AD OP220_02

a
Dual Micropower
Operational Amplifier
OP220
FEATURES
Excellent TCV OS Match: 2 ␮V/ⴗC Max
Low Input Offset Voltage: 150 ␮V Max
Low Supply Current: 100 ␮A
Single-Supply Operation: 5 V to 30 V
Low Input Offset Voltage Drift: 0.75 ␮V/ⴗC Max
High Open-Loop Gain: 2,000 V/mV
High PSRR: 3 ␮V/V
Low Input Bias Current: 12 nA
Wide Common-Mode Voltage Range: V– to Within
1.5 V of V+
Pin Compatible with 1458, LM158, and LM2904
Available in Die Form
PIN CONFIGURATIONS
8-Lead Hermatic Dip
(Z-Suffix)
OUT A
1
OP220
8-Lead Plastic Dip
(P-Suffix)
OUT A
1
–IN A
2
7 OUT B
–IN B
+IN A
3
6
–IN B
+IN B
V–
4
5
+IN B
8 V+
–IN A
2
7 OUT B
+IN A
3
6
V–
4
5
8-Lead SOIC
(S-Suffix)
OP220
8 V+
8-Lead TO-99
(J-Suffix)
GENERAL DESCRIPTION
The OP220 is a monolithic dual operational amplifier that can
be used either in single or dual supply operation. The low offset
voltage and input offset voltage tracking as low as 1.0 mV/∞C,
make this the first micropower precision dual operational amplifier.
+IN A
1
8 –IN A
V–
2
7 OUT A
+IN B
3
6 V+
The excellent specifications of the individual amplifiers combined with the tight matching and temperature tracking between
channels provides high performance in instrumentation amplifier designs. The individual amplifiers feature extremely low
input offset voltage, low offset voltage drift, low noise voltage,
and low bias current. They are fully compensated and protected.
–IN B
4
5 OUT B
Matching between channels is provided on all critical parameters
including input offset voltage, tracking of offset voltage versus
temperature, noninverting bias currents, and common-mode
rejection ratios.
V+
Q11
Q3
Q4
Q28
Q12
Q2
–IN
Q26
Q1
Q9
+IN
OUTPUT
Q10
Q27
Q8
Q7
Q29
Q6
Q5
Q13
NULL*
Q33
V–
*ACESSIBLE IN CHIP FORM ONLY
REV. A
Figure 1. Simplified Schematic
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties that
may result from its use. No license is granted by implication or otherwise
under any patent or patent rights of Analog Devices.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700
www.analog.com
Fax: 781/326-8703
© Analog Devices, Inc., 2002
OP220–SPECIFICATIONS
ELECTRICAL CHARACTERISTICS (@ V = ⴞ2.5 V to ⴞ15 V, T = 25ⴗC, unless otherwise noted.)
S
Parameter
A
Min
OP220A/E
Typ
Max
Input Offset Voltage
VOS
VS = ± 2.5 V to ± 15 V
120
150
250
300
500
750
mV
Input Offset Current
IOS
VCM = 0
0.15
1.5
0.2
2
0.2
3.5
nA
Input Bias Current
IB
VCM = 0
12
20
13
25
14
30
nA
Input Voltage Range
IVR
V+ = 5 V, V– = 0 V
VS = ± 15 V
0/3.5
–15/+13.5
0/3.5
–15/+13.5
0/3.5
–15/+13.5
V
V
Common-Mode
Rejection Ratio
CMRR
V+ = 5 V, V– = 0 V
0 V £ VCM £ 3.5 V
VS = ± 15 V
–15 V £ VCM £ +13.5 V
90
100
85
90
75
85
dB
95
100
90
95
80
90
dB
PSRR
VS = ± 2.5 V to ± 15 V,
V– = 0 V, V+ = 5 V to 30 V
Large-Signal
Voltage Gain
AVO
V+ = 5 V, V– = 0 V,
RL = 100 kW,
1 V £ VO £ 3.5 V
VS = ± 15 V, RL = 25 kW
VO = ± 10 V
Output Voltage
Swing
VO
V+ = 5 V, V– = 0 V
RL = 10 kW
VS = ± 15 V, RL = 25 kW
3
6
10
18
10
18
Max
Min
OP220C/G
Typ
Max
Conditions
Power Supply
Rejection Ratio
Min
OP220F
Typ
Symbol
32
57
32
57
100
180
Unit
mV/V
mV/V
500
1,000
500
800
300
500
V/mV
1,000
2,000
1,000
2,000
800
1,600
V/mV
0.7/4
0.7/4
0.8/4
V
± 14
± 14
± 14
V
Slew Rate*
SR
RL =25 kW
0.05
0.05
0.05
V/ms
Bandwidth
BW
AVCL = 1, RL =25 kW
200
200
200
kHz
Supply Current
(Both Amplifiers)
ISY
VS = ± 2.5 V, No Load
VS = ± 15 V, No Load
100
140
115
170
115
150
125
190
125
205
135
220
mA
mA
*Sample tested.
