=0.5) .
IF(av)(A)
PF(av)(W)
0.6
δ = 0.1
0.5
δ = 0.2
1.2
δ = 0.5
Rth(j-a)=Rth(j-l)
1.0
δ = 0.05
δ= 1
0.4
0.8
0.3
0.6
0.2
0.0
0.0
2/6
0.4
T
0.1
δ=tp/T
IF(av) (A)
0.2
0.4
0.6
0.8
1.0
Rth(j-a)=100°C/W
T
0.2
tp
1.2
0.0
δ=tp/T
0
25
Tamb(°C)
tp
50
75
100
125
150
STPS130A/U
Fig. 3-1: Non repetitive surge peak forward current
versus overload duration (maximum values) (SMB).
Fig. 3-2: Non repetitive surge peak forward current
versus overload duration (maximum values) (SMA).
IM(A)
IM(A)
8
8
7
7
6
6
Ta=50°C
Ta=50°C
Ta=75°C
5
5
Ta=75°C
4
4
3
3
2
Ta=100°C
IM
2
t
1
δ=0.5
1
t(s)
0
1.0E-3
1.0E-2
1.0E-1
1.0E+0
Fig. 4-1: Relative variation of thermal impedan ce
junction to ambient versus pulse duration (epoxy
printed circuit board, S(Cu)=35mm, recommended
pad layout). (SMB)
t
t(s)
δ=0.5
0
1.0E-3
1.0E-2
1.0E-1
1.0E+0
Fig. 4-2: Relative variation of thermal impedance
junction to ambient versus pulse duration (epoxy
printed circuit board, S(Cu)=35mm, recommended
pad layout).(SMA )
Zth(j-a)/Rth(j-a)
Zth(j-a)/Rth(j-a)
1.0
1.0
0.8
0.8
0.6
Ta=100°C
IM
0.6
δ = 0.5
0.4
δ = 0.5
0.4
T
δ = 0.2
0.2
Single pulse
0.0
1.0E-2
1.0E-1
δ=tp/T
tp(s)
1.0E+0
1.0E+1
T
δ = 0.2
0.2
δ = 0.1
δ = 0.1
tp
1.0E+2
Single pulse
1.0E+3
Fig. 5: Reverse leakage current versus reverse
voltage applied (typical values).
0.0
1E-2
1E-1
δ=tp/T
tp(s)
1E+0
1E+1
tp
1E+2
1E+3
Fig. 6: Junction capacitance versus reverse
voltage applied (typical values).
C(pF)
IR(µA)
500
5E+3
1E+3
F=1MHz
Tj=25°C
Tj=125°C
200
1E+2
100
Tj=70°C
1E+1
50
Tj=25°C
1E+0
1E-1
20
VR(V)
VR(V)
0
5
10
15
20
25
30
10
1
2
5
10
20
30
3/6
STPS130A/U
Fig. 7: Forward voltage drop versus forward current (maximum values).
Fig. 8-1: Thermal resistance junction to ambient
versus copper surface under each lead (Epoxy
printed circuit board, copper thickness:
35µm).(SMB)
IFM(A)
Rth(j-a) (°C/W)
10.00
120
P=1.5W
100
1.00
80
Tj=75°C
60
Tj=125°C
Tj=25°C
0.10
40
20
S(Cu) (cm )
VFM(V)
0.01
0.0
0.2
0.4
0.6
0.8
1.0
1.2
Fig. 8-2: Thermal resistance junction to ambient
versus copper surface under each lead (Epoxy
printed circuit board, copper thickness:
35µm).(SMA)
Rth(j-a) (°C/W)
140
P=1.5W
120
100
80
60
40
20
0
4/6
S(Cu) (cm )
0
1
2
3
4
5
0
0
1
2
3
4
5
STPS130A/U
PACKAGE MECHANICAL DATA
SMA
DIMENSIONS
REF.
E
A1
Inches
Min.
Max.
Min.
Max.
A1
1.90
2.70
0.075
0.106
A2
0.05
0.20
0.002
0.008
b
1.25
1.65
0.049
0.065
c
0.15
0.41
0.006
0.016
E
4.80
5.60
0.189
0.220
E1
3.95
4.60
0.156
0.181
D
2.25
2.95
0.089
0.116
L
0.75
1.60
0.030
0.063
E1
D
Millimeters
A2
C
L
b
FOOT PRINT (in millimeters)
Marking: S130
Cathode band indicates cathode
1.65
1.45
2.40
1.45
5/6
STPS130A/U
PACKAGE MECHANICAL DATA
SMB
DIMENSIONS
REF.
E1
D
Millimeters
Inches
Min.
Max.
Min.
Max.
A1
1.90
2.45
0.075
0.096
A2
0.05
0.20
0.002
0.008
b
1.95
2.20
0.077
0.087
c
0.15
0.41
0.006
0.016
E
5.10
5.60
0.201
0.220
E1
4.05
4.60
0.159
0.181
D
3.30
3.95
0.130
0.156
L
0.75
1.60
0.030
0.063
E
A1
A2
C
L
b
FOOT PRINT (in millimeters)
Marking: G12
Cathode band indicates cathode
2.3
1.52
2.75
1.52
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsIbility for the consequences of
use of such informationnor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by
implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
 1998 STMicroelectronics - Printed in Italy - All rights reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.
6/6