a Dual Micropower Operational Amplifier OP220 FEATURES Excellent TCV OS Match: 2 V/ⴗC Max Low Input Offset Voltage: 150 V Max Low Supply Current: 100 A Single-Supply Operation: 5 V to 30 V Low Input Offset Voltage Drift: 0.75 V/ⴗC Max High Open-Loop Gain: 2,000 V/mV High PSRR: 3 V/V Low Input Bias Current: 12 nA Wide Common-Mode Voltage Range: V– to Within 1.5 V of V+ Pin Compatible with 1458, LM158, and LM2904 Available in Die Form PIN CONFIGURATIONS 8-Lead Hermatic Dip (Z-Suffix) OUT A 1 OP220 8-Lead Plastic Dip (P-Suffix) OUT A 1 –IN A 2 7 OUT B –IN B +IN A 3 6 –IN B +IN B V– 4 5 +IN B 8 V+ –IN A 2 7 OUT B +IN A 3 6 V– 4 5 8-Lead SOIC (S-Suffix) OP220 8 V+ 8-Lead TO-99 (J-Suffix) GENERAL DESCRIPTION The OP220 is a monolithic dual operational amplifier that can be used either in single or dual supply operation. The low offset voltage and input offset voltage tracking as low as 1.0 mV/∞C, make this the first micropower precision dual operational amplifier. +IN A 1 8 –IN A V– 2 7 OUT A +IN B 3 6 V+ The excellent specifications of the individual amplifiers combined with the tight matching and temperature tracking between channels provides high performance in instrumentation amplifier designs. The individual amplifiers feature extremely low input offset voltage, low offset voltage drift, low noise voltage, and low bias current. They are fully compensated and protected. –IN B 4 5 OUT B Matching between channels is provided on all critical parameters including input offset voltage, tracking of offset voltage versus temperature, noninverting bias currents, and common-mode rejection ratios. V+ Q11 Q3 Q4 Q28 Q12 Q2 –IN Q26 Q1 Q9 +IN OUTPUT Q10 Q27 Q8 Q7 Q29 Q6 Q5 Q13 NULL* Q33 V– *ACESSIBLE IN CHIP FORM ONLY REV. A Figure 1. Simplified Schematic Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 2002 OP220–SPECIFICATIONS ELECTRICAL CHARACTERISTICS (@ V = ⴞ2.5 V to ⴞ15 V, T = 25ⴗC, unless otherwise noted.) S Parameter A Min OP220A/E Typ Max Input Offset Voltage VOS VS = ± 2.5 V to ± 15 V 120 150 250 300 500 750 mV Input Offset Current IOS VCM = 0 0.15 1.5 0.2 2 0.2 3.5 nA Input Bias Current IB VCM = 0 12 20 13 25 14 30 nA Input Voltage Range IVR V+ = 5 V, V– = 0 V VS = ± 15 V 0/3.5 –15/+13.5 0/3.5 –15/+13.5 0/3.5 –15/+13.5 V V Common-Mode Rejection Ratio CMRR V+ = 5 V, V– = 0 V 0 V £ VCM £ 3.5 V VS = ± 15 V –15 V £ VCM £ +13.5 V 90 100 85 90 75 85 dB 95 100 90 95 80 90 dB PSRR VS = ± 2.5 V to ± 15 V, V– = 0 V, V+ = 5 V to 30 V Large-Signal Voltage Gain AVO V+ = 5 V, V– = 0 V, RL = 100 kW, 1 V £ VO £ 3.5 V VS = ± 15 V, RL = 25 kW VO = ± 10 V Output Voltage Swing VO V+ = 5 V, V– = 0 V RL = 10 kW VS = ± 15 V, RL = 25 kW 3 6 10 18 10 18 Max Min OP220C/G Typ Max Conditions Power Supply Rejection Ratio Min OP220F Typ Symbol 32 57 32 57 100 180 Unit mV/V mV/V 500 1,000 500 800 300 500 V/mV 1,000 2,000 1,000 2,000 800 1,600 V/mV 0.7/4 0.7/4 0.8/4 V ± 14 ± 14 ± 14 V Slew Rate* SR RL =25 kW 0.05 0.05 0.05 V/ms Bandwidth BW AVCL = 