(Vs = ⴞ2.5 V to ⴞ15 V, –55ⴗC £ TA £ +125ⴗC for OP220A/C, –25ⴗC £ TA £ +85ⴗC for OP220E/F,
ELECTRICAL CHARACTERISTICS –40ⴗC £ T £ +85ⴗC for OP220G unless otherwise noted.)
A
Parameter
Symbol
Conditions
Input Offset Voltage
Drift*
TCVOS
VS = ± 15 V
Input Offset Voltage
VOS
Input Offset Current
IOS
Input Bias Current
Min
OP220A/E
Typ
Max
Min
OP220F
Typ
Max
Min
OP220C/G
Typ
Max
Unit
mV/∞C
0.75
1.5
1.2
2
2
3
200
300
400
500
1,000
1,300 mV
VCM = 0
0.5
2
0.6
2.5
0.6
5
nA
IB
VCM = 0
12
25
13
30
14
40
nA
Input Voltage Range
IVR
V+ = 5 V, V– = 0 V
VS = ± 15 V
0/3.2
–15/+13.2
0/3.2
–15/+13.2
0/3.2
–15/+13.2
V
V
Common-Mode
Rejection Ratio
CMRR
V+ = 5 V, V– = 0 V
0 V £ VCM £ 3.2 V
VS = ± 15 V
–15 V £ VCM £ +13.2 V
86
90
80
85
70
80
dB
90
95
85
90
75
85
dB
Power Supply
Rejection Ratio
PSRR
VS = ± 2.5 V to ± 15 V,
V– = 0 V, V+ = 5 V to 30 V
Large-Signal
Voltage Gain
AVO
VS = ± 15 V, RL = 50 kW
VO = ± 10 V
500
Output Voltage
Swing
VO
V+ = 5 V, V– = 0 V
RL = 20 kW
VS = ± 15 V, RL = 50 kW
0.9/3.8
0.9/3.8
1.0/3.8
V
± 13.6
± 13.6
± 13.6
V
Supply Current
(Both Amplifiers)
ISY
VS = ± 2.5 V, No Load
VS = ± 15 V, No Load
6
10
18
32
1,000
135
190
18
32
500
170
250
57
100
800
155
200
57
100
400
185
280
180
320
500
170
275
mV/V
mV/V
V/mV
210
330
mA
mA
*Sample tested.
–2–
REV. A
OP220
MATCHING CHARACTERISTICS (@ V = ⴞ15 V, T = 25ⴗC, unless otherwise noted.)
S
Parameter
Symbol
Input Offset Voltage
Match
DVOS
Average Noninverting
Bias Current
I B+
Noninverting Offset
Current
Conditions
A
Min
OP220A/E
Typ
Max
Min
OP220F
Typ
Max
Min
OP220C/G
Typ
Max
Unit
150
300
250
500
300
800
mV
VCM = 0
10
20
15
25
20
30
nA
IOS+
VCM = 0
0.7
1.5
1
2
1.4
2.5
nA
Common-Mode
Rejection Ratio Match1
DCMRR
VCM = –15 V to +13.5 V
Power Supply
Rejection Ratio Match2
DPSRR
VS = ± 2.5 V to ± 15 V,
92
100
6
87
95
14
18
72
85
44
57
dB
140
mV/V
NOTES
1
DCMRR is 20 log 10 VCM/DCME, where VCM is the voltage applied to both noninverting inputs and DCME is the difference in common-mode input-referred error.
Input Referred Differential Error
.
DVS
2
DPSRR is
3
Sample tested.
MATCHING CHARACTERISTICS
Parameter
Symbol
(Vs = ⴞ15 V, –55ⴗC £ TA £ +125ⴗC for OP220A/C, –25ⴗC £ TA £ +85ⴗC for OP220E/F,
–40ⴗC £ TA £ +85ⴗC for OP220G unless otherwise noted. Grades E, F are sample tested.)
