DISCRETE SEMICONDUCTORS DATA SHEET andbook, halfpage MBD128 BF1203 Dual N-channel dual gate MOS-FET Product specification Supersedes data of 2000 Dec 04 2001 Apr 25 Philips Semiconductors Product specification Dual N-channel dual gate MOS-FET FEATURES BF1203 PINNING - SOT363 • Two low noise gain controlled amplifiers in a single package PIN • Superior cross-modulation performance during AGC • High forward transfer admittance • High forward transfer admittance to input capacitance ratio. APPLICATIONS DESCRIPTION 1 gate 1 (a) 2 gate 2 3 drain (a) 4 drain (b) 5 source 6 gate 1 (b) • Gain controlled low noise amplifiers for VHF and UHF applications with 3 to 9 V supply voltage, such as digital and analog television tuners and professional communications equipment. g1 (b) handbook, halfpage 6 5 s d (b) 4 DESCRIPTION The BF1203 is a combination of two different dual gate MOS-FET amplifiers with shared source and gate 2 leads. The source and substrate are interconnected. Internal bias circuits enable DC stabilization and a very good cross-modulation performance during AGC. Integrated diodes between the gates and source protect against excessive input voltage surges. The transistor is encapsulated in a SOT363 micro-miniature plastic package. AMP a 1 2 AMP b 3 Top view g1 (a) g2 d (a) MBL254 Marking code: L2- Fig.1 Simplified outline and symbol. QUICK REFERENCE DATA SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT Per MOS-FET unless otherwise specified VDS drain-source voltage − − 10 V ID drain current (DC) − − 30 mA yfs forward transfer admittance amp. a: ID = 15 mA 23 28 35 mS amp. b: ID = 12 mA 25 30 40 mS Cig1-s input capacitance at gate 1 amp. a: ID = 15 mA; f = 1 MHz − 2.6 3.1 pF amp. b: ID = 12 mA; f = 1 MHz − 1.7 2.2 pF Crss reverse transfer capacitance f = 1 MHz − 15 − fF NF noise figure amp. a: f = 400 MHz; ID = 15 mA − 1 1.8 dB amp. b: f = 800 MHz; ID = 12 mA − 1.1 1.8 dB amp. a: input level for k = 1% at 40 dB AGC 105 − − dBµV amp. b: input level for k = 1% at 40 dB AGC 100 105 − dBµV Xmod cross-modulation CAUTION This product is supplied in anti-static packing to prevent damage caused by electrostatic discharge during transport and handling. For further information, refer to Philips specs.: SNW-EQ-608, SNW-FQ-302A and SNW-FQ-302B. 2001 Apr 25 2 Philips Semiconductors Product specification Dual N-channel dual gate MOS-FET BF1203 LIMITING VALUES In accordance with the Absolute Maximum Rating System (IEC 60134). SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT Per MOS-FET unless otherwise specified VDS drain-source voltage − 10 ID drain current (DC) − 30 mA IG1 gate 1 current − ±10 mA IG2 gate 2 current − ±10 mA Ts ≤ 102 °C; note 1 V Ptot total power dissipation − 200 mW Tstg storage temperature −65 +150 °C Tj operating junction temperature − 150 °C Note 1. Ts is the temperature at the soldering point of the source lead. THERMAL CHARACTERISTICS SYMBOL PARAMETER thermal resistance from junction to soldering point Rth j-s MGS359 250 Ptot handbook, halfpage (mW) 200 150 100 50 0 0 50 100 150 Ts (°C) 200 Fig.2 Power derating curve. 2001 Apr 25 3 VALUE UNIT 240 K/W Philips Semiconductors Product specification Dual N-channel dual gate MOS-FET BF1203 STATIC CHARACTERISTICS Tj = 25 °C unless otherwise specified. SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT Per MOS-FET unless otherwise specified V(BR)DSS drain-source breakdown voltage VG1-S = VG2-S = 0; ID = 10 µA 10 − V V(BR)G1-SS gate-source breakdown voltage VGS = VDS = 0; IG1-S = 10 mA 6 10 V V(BR)G2-SS gate-source breakdown voltage VGS = VDS = 0; IG2-S = 10 mA 6 10 V V(F)S-G1 forward source-gate voltage VG2-S = VDS = 0; IS-G1 = 10 mA 0.5 1.5 V V(F)S-G2 forward source-gate voltage VG1-S = VDS = 0; IS-G2 = 10 mA 0.5 1.5 V VG1-S(th) gate-source threshold voltage VDS = 5 V; VG2-S = 4 V; ID = 100 µA 0.3 1 V VG2-S(th) gate-source threshold voltage VDS = 5 V; VG1-S = 4 V; ID = 100 µA 0.3 1.2 V IDSX drain-source current amp. a: VG2-S = 4 V; VDS = 5 V; RG = 62 kΩ; note 1 11 19 mA amp. b: 8 VG2-S = 4 V; VDS = 5 V; RG = 120 kΩ; note 1 16 mA IG1-S gate cut-off current VG1-S = 5 V; VG2-S = VDS = 0 − 50 nA