1, RL =25 kW 200 200 200 kHz Supply Current (Both Amplifiers) ISY VS = ± 2.5 V, No Load VS = ± 15 V, No Load 100 140 115 170 115 150 125 190 125 205 135 220 mA mA *Sample tested. (Vs = ⴞ2.5 V to ⴞ15 V, –55ⴗC £ TA £ +125ⴗC for OP220A/C, –25ⴗC £ TA £ +85ⴗC for OP220E/F, ELECTRICAL CHARACTERISTICS –40ⴗC £ T £ +85ⴗC for OP220G unless otherwise noted.) A Parameter Symbol Conditions Input Offset Voltage Drift* TCVOS VS = ± 15 V Input Offset Voltage VOS Input Offset Current IOS Input Bias Current Min OP220A/E Typ Max Min OP220F Typ Max Min OP220C/G Typ Max Unit mV/∞C 0.75 1.5 1.2 2 2 3 200 300 400 500 1,000 1,300 mV VCM = 0 0.5 2 0.6 2.5 0.6 5 nA IB VCM = 0 12 25 13 30 14 40 nA Input Voltage Range IVR V+ = 5 V, V– = 0 V VS = ± 15 V 0/3.2 –15/+13.2 0/3.2 –15/+13.2 0/3.2 –15/+13.2 V V Common-Mode Rejection Ratio CMRR V+ = 5 V, V– = 0 V 0 V £ VCM £ 3.2 V VS = ± 15 V –15 V £ VCM £ +13.2 V 86 90 80 85 70 80 dB 90 95 85 90 75 85 dB Power Supply Rejection Ratio PSRR VS = ± 2.5 V to ± 15 V, V– = 0 V, V+ = 5 V to 30 V Large-Signal Voltage Gain AVO VS = ± 15 V, RL = 50 kW VO = ± 10 V 500 Output Voltage Swing VO V+ = 5 V, V– = 0 V RL = 20 kW VS = ± 15 V, RL = 50 kW 0.9/3.8 0.9/3.8 1.0/3.8 V ± 13.6 ± 13.6 ± 13.6 V Supply Current (Both Amplifiers) ISY VS = ± 2.5 V, No Load VS = ± 15 V, No Load 6 10 18 32 1,000 135 190 18 32 500 170 250 57 100 800 155 200 57 100 400 185 280 180 320 500 170 275 mV/V mV/V V/mV 210 330 mA mA *Sample tested. –2– REV. A OP220 MATCHING CHARACTERISTICS (@ V = ⴞ15 V, T = 25ⴗC, unless otherwise noted.) S Parameter Symbol Input Offset Voltage Match DVOS Average Noninverting Bias Current I B+ Noninverting Offset Current Conditions A Min OP220A/E Typ Max Min OP220F Typ Max Min OP220C/G Typ Max Unit 150 300 250 500 300 800 mV VCM = 0 10 20 15 25 20 30 nA IOS+ VCM = 0 0.7 1.5 1 2 1.4 2.5 nA Common-Mode Rejection Ratio Match1 DCMRR VCM = –15 V to +13.5 V Power Supply Rejection Ratio Match2 DPSRR VS = ± 2.5 V to ± 15 V, 92 100 6 87 95 14 18 72 85 44 57 dB 140 mV/V NOTES 1 DCMRR is 20 log 10 VCM/DCME, where VCM is the voltage applied to both noninverting inputs and DCME is the difference in common-mode input-referred error. Input Referred Differential Error . DVS 2 DPSRR is 3 Sample tested. MATCHING CHARACTERISTICS Parameter Symbol (Vs = ⴞ15 V, –55ⴗC £ TA £ +125ⴗC for OP220A/C, –25ⴗC £ TA £ +85ⴗC for OP220E/F, –40ⴗC £ TA £ +85ⴗC for OP220G unless otherwise noted. Grades E, F are sample tested.) Conditions Min OP220A/E Typ Max Min OP220F Typ Max Min OP220C/G Typ Max Unit Input Offset Voltage Match DVOS 250 500 400 800 800 1,800 mV Input Offset Voltage Tracking1 TCDVOS 1 2 1.5 3 1.5 5 mV/∞C Average Noninverting Bias Current I B+ VCM = 0 10 25 15 30 22 40 nA Average Drift of Noninverting Bias Current1 TCIB+ VCM = 0 15 25 15 30 30 50 pA/∞C Noninverting Offset Current IOS+ VCM = 0 0.7 2 1 2.5 2.5 5 nA Average Drift of Noninverting Offset Current1 TCIOS+ VCM = 0 7 15 12 22.5 15 30 pA/∞C Common-Mode Rejection Ratio Match2 DCMRR VCM = –15 V to +13 V Power Supply Rejection Ratio Match3 DPSRR VS = ± 2.5 V to ± 15 V, 87 96 10 82 96 26 30 72 78 80 57 dB 250 mV/V NOTES 1 Sample tested. 