FREESCALE MW6IC2240GNBR1

Freescale Semiconductor
Technical Data
Document Number: MW6IC2240N
Rev. 1, 1/2006
RF LDMOS Wideband Integrated
Power Amplifiers
The MW6IC2240N wideband integrated circuit is designed with on -chip
matching that makes it usable from 2110 to 2170 MHz. This multi - stage
structure is rated for 26 to 32 Volt operation and covers all typical cellular base
station modulation formats.
Final Application
• Typical 2 -Carrier W-CDMA Performance: VDD = 28 Volts, IDQ1 =
210 mA, IDQ2 = 370 mA, Pout = 4.5 Watts Avg., Full Frequency Band
(2110 -2170 MHz), Channel Bandwidth = 3.84 MHz, PAR = 8.5 dB
@ 0.01% Probability on CCDF.
Power Gain — 28 dB
Power Added Efficiency — 15%
IM3 @ 10 MHz Offset — -43 dBc in 3.84 MHz Bandwidth
ACPR @ 5 MHz Offset — -46 dBc in 3.84 MHz Bandwidth
Driver Application
• Typical 2 -Carrier W-CDMA Performance: VDD = 28 Volts, IDQ1 =
300 mA, IDQ2 = 320 mA, Pout = 25 dBm, Full Frequency Band (2110 2170 MHz), Channel Bandwidth = 3.84 MHz, PAR = 8.5 dB @ 0.01%
Probability on CCDF.
Power Gain — 29 dB
IM3 @ 10 MHz Offset — -59 dBc in 3.84 MHz Bandwidth
ACPR @ 5 MHz Offset — -62 dBc in 3.84 MHz Bandwidth
• Capable of Handling 3:1 VSWR, @ 28 Vdc, 2170 MHz, 20 Watts CW
Output Power
• Stable into a 3:1 VSWR. All Spurs Below -60 dBc @ 100 mW to 10 W CW
Pout.
• Characterized with Series Equivalent Large -Signal Impedance Parameters
and Common Source Scattering Parameters
• On -Chip Matching (50 Ohm Input, DC Blocked, >3 Ohm Output)
• Integrated Quiescent Current Temperature Compensation
with Enable/Disable Function
• Integrated ESD Protection
• 200°C Capable Plastic Package
• N Suffix Indicates Lead -Free Terminations. RoHS Compliant.
• In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel
VDS1
RFin
RFout/VDS2
VGS1
Quiescent Current
Temperature Compensation
VGS2
VDS1
Figure 1. Functional Block Diagram
MW6IC2240NBR1
MW6IC2240GNBR1
2110 -2170 MHz, 4.5 W AVG., 28 V
2 x W -CDMA
RF LDMOS WIDEBAND
INTEGRATED POWER AMPLIFIERS
CASE 1329-09
TO-272 WB-16
PLASTIC
MW6IC2240NBR1
CASE 1329A-03
TO-272 WB-16 GULL
PLASTIC
MW6IC2240GNBR1
GND
VDS1
NC
NC
NC
1
2
3
4
5
16
15
GND
NC
RFin
6
14
NC
VGS1
VGS2
VDS1
GND
7
8
9
10
11
RFout /
VDS2
13
12
NC
GND
(Top View)
Note: Exposed backside flag is source
terminal for transistors.
Figure 2. Pin Connections
 Freescale Semiconductor, Inc., 2006. All rights reserved.
RF Device Data
Freescale Semiconductor
MW6IC2240NBR1 MW6IC2240GNBR1
1
Table 1. Maximum Ratings
Symbol
Value
Unit
Drain-Source Voltage
Rating
VDSS
-0.5, +68
Vdc
Gate-Source Voltage
VGS
-0.5, +6
Vdc
Storage Temperature Range
Tstg
-65 to +200
°C
Operating Junction Temperature
TJ
200
°C
Input Power
Pin
23
dBm
Symbol
Value (1,2)
Unit
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
RθJC
°C/W
W-CDMA Application
(Pout = 4.5 W Avg.)