Conditions
Min
OP220A/E
Typ
Max
Min
OP220F
Typ
Max
Min
OP220C/G
Typ
Max
Unit
Input Offset Voltage
Match
DVOS
250
500
400
800
800
1,800 mV
Input Offset Voltage
Tracking1
TCDVOS
1
2
1.5
3
1.5
5
mV/∞C
Average Noninverting
Bias Current
I B+
VCM = 0
10
25
15
30
22
40
nA
Average Drift of
Noninverting
Bias Current1
TCIB+
VCM = 0
15
25
15
30
30
50
pA/∞C
Noninverting Offset
Current
IOS+
VCM = 0
0.7
2
1
2.5
2.5
5
nA
Average Drift of
Noninverting Offset
Current1
TCIOS+
VCM = 0
7
15
12
22.5
15
30
pA/∞C
Common-Mode
Rejection Ratio Match2
DCMRR
VCM = –15 V to +13 V
Power Supply
Rejection Ratio Match3
DPSRR
VS = ± 2.5 V to ± 15 V,
87
96
10
82
96
26
30
72
78
80
57
dB
250
mV/V
NOTES
1
Sample tested.
2
DCMRR is 20 log 10 VCM/DCME, where VCM is the voltage applied to both noninverting inputs and DCME is the difference in common-mode input-referred error.
3
DPSRR is
Input Referred Differential Error
.
DVS
TYPICAL ELECTRICAL CHARACTERISTICS (@ V = ⴞ15 V, T
s
Parameter
Symbol
Average Input Offset Voltage Drift
TCVOS
Large-Signal Voltage Gain
AVO
REV. A
Conditions
RL = 25 kW
–3–
A
= 25ⴗC, unless otherwise noted.)
OP220N
Typical
Unit
1.5
mV/∞C
2000
V/mV
OP220–SPECIFICATIONS
ABSOLUTE MAXIMUM RATINGS*
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 18 V
Differential Input Voltage . . . . . . . . . . 30 V or Supply Voltage
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . Supply Voltage
Output Short-Circuit Duration
Indefinite
Storage Temperature Range . . . . . . . . . . . . –65∞C to +150∞C
Junction Temperature (Ti) . . . . . . . . . . . . . –65∞C to +150∞C
Operating Temperature Range
OP220A/OP220C . . . . . . . . . . . . . . . . . . –55∞C to +125∞C
OP220E/OP220F . . . . . . . . . . . . . . . . . . . . –25∞C to +85∞C
OP220G . . . . . . . . . . . . . . . . . . . . . . . . . . . –40∞C to +85∞C
Lead Temperature Range (Soldering, 60 sec) . . . . . . . . 300∞C
␪JA*
␪JC
Unit
8-Lead Hermetic DIP (Q)
148
16
∞C/W
8-Lead Plastic DIP (N)
103
43
∞C/W
8-Lead SOL (RN)
158
43
∞C/W
TO-99 (H)
150
18
∞C/W
*␪JA is specified for worst-case mounting conditions, i.e., ␪JA is specified for device
in socket for CERDIP and PDIP packages; ␪JA is specified for device soldered to
printed circuit board for SO packages.
ORDERING GUIDE
NOTES
*Absolute Maximum Ratings apply to packaged parts, unless otherwise noted.
TA = 25∞C
VOS MAX
(mV)
CERDIP
DIE CHARACTERISTICS
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
Package Type
150
150
300
750
750
750
INVERTING INPUT (A)
NONINVERTING INPUT (A)
BALANCE (A)
V–
BALANCE (B)
NONINVERTING INPUT (B)
INVERTING INPUT (B)
BALANCE (B)
V+
OUT (B)
V+
OUT (A)
V+
BALANCE (A)
Package Options
Plastic
TO-99
Operating
Temperature
Range
OP220AZ*
OP220EZ*
OP220FZ*
MIL
IND
IND
OP220CJ* MIL
OP220GZ* OP220GP*
OP220GS
XIND
XIND
For military processed devices, please refer to the Mil Standard
Data Sheet
OP220AJ/883*.
DIE SIZE 0.097 INCH ⴛ 0.063 INCH, 6111 SQ. MILS
(2.464 mm ⴛ 1.600 mm, 3.94 SQ. mm)
*Not for new design. Obsolete April 2002.