2 DCMRR is 20 log 10 VCM/DCME, where VCM is the voltage applied to both noninverting inputs and DCME is the difference in common-mode input-referred error. 3 DPSRR is Input Referred Differential Error . DVS TYPICAL ELECTRICAL CHARACTERISTICS (@ V = ⴞ15 V, T s Parameter Symbol Average Input Offset Voltage Drift TCVOS Large-Signal Voltage Gain AVO REV. A Conditions RL = 25 kW –3– A = 25ⴗC, unless otherwise noted.) OP220N Typical Unit 1.5 mV/∞C 2000 V/mV OP220–SPECIFICATIONS ABSOLUTE MAXIMUM RATINGS* Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 18 V Differential Input Voltage . . . . . . . . . . 30 V or Supply Voltage Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . Supply Voltage Output Short-Circuit Duration Indefinite Storage Temperature Range . . . . . . . . . . . . –65∞C to +150∞C Junction Temperature (Ti) . . . . . . . . . . . . . –65∞C to +150∞C Operating Temperature Range OP220A/OP220C . . . . . . . . . . . . . . . . . . –55∞C to +125∞C OP220E/OP220F . . . . . . . . . . . . . . . . . . . . –25∞C to +85∞C OP220G . . . . . . . . . . . . . . . . . . . . . . . . . . . –40∞C to +85∞C Lead Temperature Range (Soldering, 60 sec) . . . . . . . . 300∞C JA* JC Unit 8-Lead Hermetic DIP (Q) 148 16 ∞C/W 8-Lead Plastic DIP (N) 103 43 ∞C/W 8-Lead SOL (RN) 158 43 ∞C/W TO-99 (H) 150 18 ∞C/W *JA is specified for worst-case mounting conditions, i.e., JA is specified for device in socket for CERDIP and PDIP packages; JA is specified for device soldered to printed circuit board for SO packages. ORDERING GUIDE NOTES *Absolute Maximum Ratings apply to packaged parts, unless otherwise noted. TA = 25∞C VOS MAX (mV) CERDIP DIE CHARACTERISTICS 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. Package Type 150 150 300 750 750 750 INVERTING INPUT (A) NONINVERTING INPUT (A) BALANCE (A) V– BALANCE (B) NONINVERTING INPUT (B) INVERTING INPUT (B) BALANCE (B) V+ OUT (B) V+ OUT (A) V+ BALANCE (A) Package Options Plastic TO-99 Operating Temperature Range OP220AZ* OP220EZ* OP220FZ* MIL IND IND OP220CJ* MIL OP220GZ* OP220GP* OP220GS XIND XIND For military processed devices, please refer to the Mil Standard Data Sheet OP220AJ/883*. DIE SIZE 0.097 INCH ⴛ 0.063 INCH, 6111 SQ. MILS (2.464 mm ⴛ 1.600 mm, 3.94 SQ. mm) *Not for new design. Obsolete April 2002. NOTE : ALL V+ PADS ARE INTERNALL CONNECTED WAFER TEST LIMITS (@ VS = ⴞ2.5 V, to ⴞ15 V, TA = 25ⴗC, unless otherwise noted.) OP220N Limit Unit VOS 200 mV Max Input Offset Voltage Match ⌬VOS 300 mV Max Input Offset Current IOS VCM = 0 2 nA Max Input Bias Current IB VCM = 0 25 nA Max Input Voltage Range IVR VS = ± 15 V –15/13.5 V Min Common-Mode Rejection Ratio CMRR V– = 0 V, V+ = 5 V, 0 V £ VCM £ 3.5 V –15 V £ VCM £ 13.5 V, VS = ± 15 V 88 93 dB Min Power Supply Rejection Ratio PSRR VS = ± 2.5 V to ± 15 V V– = 0 V, V+ = 5 V to 30 V 12.5 