Stage 1, 28 Vdc, IDQ = 210 mA
Stage 2, 28 Vdc, IDQ = 370 mA
1.8
1.0
W-CDMA Application
(Pout = 40 W CW)
Stage 1, 28 Vdc, IDQ = 110 mA
Stage 2, 28 Vdc, IDQ = 370 mA
2.0
0.87
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22-A114)
1A (Minimum)
Machine Model (per EIA/JESD22-A115)
A (Minimum)
Charge Device Model (per JESD22-C101)
III (Minimum)
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD 22-A113, IPC/JEDEC J-STD-020
Rating
Package Peak
Temperature
Unit
3
260
°C
Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
Functional Tests (In Freescale Wideband 2110-2170 MHz Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 210 mA, IDQ2 = 370 mA, Pout
= 4.5 W Avg., f1 = 2112.5 MHz, f2 = 2122.5 MHz and f1 = 2157.5 MHz, f2 = 2167.5 MHz, 2-Carrier W-CDMA, 3.84 MHz Channel
Bandwidth Carriers. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset. IM3 measured in 3.84 MHz Channel Bandwidth @
±10 MHz Offset. PAR = 8.5 dB @ 0.01% Probability on CCDF.
Power Gain
Gps
25.5
28
30
dB
Power Added Efficiency
PAE
13.7
15
—
%
Intermodulation Distortion
IM3
—
-43
-40
dBc
ACPR
—
-46
-43
dBc
IRL
—
-15
-10
dB
Adjacent Channel Power Ratio
Input Return Loss
1. MTTF calculator available at http://www.freescale.com/rf. Select Tools/Software/Application Software/Calculators to access
the MTTF calculators by product.
2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes - AN1955.
(continued)
MW6IC2240NBR1 MW6IC2240GNBR1
2
RF Device Data
Freescale Semiconductor
Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Typical Performances (In Freescale Test Fixture, 50 οhm system) VDD = 28 Vdc, IDQ1 = 210 mA, IDQ2 = 370 mA,
2110 MHz<Frequency<2170 MHz
Video Bandwidth
(Tone Spacing from 100 kHz to VBW)
∆IMD3 = IMD3 @ VBW frequency - IMD3 @ 100 kHz <1 dBc (both
sidebands)
VBW
Quiescent Current Accuracy over Temperature
with 18 kΩ Gate Feed Resistors (-10 to 85°C) (1)
MHz
—
30
—
∆IQT
—
±5
—
%
Gain Flatness in 30 MHz Bandwidth @ Pout = 1 W CW
GF
—
0.2
—
dB
Deviation from Linear Phase in 30 MHz Bandwidth @ Pout = 1 W CW
Φ
—
±1
—
°
Delay
—
2.8
—
ns
∆Φ
—
±9
—
°
Symbol
Min
Typ
Max
Unit
—
W
Delay @ Pout = 1 W CW Including Output Matching
Part-to-Part Phase Variation @ Pout = 1 W CW
Table 6. Electrical Characteristics (TC = 25°C unless otherwise noted)
Characteristic
Typical Performances (In Freescale Test Fixture, 50 οhm system) VDD = 28 Vdc, IDQ1 = 110 mA, IDQ2 = 370 mA,
2110 MHz<Frequency<2170 MHz
Saturated Pulsed Output Power
(8 µsec(on), 1 msec(off))
Psat
—
60
1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family. Go to http://www.freescale.com/rf. Select
Documentation/ApplicationNotes - AN1977.
MW6IC2240NBR1 MW6IC2240GNBR1
RF Device Data
Freescale Semiconductor
3
VD2
1
2
3 NC
4 NC
5 NC
VD1
C13
RF
INPUT
Z1
Z2
DUT
16
C4
NC 15
C6
Z9
Z3
14
Z4
C1
Z5
Z6
Z7
Z8
RF
OUTPUT
6
C9
VG1
7 NC
8
9
R1
10
11
C11
VG2
C2
C8
C3
Z10
Quiescent Current