NOTE : ALL V+ PADS ARE INTERNALL CONNECTED
WAFER TEST LIMITS (@ VS = ⴞ2.5 V, to ⴞ15 V, TA = 25ⴗC, unless otherwise noted.)
OP220N
Limit
Unit
VOS
200
mV Max
Input Offset Voltage Match
⌬VOS
300
mV Max
Input Offset Current
IOS
VCM = 0
2
nA Max
Input Bias Current
IB
VCM = 0
25
nA Max
Input Voltage Range
IVR
VS = ± 15 V
–15/13.5
V Min
Common-Mode
Rejection Ratio
CMRR
V– = 0 V, V+ = 5 V, 0 V £ VCM £ 3.5 V
–15 V £ VCM £ 13.5 V, VS = ± 15 V
88
93
dB Min
Power Supply
Rejection Ratio
PSRR
VS = ± 2.5 V to ± 15 V
V– = 0 V, V+ = 5 V to 30 V
12.5
22.5
mV/V Max
Large-Signal
Voltage Gain
AVO
RL = 25 kW, VS = ± 15 V
VO = ± 10 V
1000
V/mV Min
Output Voltage Swing
VO
V+ = 5 V, V– = 0 V, RL = 10 kW
VS = ± 15 V, RL = 25 kW
0.7/4
± 14
V Min
Supply Current
(Both Amplifiers)
ISY
VS = ± 2.5 V, No Load
VS = ± 15 V, No Load
125
190
mA Max
Parameter
Symbol
Input Offset Voltage
Conditions
NOTE
Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packing is not guaranteed
for standard product dice. Consult factory to negotiate specifications based on die lot qualification through sample lot assembly and testing.
–4–
REV. A
Typical Performance Characteristics– OP220
14
150
VS = 15V
VS = 15V
12
INPUT BIAS CURRENT – nA
INPUT OFFSET VOLTAGE – ␮V
100
50
0
–50
–100
10
8
6
4
2
–150
–50
0
–25
25
50
75
100
0
–100
125
–50
0
50
TEMPERATURE – ⴗC
TEMPERATURE – ⴗC
TPC 1. Normalized Offset Voltage vs. Temperature
700
VS = 15V
TA = 25ⴗC
60
600
INPUT OFFSET CURRENT – pA
⌬ INPUT OFFSET VOLTAGE – ␮V
150
TPC 4. Input Bias Current vs. Temperature
80
40
20
0
–20
–40
–60
100
500
400
300
200
100
4
0
8
12
POWER SUPPLY VOLTAGE – V
16
0
–100
20
TPC 2. Input Offset Voltage vs. Power Supply Voltage
–50
0
50
TEMPERATURE – ⴗC
100
150
TPC 5. Input Offset Current vs. Temperature
110
200
VS = 15V
100
180
TA = 125ⴗC
10Hz
80
SUPPLY CURRENT – ␮A
OPEN-LOOP GAIN – dB
90
70
100Hz
60
50
40
1kHz
30
160
140
TA = 25ⴗC
120
100
TA = –55ⴗC
20
80
10
0
–75
–50
–25
0
25
50
TEMPERATURE – ⴗC
75
100
60
125
0
5.0
7.5
10.0
12.5
SUPPLY VOLTAGE – V
15.0
TPC 6. Supply Current vs. Supply Voltage
TPC 3. Open-Loop Gain vs. Temperature
REV. A
2.5
–5–
17.5
OP220
TA = 25ⴗC
VS = 15V
140
OPEN-LOOP GAIN – dB
100
80
CMRR – dB
0
160
TA = 25ⴗC
VS = 15V
60
40
45
120
GAIN
100
PHASE
90
80
60
40
135
⌽m = 53ⴗ
20
PHASE SHIFT – Degrees
120
20
0
0.01
0.1
1
10
FREQUENCY – Hz
100
0
0.01
1k
TPC 7. CMRR vs. Frequency
10
100
1k
FREQUENCY – Hz
10k
100k
1M
180
36
TA = 25ⴗC
VS = 15V
TA = 25ⴗC
VS = 15V
32
PEAK-TO-PEAK AMPLITUDE – V
120
110
100
PSRR – dB
1
TPC 10. Open-Loop Voltage Gain and Phase vs. Frequency
130
+PSRR
90
80
70
–PSRR
60
50
40
0.1
28
24
20
16
12
8
4
1
10
100
1k
FREQUENCY – Hz
10k
0
100
100k
TPC 8. PSRR vs. Frequency
1k
10k
FREQUENCY – Hz
100k
1M