22.5 mV/V Max Large-Signal Voltage Gain AVO RL = 25 kW, VS = ± 15 V VO = ± 10 V 1000 V/mV Min Output Voltage Swing VO V+ = 5 V, V– = 0 V, RL = 10 kW VS = ± 15 V, RL = 25 kW 0.7/4 ± 14 V Min Supply Current (Both Amplifiers) ISY VS = ± 2.5 V, No Load VS = ± 15 V, No Load 125 190 mA Max Parameter Symbol Input Offset Voltage Conditions NOTE Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packing is not guaranteed for standard product dice. Consult factory to negotiate specifications based on die lot qualification through sample lot assembly and testing. –4– REV. A Typical Performance Characteristics– OP220 14 150 VS = 15V VS = 15V 12 INPUT BIAS CURRENT – nA INPUT OFFSET VOLTAGE – V 100 50 0 –50 –100 10 8 6 4 2 –150 –50 0 –25 25 50 75 100 0 –100 125 –50 0 50 TEMPERATURE – ⴗC TEMPERATURE – ⴗC TPC 1. Normalized Offset Voltage vs. Temperature 700 VS = 15V TA = 25ⴗC 60 600 INPUT OFFSET CURRENT – pA ⌬ INPUT OFFSET VOLTAGE – V 150 TPC 4. Input Bias Current vs. Temperature 80 40 20 0 –20 –40 –60 100 500 400 300 200 100 4 0 8 12 POWER SUPPLY VOLTAGE – V 16 0 –100 20 TPC 2. Input Offset Voltage vs. Power Supply Voltage –50 0 50 TEMPERATURE – ⴗC 100 150 TPC 5. Input Offset Current vs. Temperature 110 200 VS = 15V 100 180 TA = 125ⴗC 10Hz 80 SUPPLY CURRENT – A OPEN-LOOP GAIN – dB 90 70 100Hz 60 50 40 1kHz 30 160 140 TA = 25ⴗC 120 100 TA = –55ⴗC 20 80 10 0 –75 –50 –25 0 25 50 TEMPERATURE – ⴗC 75 100 60 125 0 5.0 7.5 10.0 12.5 SUPPLY VOLTAGE – V 15.0 TPC 6. Supply Current vs. Supply Voltage TPC 3. Open-Loop Gain vs. Temperature REV. A 2.5 –5– 17.5 OP220 TA = 25ⴗC VS = 15V 140 OPEN-LOOP GAIN – dB 100 80 CMRR – dB 0 160 TA = 25ⴗC VS = 15V 60 40 45 120 GAIN 100 PHASE 90 80 60 40 135 ⌽m = 53ⴗ 20 PHASE SHIFT – Degrees 120 20 0 0.01 0.1 1 10 FREQUENCY – Hz 100 0 0.01 1k TPC 7. CMRR vs. Frequency 10 100 1k FREQUENCY – Hz 10k 100k 1M 180 36 TA = 25ⴗC VS = 15V TA = 25ⴗC VS = 15V 32 PEAK-TO-PEAK AMPLITUDE – V 120 110 100 PSRR – dB 1 TPC 10. Open-Loop Voltage Gain and Phase vs. Frequency 130 +PSRR 90 80 70 –PSRR 60 50 40 0.1 28 24 20 16 12 8 4 1 10 100 1k FREQUENCY – Hz 10k 0 100 100k TPC 8. PSRR vs. Frequency 1k 10k FREQUENCY – Hz 100k 1M TPC 11. Maximum Output Swing vs. Frequency 17 0.09 TA = 25ⴗC 0.08 VS = 15V 0.07 SLEW RATE – V/sec PEAK OUTPUT VOLTAGE – V 15 10 5 VS = 15V 0.06 VS = 5V 0.05 0.04 0.03 0.02 VS = 5V 0.01 0 1 10 LOAD RESISTANCE – k⍀ 0 –75 100 TPC 9. Maximum Output Voltage vs. Load Resistance –50 –25 0 25 50 75 TEMERATURE – ⴗC 100 125 150 TPC 12. Slew Rate vs. Temperature –6– REV. A OP220 10 CURRENT NOISE DENSITY – pA/ Hz VOLTAGE NOISE DENSITY – nV/ Hz 1,000 100 10 0.1 1 10 FREQUENCY – Hz 100 0.1 0.01 0.1 1k 1 10 FREQUENCY – Hz 100 TPC 14. Noise Density vs. Frequency TPC 13. Voltage Noise Density vs. Frequency REV. A 1 –7– 1k OP220 R0 2s 50mV GAIN ADJ 100 90 R1 R2 V1 A1 VCM – 1/2 VD 10 0% – VD 1/2 OP220 R4 R3 20mV VCM + 1/2 VD A2 + VO 1/2 OP220 INPUT OUTPUT VO = OP220 25k⍀ 100pF R1 ˆ Ê If R1 = R2 = R 3 = R4 , thenVO = 2Á 1 + ˜ VD