Temperature
Compensation
NC 13
12
C10
R2
C5
C7
C12
Z1*
Z2*
Z3
Z4*
Z5*
Z6*
1.73″ x 0.090″ Microstrip
0.47″ x 0.090″ Microstrip
0.13″ x 0.040″ Microstrip
0.22″ x 0.315″ Microstrip
0.34″ x 0.315″ Microstrip
0.34″ x 0.090″ Microstrip
Z7*
Z8
Z9, Z10
PCB
0.94″ x 0.090″ Microstrip
0.34″ x 0.090″ Microstrip
1.00″ x 0.080″ Microstrip
Taconic TLX8-0300, 0.030″, εr = 2.55
* Variable for tuning
Figure 3. MW6IC2240NBR1(GNBR1) Test Circuit Schematic
Table 7. MW6IC2240NBR1(GNBR1) Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
C1, C2
1.5 pF 100B Chip Capacitors
100B1R5BW
ATC
C3
1.8 pF 100B Chip Capacitor
100B1R8BW
ATC
C4, C5
6.8 pF 100B Chip Capacitors
100B6R8CW
ATC
C6, C7, C10, C11, C12, C13
4.7 µF Chip Capacitors (1812)
C4532X5R1H475MT
TDK
C8
8.2 pF 100B Chip Capacitor
100B8R2CW
ATC
C9
0.5 pF 100B Chip Capacitor
100B0R5BW
ATC
R1
18 kW, 1/4 W Chip Resistor (1206)
R2
8.2 kW, 1/4 W Chip Resistor (1206)
MW6IC2240NBR1 MW6IC2240GNBR1
4
RF Device Data
Freescale Semiconductor
VD1
VD2
C13
CUT OUT AREA
C4
C9
C10
C6
MW6IC2240, Rev. 1
C3
C1
C8
C2
C5
C7
C12
C11
R1
VG1
R2
VG2
Figure 4. MW6IC2240NBR1(GNBR1) Test Circuit Component Layout
MW6IC2240NBR1 MW6IC2240GNBR1
RF Device Data
Freescale Semiconductor
5
TYPICAL CHARACTERISTICS
0
VDD = 28 Vdc, Pout = 4.5 W (Avg.)
IDQ1 = 210 mA, IDQ2 = 370 mA
Two−Tone Measurements, 10 MHz Tone Spacing
30
Gps
25
−11
−22
IRL
20
−33
PAE
15
−44
IM3
IM3 (dBc), ACPR (dBc)
IRL, INPUT RETURN LOSS (dB)
PAE, POWER ADDED EFFICIENCY (%),
Gps, POWER GAIN (dB)
35
ACPR
10
2000
2050
2100
−55
2250
2200
2150
f, FREQUENCY (MHz)
Figure 5. 2 -Carrier W-CDMA Wideband Performance
@ Pout = 4.5 Watts Avg.
−10
IRL
30
25
20
−20
Gps
VDD = 28 Vdc, Pout = 0.6 W (Avg.)
IDQ1 = 300 mA, IDQ2 = 320 mA
Two−Tone Measurements, 10 MHz Tone Spacing
−30
−40
IM3
−50
15
ACPR
−60
10
5
PAE
0
2050
2100
2150
−70
IM3 (dBc), ACPR (dBc)
IRL, INPUT RETURN LOSS (dB)
PAE, POWER ADDED EFFICIENCY (%),
Gps, POWER GAIN (dB)
35
−80
2250
2200
f, FREQUENCY (MHz)
Figure 6. 2 -Carrier W-CDMA Wideband Performance
@ Pout = 0.6 Watts Avg.
31
31
IDQ2 = 530 mA
29
28
IDQ1 = 280 mA
450 mA
30
370 mA
Gps, POWER GAIN (dB)
Gps, POWER GAIN (dB)
30
290 mA
27
210 mA
26
25
24
23
0.1
VDD = 28 Vdc, IDQ = 210 mA
f1 = 2135 MHz, f2 = 2145 MHz
Two−Tone Measurements, 10 MHz Tone Spacing
1
10
210 mA
29
28
VDD = 28 Vdc
Pout = 1 W CW
IDQ2 = 370 mA
140 mA
27
100
26
2000
2050
2100
2150
2200
2250
Pout, OUTPUT POWER (WATTS) PEP
f, FREQUENCY (MHz)
Figure 7. Two -Tone Power Gain versus
Output Power
Figure 8. Frequency Response versus Current
MW6IC2240NBR1 MW6IC2240GNBR1
6
RF Device Data
Freescale Semiconductor
−10
−20
−30
VDD = 28 Vdc, IDQ1 = 210 mA, IDQ2 = 370 mA
f1 = 2135 MHz, f2 = 2145 MHz
Two−Tone Measurements, 10 MHz Tone Spacing
IMD, INTERMODULATION DISTORTION (dBc)
IMD, INTERMODULATION DISTORTION (dBc)
TYPICAL CHARACTERISTICS
3rd Order
5th Order
−40
7th Order
−50
−60
−70