TPC 11. Maximum Output Swing vs. Frequency
17
0.09
TA = 25ⴗC
0.08
VS = 15V
0.07
SLEW RATE – V/␮sec
PEAK OUTPUT VOLTAGE – V
15
10
5
VS = 15V
0.06
VS = 5V
0.05
0.04
0.03
0.02
VS = 5V
0.01
0
1
10
LOAD RESISTANCE – k⍀
0
–75
100
TPC 9. Maximum Output Voltage vs. Load Resistance
–50
–25
0
25
50
75
TEMERATURE – ⴗC
100
125
150
TPC 12. Slew Rate vs. Temperature
–6–
REV. A
OP220
10
CURRENT NOISE DENSITY – pA/ Hz
VOLTAGE NOISE DENSITY – nV/ Hz
1,000
100
10
0.1
1
10
FREQUENCY – Hz
100
0.1
0.01
0.1
1k
1
10
FREQUENCY – Hz
100
TPC 14. Noise Density vs. Frequency
TPC 13. Voltage Noise Density vs. Frequency
REV. A
1
–7–
1k
OP220
R0
2␮s
50mV
GAIN
ADJ
100
90
R1
R2
V1
A1
VCM – 1/2 VD
10
0%
–
VD
1/2
OP220
R4
R3
20mV
VCM + 1/2 VD
A2
+
VO
1/2
OP220
INPUT
OUTPUT
VO =
OP220
25k⍀
100pF
R1 ˆ
Ê
If R1 = R2 = R 3 = R4 , thenVO = 2Á 1 +
˜ VD
Ë
R0 ¯
Figure 2. Small-Signal Transient Response
Figure 4. Two Op Amp Instrumentation Amplifier
Configuration
200␮s
2V
R4 Ê R 3 R2 ˆ
R4 È 1 Ê R2 R 3 ˆ R2 + R 3 ˘
1+ Á
VD +
+
˜ VCM
Á
˜+
R 3 Ë R4 R1 ¯
R 3 ÍÎ 2 Ë R1 R4 ¯
R0 ˙˚
The input voltages are represented as a common-mode input
VCM plus a differential input VD. The ratio R3/R4 is made equal
to the ratio R2/R, to reject the common-mode input VCM. The
differential signal VD is then amplified according to:
100
90
VO =
10
0%
Note that gain can be independently varied by adjusting RO.
From considerations of dynamic range, resistor tempco matching, and matching of amplifier response, it is generally best to
make RX, R2, R3, and R4 approximately equal. Designating
R1, R2, R3, and R4 as RN allows the output equation to be
further simplified:
5V
INPUT
OUTPUT
OP220
40k⍀
RL
25k⍀
R 3 R2
R4 Ê
R 3 R2 + R 3 ˆ
+
=
Á1 +
˜ VD , where
R4 R1
R3 Ë
R4
RO ¯
Ê
R ˆ
VO = 2 Á 1 + N ˜ VD , where RN = R1 = R2 = R 3 = R4
RO ¯
Ë
CL
100pF
10k⍀
Dynamic range is limited by A1 as well as A2; the output of A1 is:
Ê
R ˆ
V 1 = -Á 1 + N ˜ VD + 2 VCM
RO ¯
Ë
Figure 3. Large-Signal Transient Response
INSTRUMENTATION AMPLIFIER APPLICATIONS OF
THE OP220
Two Op Amp Configuration
If the instrumentation amplifier were designed for a gain of 10
and maximum VD of ± 1 V, then RN/RO would need to be four
and VO would be a maximum of ± 10 V. Amplifier A1 would
have a maximum output of ± 5 V plus 2 VCM, thus a limit of
±10 V on the output of A1 would imply a limit of ±2.5 V on VCM.
The excellent input characteristics of the OP220 make it ideal for
use in instrumentation amplifier configurations where low-level
differential signals are to be amplified. The low-noise, low input
offsets, low drift, and high gain combined with excellent CMRR
provide the characteristics needed for high-performance instrumentation amplifiers. In addition, the power supply current
drain is very low.