Ë R0 ¯ Figure 2. Small-Signal Transient Response Figure 4. Two Op Amp Instrumentation Amplifier Configuration 200s 2V R4 Ê R 3 R2 ˆ R4 È 1 Ê R2 R 3 ˆ R2 + R 3 ˘ 1+ Á VD + + ˜ VCM Á ˜+ R 3 Ë R4 R1 ¯ R 3 ÍÎ 2 Ë R1 R4 ¯ R0 ˙˚ The input voltages are represented as a common-mode input VCM plus a differential input VD. The ratio R3/R4 is made equal to the ratio R2/R, to reject the common-mode input VCM. The differential signal VD is then amplified according to: 100 90 VO = 10 0% Note that gain can be independently varied by adjusting RO. From considerations of dynamic range, resistor tempco matching, and matching of amplifier response, it is generally best to make RX, R2, R3, and R4 approximately equal. Designating R1, R2, R3, and R4 as RN allows the output equation to be further simplified: 5V INPUT OUTPUT OP220 40k⍀ RL 25k⍀ R 3 R2 R4 Ê R 3 R2 + R 3 ˆ + = Á1 + ˜ VD , where R4 R1 R3 Ë R4 RO ¯ Ê R ˆ VO = 2 Á 1 + N ˜ VD , where RN = R1 = R2 = R 3 = R4 RO ¯ Ë CL 100pF 10k⍀ Dynamic range is limited by A1 as well as A2; the output of A1 is: Ê R ˆ V 1 = -Á 1 + N ˜ VD + 2 VCM RO ¯ Ë Figure 3. Large-Signal Transient Response INSTRUMENTATION AMPLIFIER APPLICATIONS OF THE OP220 Two Op Amp Configuration If the instrumentation amplifier were designed for a gain of 10 and maximum VD of ± 1 V, then RN/RO would need to be four and VO would be a maximum of ± 10 V. Amplifier A1 would have a maximum output of ± 5 V plus 2 VCM, thus a limit of ±10 V on the output of A1 would imply a limit of ±2.5 V on VCM. The excellent input characteristics of the OP220 make it ideal for use in instrumentation amplifier configurations where low-level differential signals are to be amplified. The low-noise, low input offsets, low drift, and high gain combined with excellent CMRR provide the characteristics needed for high-performance instrumentation amplifiers. In addition, the power supply current drain is very low. A nominal value of 100 kW for RN is suitable for most applications. A range of 200 W to 25 kW for RO will then provide a gain range of 10 to 1,000. The current through RO is VD/RO, so the amplifiers must supply ± 10 mV/200 W when the gain is at the maximum value of 1,000 and VD is at ± 10 mV. The circuit of Figure 4 is recommended for applications where the common-mode input range is relatively low and differential gain will be in the range of 10 to 1,000. This two op amp instrumentation amplifier features independent adjustment of common-mode rejection and differential gain. Input impedance is very high since both inputs are applied to noninverting op amp inputs. Rejecting common-mode inputs is most important in accurately amplifying low-level differential signals. Two factors determine the CMR of this instrumentation amplifier configuration (assuming infinite gain): 1. CMRR of the op amps 2. Matching of the resistor network (R3/R4 = R2/R1) –8– REV. A OP220 In this instrumentation amplifier configuration, error due to CMRR effect is directly