−80
−90
0.1
1
10
100
−10
VDD = 28 Vdc, Pout = 20 W (PEP), IDQ1 = 210 mA,
IDQ2 = 370 mA, Two−Tone Measurements
(f1 + f2)/2 = Center Frequency of 2140 MHz
−15
−20
3rd Order
−25
−30
−35
5th Order
−40
7th Order
−45
−50
0.1
1
10
100
TWO−TONE SPACING (MHz)
Pout, OUTPUT POWER (WATTS) PEP
Figure 10. Intermodulation Distortion Products
versus Tone Spacing
Figure 9. Intermodulation Distortion Products
versus Output Power
55
P6dB = 48 dBm (63 W)
Ideal
Pout, OUTPUT POWER (dBm)
53
P3dB = 47.5 dBm (56 W)
51
P1dB = 47 dBm (50 W)
49
Actual
47
45
VDD = 28 Vdc, IDQ1 = 110 mA
IDQ2 = 370 mA, Pulsed CW
8 µsec(on), 1 msec(off)
f = 2140 MHz
43
41
39
10
12
14
16
18
20
22
24
26
28
30
Pin, INPUT POWER (dBm)
40
−25
35
TC = −30_C
−30
30
25_C
−35
85_C
25
20
VDD = 28 Vdc
IDQ1 = 210 mA, IDQ2 = 370 mA
f1 = 2135 MHz, f2 = 2145 MHz
15
IM3
ACPR
PAE
0
0.1
−45
−50
10
5
−40
Gps
1
2−Carrier W−CDMA, 10 MHz
Carrier Spacing, 3.84 MHz
Channel Bandwidth, PAR =
8.5 dB @ 0.01% Probability
(CCDF)
10
−55
IM3 (dBc), ACPR (dBc)
PAE, POWER ADDED EFFICIENCY (%), Gps, POWER GAIN (dB)
Figure 11. Pulse CW Output Power versus
Input Power
−60
−65
100
Pout, OUTPUT POWER (WATTS) AVG.
Figure 12. 2 -Carrier W-CDMA ACPR, IM3, Power
Gain and Power Added Efficiency
versus Output Power
MW6IC2240NBR1 MW6IC2240GNBR1
RF Device Data
Freescale Semiconductor
7
TYPICAL CHARACTERISTICS
TC = −30_C
50
25_C
40
28
24
20
25_C
85_C
85_C 30
VDD = 28 Vdc
IDQ1 = 210 mA, IDQ2 = 370 mA
f = 2140 MHz
Gps
20
PAE
16
10
12
0.1
0
1
10
30
IDQ1 = 210 mA
IDQ2 = 370 mA
f = 2140 MHz
29
Gps, POWER GAIN (dB)
Gps, POWER GAIN (dB)
32
60
−30_C
PAE, POWER ADDED EFFICIENCY (%)
36
28
27
26
32 V
16 V
25
20 V
VDD = 12 V
24
0
100
24 V
10
20
28 V
30
40
50
60
Pout, OUTPUT POWER (WATTS) CW
Pout, OUTPUT POWER (WATTS) CW
Figure 14. Power Gain versus Output Power
Figure 13. Power Gain and Power Added
Efficiency versus Output Power
MTTF FACTOR (HOURS X AMPS2)
1.E+09
2nd Stage
1.E+08
1.E+07
1.E+06
90
1st Stage
100
110
120
130
140
150
160
170
180 190
TJ, JUNCTION TEMPERATURE (°C)
This above graph displays calculated MTTF in hours x ampere2
drain current. Life tests at elevated temperatures have correlated to
better than ±10% of the theoretical prediction for metal failure. Divide
MTTF factor by ID2 for MTTF in a particular application.
Figure 15. MTTF Factor versus Junction Temperature
MW6IC2240NBR1 MW6IC2240GNBR1
8
RF Device Data
Freescale Semiconductor
Zo = 50 Ω
f = 2050 MHz
f = 2230 MHz
Zin
f = 2050 MHz
f = 2230 MHz
Zload
VDD = 28 Vdc, IDQ1 = 210 mA, IDQ2 = 370 mA, Pout = 4.5 W Avg.
Zin
f
MHz
Zin
Ω
Zload
Ω
2050
33.723 + j3.048
7.971 - j5.705
2080
38.052 + j8.201
7.559 - j5.532
2110
45.972 + j12.306
7.117 - j5.345
2140
59.075 + 9.272
6.642 - j5.119
2170
68.368 - j3.227
6.132 - j4.891
2200
67.177 - j19.071
5.626 - j4.619
2230
58.213 - j28.879
5.118 - j4.305
= Device input impedance as measured from
gate to ground.