A nominal value of 100 kW for RN is suitable for most applications. A range of 200 W to 25 kW for RO will then provide a gain
range of 10 to 1,000. The current through RO is VD/RO, so the
amplifiers must supply ± 10 mV/200 W when the gain is at the
maximum value of 1,000 and VD is at ± 10 mV.
The circuit of Figure 4 is recommended for applications where
the common-mode input range is relatively low and differential
gain will be in the range of 10 to 1,000. This two op amp instrumentation amplifier features independent adjustment of common-mode
rejection and differential gain. Input impedance is very high since
both inputs are applied to noninverting op amp inputs.
Rejecting common-mode inputs is most important in accurately
amplifying low-level differential signals. Two factors determine
the CMR of this instrumentation amplifier configuration (assuming
infinite gain):
1. CMRR of the op amps
2. Matching of the resistor network (R3/R4 = R2/R1)
–8–
REV. A
OP220
In this instrumentation amplifier configuration, error due to
CMRR effect is directly proportional to the differential CMRR
of the op amps. For the OP220A/E, this combined CMRR is a
minimum of 98 dB. A combined CMRR value of 100 dB and
common-mode input range of ± 2.5 V indicates a peak inputreferred error of only ± 25 mV.
Resistor matching is the other factor affecting CMRR. Defining
Ad as the differential gain of the instrumentation amplifier and
assuming that R1, R2, R3 and R4 are approximately equal (RN
will be the nominal value), then CMRR will be approximately
AD divided by 4DR/RN. CMRR at differential gain of 100 would
be 88 dB with resistor matching of 0.1%. Trimming R1 to make
the ratio R3/R4 equal to R2/R1 will directly raise the CMRR
until it is limited by linearity and resistor stability considerations.
THREE OP AMP CONFIGURATION
A three op amp instrumentation amplifier configuration using
the OP220 and OP777 is recommended for applications requiring
high accuracy over a wide gain range. This circuit provides
excellent CMR over a wide input range. As with the two op amp
instrumentation amplifier circuits, tight matching of the two op
amps provides a real boost in performance.
R1
VO = VD 1 +
R2
V+
1/2
OP220
OP777
A3
VO
R1
V+
R2
VCM + 1/2 VD
+
V–
A2
V2
1/2
OP220
R2
V–
Figure 5. Three Op Amp Instrumentation Amplifier Using
OP220 and OP777
A simplified schematic is shown in Figure 2. The input stage
(A1 and A2) serves to amplify the differential input VD without
amplifying the common-mode voltage VCM. The output stage
then rejects the common-mode input. With ideal op amps and
no resistor matching errors, the outputs of each amplifier will be:
Ê
2R1ˆ VD
+ VCM
V 1 = -Á 1 +
˜
RO ¯ 2
Ë
Ê
2R1ˆ VD
V 2 = Á1 +
+ VCM
˜
RO ¯ 2
Ë
2 AD
1
CME =
V
AD A01 CM
1+
A01
REV. A
–
VD
Another effect of finite op amp gain is undesired feedthrough of
common-mode input. Defining A01 as the open-loop gain of op
amp A1, then the common-mode error (CME) at the output
due to this effect will be approximately:
The OP220 offers a unique combination of excellent dc performance, wide input range, and low supply current drain that is
particularly attractive for instrumentation amplifier design.
V1
R0
AD
1
Gain Error =
,
<1
AD 2 A01 A02
1+
A02
For AD/A01, < 1, this simplifies to (2 AD/A01) ⫻ VCM. If the op
amp gain is 700 V/mV, VCM is 2.5 V, and AD is set to 700, then
the error at the output due to this effect will be approximately 5 mV.
R2
A1
VCM – 1/2 VD
The high open-loop gain of the OP220 is very important in
achieving high accuracy in the two-op-amp instrumentation
amplifier configuration. Gain error can be approximated by:
where AD is the instrumentation amplifier differential gain and
A02 is the open-loop gain of op amp A2. This analysis assumes
equal values of R1, R2, R3, and R4. For example, consider an
OP220 with A02 of 700 V/mV. If the differential gain AD were
set to 700, the gain error would be 1/1.001 which is approximately 0.1%.
2R1
R0
Ê
2R1ˆ
VO = V 2 -V 1 = Á 1 +
˜ VD
RO ¯
Ë
VO = ADVD
The differential gain AD is 1 + 2R1/RO and the common-mode
input VCM is rejected.