proportional to the differential CMRR of the op amps. For the OP220A/E, this combined CMRR is a minimum of 98 dB. A combined CMRR value of 100 dB and common-mode input range of ± 2.5 V indicates a peak inputreferred error of only ± 25 mV. Resistor matching is the other factor affecting CMRR. Defining Ad as the differential gain of the instrumentation amplifier and assuming that R1, R2, R3 and R4 are approximately equal (RN will be the nominal value), then CMRR will be approximately AD divided by 4DR/RN. CMRR at differential gain of 100 would be 88 dB with resistor matching of 0.1%. Trimming R1 to make the ratio R3/R4 equal to R2/R1 will directly raise the CMRR until it is limited by linearity and resistor stability considerations. THREE OP AMP CONFIGURATION A three op amp instrumentation amplifier configuration using the OP220 and OP777 is recommended for applications requiring high accuracy over a wide gain range. This circuit provides excellent CMR over a wide input range. As with the two op amp instrumentation amplifier circuits, tight matching of the two op amps provides a real boost in performance. R1 VO = VD 1 + R2 V+ 1/2 OP220 OP777 A3 VO R1 V+ R2 VCM + 1/2 VD + V– A2 V2 1/2 OP220 R2 V– Figure 5. Three Op Amp Instrumentation Amplifier Using OP220 and OP777 A simplified schematic is shown in Figure 2. The input stage (A1 and A2) serves to amplify the differential input VD without amplifying the common-mode voltage VCM. The output stage then rejects the common-mode input. With ideal op amps and no resistor matching errors, the outputs of each amplifier will be: Ê 2R1ˆ VD + VCM V 1 = -Á 1 + ˜ RO ¯ 2 Ë Ê 2R1ˆ VD V 2 = Á1 + + VCM ˜ RO ¯ 2 Ë 2 AD 1 CME = V AD A01 CM 1+ A01 REV. A – VD Another effect of finite op amp gain is undesired feedthrough of common-mode input. Defining A01 as the open-loop gain of op amp A1, then the common-mode error (CME) at the output due to this effect will be approximately: The OP220 offers a unique combination of excellent dc performance, wide input range, and low supply current drain that is particularly attractive for instrumentation amplifier design. V1 R0 AD 1 Gain Error = , <1 AD 2 A01 A02 1+ A02 For AD/A01, < 1, this simplifies to (2 AD/A01) ⫻ VCM. If the op amp gain is 700 V/mV, VCM is 2.5 V, and AD is set to 700, then the error at the output due to this effect will be approximately 5 mV. R2 A1 VCM – 1/2 VD The high open-loop gain of the OP220 is very important in achieving high accuracy in the two-op-amp instrumentation amplifier configuration. Gain error can be approximated by: where AD is the instrumentation amplifier differential gain and A02 is the open-loop gain of op amp A2. This analysis assumes equal values of R1, R2, R3, and R4. For example, consider an OP220 with A02 of 700 V/mV. If the differential gain AD were set to 700, the gain error would be 1/1.001 which is approximately 0.1%. 