Zload = Test circuit impedance as measured
from drain to ground.
Output
Matching
Network
Device
Under Test
Z
in
Z
load
Figure 16. Series Equivalent Input and Load Impedance
MW6IC2240NBR1 MW6IC2240GNBR1
RF Device Data
Freescale Semiconductor
9
Table 8. Common Source Scattering Parameters (VDD = 28 V, 50 ohm system)
IDQ1 = 210 mA, IDQ2 = 370 mA
f
MHz
MH
S11
S21
S12
S22
|S11|
∠φ
|S21|
∠φ
|S12|
∠φ
|S22|
∠φ
1000
0.788
131.360
0.0013
63.602
0.0020
25.353
0.9940
172.664
1200
0.713
113.326
0.0012
42.219
0.0094
10.742
0.9910
169.954
1400
0.584
86.885
0.0007
55.210
0.1180
-39.325
0.9850
166.452
1600
0.389
41.593
0.0006
117.726
0.6690
-92.822
0.9780
161.752
1800
0.239
-54.753
0.0022
122.409
4.9300
-164.584
0.9310
152.388
2000
0.221
-162.180
0.0036
118.178
21.396
49.432
0.6120
151.441
2200
0.216
-38.746
0.0057
68.626
19.739
-105.946
0.7530
-177.800
2400
0.467
-113.440
0.0043
64.758
7.8281
166.887
0.9010
171.868
2600
0.539
-153.020
0.0044
48.498
3.8868
113.310
0.9350
167.252
2800
0.635
-171.630
0.0044
52.829
2.4331
69.460
0.9480
164.137
3000
0.716
169.263
0.0049
56.398
1.6119
29.135
0.9570
161.593
MW6IC2240NBR1 MW6IC2240GNBR1
10
RF Device Data
Freescale Semiconductor
NOTES
MW6IC2240NBR1 MW6IC2240GNBR1
RF Device Data
Freescale Semiconductor
11
NOTES
MW6IC2240NBR1 MW6IC2240GNBR1
12
RF Device Data
Freescale Semiconductor
NOTES
MW6IC2240NBR1 MW6IC2240GNBR1
RF Device Data
Freescale Semiconductor
13
PACKAGE DIMENSIONS
r1
C A B
2X
E1
B
aaa
A
NOTE 6
M
PIN ONE
INDEX
4X
aaa
M
b1
C A
6X
e1
4X
e2
2X
e3
e
D1
aaa
b3
aaa M C A
b2
C A
D M
M
10X
b
aaa
M
C A
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
N
E
VIEW Y-Y
DATUM
PLANE
H
A
c1
C
SEATING
PLANE
F
Y
ZONE "J"
E2
Y
A1
7 A2
NOTES:
1. CONTROLLING DIMENSION: INCH.
2. INTERPRET DIMENSIONS AND TOLERANCES PER
ASME Y14.5M−1994.
3. DATUM PLANE −H− IS LOCATED AT TOP OF LEAD
AND IS COINCIDENT WITH THE LEAD WHERE THE
LEAD EXITS THE PLASTIC BODY AT THE TOP OF
THE PARTING LINE.
4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE
MOLD PROTRUSION. ALLOWABLE PROTRUSION
IS .006 (0.15) PER SIDE. DIMENSIONS "D" AND "E1"
DO INCLUDE MOLD MISMATCH AND ARE
DETERMINED AT DATUM PLANE −H−.
5. DIMENSIONS "b", "b1", "b2" AND "b3" DO NOT
INCLUDE DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE .005 (0.13)
TOTAL IN EXCESS OF THE "b", "b1", "b2" AND "b3"
DIMENSIONS AT MAXIMUM MATERIAL CONDITION.
6. HATCHING REPRESENTS THE EXPOSED AREA OF
THE HEAT SLUG.