This three op amp instrumentation amplifier configuration using an
OP220 at the input and an OP777 at the output provides excellent
performance over a wide gain range with very low power consumption. A gain range of 1 to 2,000 is practical and CMR of over
120 dB is readily achievable.
–9–
OP220
OUTLINE DIMENSIONS
8-Lead Standard Small Outline Package [SOIC]
Narrow Body
(RN-8)
8-Lead Ceramic DIP – Glass Hermatic Seal [CERDIP]
(Q-8)
Dimensions shown in inches and (millimeters)
Dimensions shown in millimeters and (inches)
0.005 (0.13)
MIN
0.055 (1.40)
MAX
8
5.00 (0.1968)
4.80 (0.1890)
5
0.310 (7.87)
0.220 (5.59)
PIN 1
1
4.00 (0.1574)
3.80 (0.1497)
4
8
5
1
4
6.20 (0.2440)
5.80 (0.2284)
0.100 (2.54) BSC
0.320 (8.13)
0.290 (7.37)
0.405 (10.29) MAX
0.060 (1.52)
0.015 (0.38)
0.200 (5.08)
MAX
SEATING
0.070 (1.78) PLANE
0.030 (0.76)
15
0
COPLANARITY
SEATING
0.10
PLANE
0.015 (0.38)
0.008 (0.20)
0.50 (0.0196)
ⴛ 45ⴗ
0.25 (0.0099)
1.75 (0.0688)
1.35 (0.0532)
0.25 (0.0098)
0.10 (0.0040)
0.150 (3.81)
MIN
0.200 (5.08)
0.125 (3.18)
0.023 (0.58)
0.014 (0.36)
1.27 (0.0500)
BSC
0.51 (0.0201)
0.33 (0.0130)
8ⴗ
0.25 (0.0098) 0ⴗ 1.27 (0.0500)
0.41 (0.0160)
0.19 (0.0075)
COMPLIANT TO JEDEC STANDARDS MS-012AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
CONTROLLING DIMENSIONS ARE IN INCH; MILLIMETERS DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
8-Lead Plastic Dual-in-Line Package [PDIP]
(N-8)
8-Lead Metal Can [TO-99]
(H-08)
Dimensions shown in inches and (millimeters)
Dimensions shown in inches and (millimeters)
0.375 (9.53)
0.365 (9.27)
0.355 (9.02)
1
5
4
0.150 (3.81)
0.130 (3.30)
0.110 (2.79)
0.022 (0.56)
0.018 (0.46)
0.014 (0.36)
0.015
(0.38)
MIN
SEATING
PLANE
0.060 (1.52)
0.050 (1.27)
0.045 (1.14)
0.2500 (6.35) MIN
0.1000 (2.54) BSC
0.1600 (4.06)
0.1400 (3.56)
0.0500 (1.27) MAX
5
0.325 (8.26)
0.310 (7.87)
0.300 (7.62)
0.100 (2.54)
BSC
0.180
(4.57)
MAX
0.1850 (4.70)
0.1650 (4.19)
0.295 (7.49)
0.285 (7.24)
0.275 (6.98)
0.150 (3.81)
0.135 (3.43)
0.120 (3.05)
0.3700 (9.40)
0.3350 (8.51)
0.3350 (8.51)
0.3050 (7.75)
8
REFERENCE PLANE
0.5000 (12.70)
MIN
0.015 (0.38)
0.010 (0.25)
0.008 (0.20)
0.0400 (1.02) MAX
0.0400 (1.02)
0.0100 (0.25)
6
4
0.2000
(5.08)
BSC
3
7
2
0.0190 (0.48)
0.0160 (0.41)
0.1000
(2.54)
BSC
0.0210 (0.53)
0.0160 (0.41)
0.0450 (1.14)
0.0270 (0.69)
8
1
0.0340 (0.86)
0.0280 (0.71)
45 BSC
BASE & SEATING PLANE
COMPLIANT TO JEDEC STANDARDS MO-002AK
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
COMPLIANT TO JEDEC STANDARDS MO-095AA
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS
(IN PARENTHESES)
–10–
REV. A
OP220
Revision History
Location
Page
10/02—Data Sheet changed from REV. 0 to REV. A.
Edits to TYPICAL ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Edits to WAFER TEST LIMITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Change to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
REV. A
–11–
–12–
PRINTED IN U.S.A.
C00323–0–10/02(A)