2R1 R0 Ê 2R1ˆ VO = V 2 -V 1 = Á 1 + ˜ VD RO ¯ Ë VO = ADVD The differential gain AD is 1 + 2R1/RO and the common-mode input VCM is rejected. This three op amp instrumentation amplifier configuration using an OP220 at the input and an OP777 at the output provides excellent performance over a wide gain range with very low power consumption. A gain range of 1 to 2,000 is practical and CMR of over 120 dB is readily achievable. –9– OP220 OUTLINE DIMENSIONS 8-Lead Standard Small Outline Package [SOIC] Narrow Body (RN-8) 8-Lead Ceramic DIP – Glass Hermatic Seal [CERDIP] (Q-8) Dimensions shown in inches and (millimeters) Dimensions shown in millimeters and (inches) 0.005 (0.13) MIN 0.055 (1.40) MAX 8 5.00 (0.1968) 4.80 (0.1890) 5 0.310 (7.87) 0.220 (5.59) PIN 1 1 4.00 (0.1574) 3.80 (0.1497) 4 8 5 1 4 6.20 (0.2440) 5.80 (0.2284) 0.100 (2.54) BSC 0.320 (8.13) 0.290 (7.37) 0.405 (10.29) MAX 0.060 (1.52) 0.015 (0.38) 0.200 (5.08) MAX SEATING 0.070 (1.78) PLANE 0.030 (0.76) 15 0 COPLANARITY SEATING 0.10 PLANE 0.015 (0.38) 0.008 (0.20) 0.50 (0.0196) ⴛ 45ⴗ 0.25 (0.0099) 1.75 (0.0688) 1.35 (0.0532) 0.25 (0.0098) 0.10 (0.0040) 0.150 (3.81) MIN 0.200 (5.08) 0.125 (3.18) 0.023 (0.58) 0.014 (0.36) 1.27 (0.0500) BSC 0.51 (0.0201) 0.33 (0.0130) 8ⴗ 0.25 (0.0098) 0ⴗ 1.27 (0.0500) 0.41 (0.0160) 0.19 (0.0075) COMPLIANT TO JEDEC STANDARDS MS-012AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN CONTROLLING DIMENSIONS ARE IN INCH; MILLIMETERS DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN 8-Lead Plastic Dual-in-Line Package [PDIP] (N-8) 8-Lead Metal Can [TO-99] (H-08) Dimensions shown in inches and (millimeters) Dimensions shown in inches and (millimeters) 0.375 (9.53) 0.365 (9.27) 0.355 (9.02) 1 5 4 0.150 (3.81) 0.130 (3.30) 0.110 (2.79) 0.022 (0.56) 0.018 (0.46) 0.014 (0.36) 0.015 (0.38) MIN SEATING PLANE 0.060 (1.52) 0.050 (1.27) 0.045 (1.14) 0.2500 (6.35) MIN 0.1000 (2.54) BSC 0.1600 (4.06) 0.1400 (3.56) 0.0500 (1.27) MAX 5 0.325 (8.26) 0.310 (7.87) 0.300 (7.62) 0.100 (2.54) BSC 0.180 (4.57) MAX 0.1850 (4.70) 0.1650 (4.19) 0.295 (7.49) 0.285 (7.24) 0.275 (6.98) 0.150 (3.81) 0.135 (3.43) 0.120 (3.05) 0.3700 (9.40) 0.3350 (8.51) 0.3350 (8.51) 0.3050 (7.75) 8 REFERENCE PLANE 0.5000 (12.70) MIN 0.015 (0.38) 0.010 (0.25) 0.008 (0.20) 0.0400 (1.02) MAX 0.0400 (1.02) 0.0100 (0.25) 6 4 0.2000 (5.08) BSC 3 7 2 0.0190 (0.48) 0.0160 (0.41) 0.1000 (2.54) BSC 0.0210 (0.53) 0.0160 (0.41) 0.0450 (1.14) 0.0270 (0.69) 8 1 0.0340 (0.86) 0.0280 (0.71) 45 BSC BASE & SEATING PLANE COMPLIANT TO JEDEC STANDARDS MO-002AK CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN COMPLIANT TO JEDEC STANDARDS MO-095AA CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS (IN PARENTHESES) –10– REV. A OP220 Revision History Location Page 10/02—Data Sheet changed from REV. 0 to REV. A. Edits to TYPICAL ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Edits to WAFER TEST LIMITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Change to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 REV. A –11– –12– PRINTED IN U.S.A. C00323–0–10/02(A)