7. DIM A2 APPLIES WITHIN ZONE "J" ONLY.
CASE 1329-09
ISSUE K
TO -272 WB-16
PLASTIC
MW6IC2240NBR1
DIM
A
A1
A2
D
D1
E
E1
E2
F
M
N
b
b1
b2
b3
c1
e
e1
e2
e3
r1
aaa
INCHES
MIN
MAX
.100
.104
.038
.044
.040
.042
.928
.932
.810 BSC
.551
.559
.353
.357
.346
.350
.025 BSC
.600
−−−
.270
−−−
.011
.017
.037
.043
.037
.043
.225
.231
.007
.011
.054 BSC
.040 BSC
.224 BSC
.150 BSC
.063
.068
.004
MILLIMETERS
MIN
MAX
2.54
2.64
0.96
1.12
1.02
1.07
23.57
23.67
20.57 BSC
14.00
14.20
8.97
9.07
8.79
8.89
0.64 BSC
15.24
−−−
6.86
−−−
0.28
0.43
0.94
1.09
0.94
1.09
5.72
5.87
.18
.28
1.37 BSC
1.02 BSC
5.69 BSC
3.81 BSC
1.6
1.73
.10
MW6IC2240NBR1 MW6IC2240GNBR1
14
RF Device Data
Freescale Semiconductor
E1
r1
aaa M C A B
2X
A
B
4X
PIN ONE
INDEX
aaa
M
b1
C A
6X
e1
4X
e2
2X
e3
b3
aaa M C A
e
D1
aaa
M
D
M
b2
C A
b
C A
10X
aaa
M
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
NOTE 6
N
E2
VIEW Y-Y
E
DETAIL Y
DATUM
PLANE
H
A2
A
c1
E2
Y
Y
L1
t
L
GAGE
PLANE
A1
DETAIL Y
C
SEATING
PLANE
NOTES:
1. CONTROLLING DIMENSION: INCH.
2. INTERPRET DIMENSIONS AND TOLERANCES PER
ASME Y14.5M−1994.
3. DATUM PLANE −H− IS LOCATED AT TOP OF LEAD
AND IS COINCIDENT WITH THE LEAD WHERE THE
LEAD EXITS THE PLASTIC BODY AT THE TOP OF
THE PARTING LINE.
4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE
MOLD PROTRUSION. ALLOWABLE PROTRUSION
IS .006 (0.15) PER SIDE. DIMENSIONS "D" AND "E1"
DO INCLUDE MOLD MISMATCH AND ARE
DETERMINED AT DATUM PLANE −H−.
5. DIMENSIONS "b", "b1", "b2" AND "b3" DO NOT
INCLUDE DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE .005 (0.13)
TOTAL IN EXCESS OF THE "b", "b1", "b2" AND "b3"
DIMENSIONS AT MAXIMUM MATERIAL CONDITION.
6. HATCHING REPRESENTS THE EXPOSED AREA OF
THE HEAT SINK.
DIM
A
A1
A2
D
D1
E
E1
E2
L
L1
M
N
b
b1
b2
b3
c1
e
e1
e2
e3
r1
t
aaa
INCHES
MIN
MAX
.100
.104
.001
.004
.099
.110
.928
.932
.810 BSC
.429
.437
.353
.357
.346
.350
.018
.024
.01 BSC
.600
−−−
.270
−−−
.011
.017
.037
.043
.037
.043
.225
.231
.007
.011
.054 BSC
.040 BSC
.224 BSC
.150 BSC
.063
.068
2°
8°
.004
MILLIMETERS
MIN
MAX
2.54
2.64
0.02
0.10
2.51
2.79
23.57
23.67
20.57 BSC
10.90
11.10
8.97
9.07
8.79
8.89
4.90
5.06
0.25 BSC
15.24
−−−
6.86
−−−
0.28
0.43
0.94
1.09
0.94
1.09
5.72
5.87
.18
.28
1.37 BSC
1.02 BSC
5.69 BSC
3.81 BSC
1.6
1.73
2°
8°
.10
CASE 1329A-03
ISSUE D
TO -272 WB-16 GULL
PLASTIC
MW6IC2240GNBR1
MW6IC2240NBR1 MW6IC2240GNBR1
RF Device Data
Freescale Semiconductor
15
How to Reach Us:
Home Page:
www.freescale.com
E-mail:
[email protected]
USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
[email protected]
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
[email protected]
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
[email protected]
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
 Freescale Semiconductor, Inc. 2006. All rights reserved.
RoHS- compliant and/or Pb- free versions of Freescale products have the functionality and electrical
characteristics of their non - RoHS- compliant and/or non- Pb- free counterparts. For further
information, see http://www.freescale.com or contact your Freescale sales representative.
For information on Freescale’s Environmental Products program, go to http://www.freescale.com/epp.
MW6IC2240NBR1 MW6IC2240GNBR1
Document Number: MW6IC2240N
Rev. 1, 1/2006
16
RF Device Data
Freescale Semiconductor