IG2-S gate cut-off current VG2-S = 5 V; VG1-S = VDS = 0 − 20 nA Note 1. RG1 connects gate 1 to VGG = 5 V. 2001 Apr 25 4 Philips Semiconductors Product specification Dual N-channel dual gate MOS-FET BF1203 DYNAMIC CHARACTERISTICS AMPLIFIER a Common source; Tamb = 25 °C; VG2-S = 4 V; VDS = 5 V; ID = 15 mA; unless otherwise specified. SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT yfs forward transfer admittance pulsed; Tj = 25 °C 23 28 35 mS Cig1-ss input capacitance at gate 1 f = 1 MHz − 2.6 3.1 pF Cig2-ss input capacitance at gate 2 f = 1 MHz − 3 − pF Coss output capacitance f = 1 MHz − 0.9 − pF Crss reverse transfer capacitance f = 1 MHz − 15 30 fF F noise figure f = 10.7 MHz; GS = 20 mS; BS = 0 − 5 7 dB f = 400 MHz; YS = YS opt − 1 1.8 dB f = 800 MHz; YS = YS opt − 1.9 2.5 dB f = 200 MHz; GS = 2 mS; BS = BS opt; GL = 0.5 mS; BL = BL opt; note 1 − 32.5 − dB f = 400 MHz; GS = 2 mS; BS = BS opt; GL = 1 mS; BL = BL opt; note 1 − 27 − dB f = 800 MHz; GS = 3.3 mS; BS = BS opt; GL = 1 mS; BL = BL opt; note 1 − 21 − dB Gtr Xmod power gain cross-modulation input level for k = 1%; fw = 50 MHz; funw = 60 MHz; note 2 at 0 dB AGC 90 − − dBµV at 10 dB AGC − 95 − dBµV at 40 dB AGC 105 − − dBµV Notes 1. Calculated from measured s-parameters. 2. Measured in Fig.35 test circuit. 2001 Apr 25 5 Philips Semiconductors Product specification Dual N-channel dual gate MOS-FET BF1203 MCD935 25 handbook, halfpage VG2-S = 4 V ID (mA) MCD936 24 handbook, halfpage 3.5 V 3V VG1-S = 1.8 V ID (mA) 20 2.5 V 1.7 V 16 1.6 V 15 1.5 V 2V 1.4 V 10 8 1.3 V 1.2 V 1.5 V 5 1V 0 0 0.5 0 1 1.5 0 2 2.5 VG1-S (V) Amplifier a VDS = 5 V. Tj = 25 °C. 2 4 6 8 10 VDS (V) Amplifier a VG2-S = 4 V. Tj = 25 °C. Fig.3 Transfer characteristics; typical values. Fig.4 Output characteristics; typical values. MCD937 100 handbook, halfpage VG2-S = 4 V IG1 (µA) MCD938 40 handbook, halfpage 3.5 V yfs (mS) 80 VG2-S = 4 V 30 3V 3.5 V 60 2.5 V 20 2V 10 3V 40 2.5 V 20 2V 1.5 V 0 0 0.5 0 1 1.5 0 2 2.5 VG1-S (V) 5 Amplifier a VDS = 5 V. Tj = 25 °C. Amplifier a VDS = 5 V. Tj = 25 °C. Fig.5 Fig.6 Gate 1 current as a function of gate 1 voltage; typical values. 2001 Apr 25 6 10 15 20 25 ID (mA) Forward transfer admittance as a function of drain current; typical values. Philips Semiconductors Product specification Dual N-channel dual gate MOS-FET BF1203 MCD939 16 MCD940 20 ID handbook, halfpage handbook, halfpage ID (mA) (mA) 16 12 12 8 8 4 4 0 0 0 10 20 30 40 50 IG1 (µA) 1 0 2 3 4 Amplifier a VDS = 5 V; VG2-S = 4 V. Tj = 25 °C. Amplifier a VDS = 5 V; VG2-S = 4 V; Tj = 25 °C. RG1 = 62 kΩ (connected to VGG); see Fig.35. Fig.7 Fig.8 Drain current as a function of gate 1 current; typical values. MCD941 25 handbook, halfpage 47 kΩ 56 kΩ 20 Drain current as a function of gate 1 supply voltage (= VGG); typical values. MCD942 20 handbook, halfpage 68 kΩ RG1 = 39 kΩ ID (mA) ID (mA) 82 kΩ VGG = 5 V 16 62 kΩ 5 VGG (V) 100 kΩ 4.5 V 4V 12 15 3.5 V 10 8 5 4 3V 0 0 2 0 4 6 0 8 10 VGG = VDS (V) 2 4 VG2-S (V) Amplifier a VG2-S = 4 V; Tj = 25 °C. RG1 connected to VGG; see Fig.35. Amplifier a VDS = 5 V; Tj = 25 °C. RG1 = 62 kΩ (connected to VGG); see Fig.35. Fig.9 Fig.10 Drain current as a function of gate 2 voltage; typical values. Drain current as a function of gate 1 (= VGG) and drain supply voltage; typical values. 2001 Apr 25 7 6 Philips Semiconductors Product specification Dual N-channel dual gate MOS-FET BF1203 MCD943 60 IG1 (µA) MCD944 0 VGG = 5 V handbook, halfpage handbook, gain halfpage reduction (dB) −10 4.5 V 4V 40 −20 3.5 V 3V −30 20 −40 −50 0 0 2 4 VG2-S (V) 6 0 1 2 3 VAGC (V) 4 Amplifier a VDS = 5 V; Tj = 25 °C. RG1 = 62 kΩ (connected to VGG); see Fig.35. Amplifier a VDS = 5 V; VGG = 5 V; RG1 = 62 kΩ; f = 50 MHz; Tamb = 25 °C. Fig.11 Gate 1 current as a function of gate 2 voltage; typical values. Fig.12 Typical gain reduction as a function of the AGC voltage; see Fig.35. MCD945 120 MCD946 20 handbook, halfpage handbook, halfpage ID (mA) Vunw (dBµV) 16 110 12 100 8 90 4 80 0 0 10 20 30 40 50 gain reduction (dB) 0 10 20 30 40 50 gain reduction (dB) Amplifier a VDS = 5 V; VGG = 5 V; RG1 = 62 kΩ; f = 50 MHz; funw = 60 MHz; Tamb = 25 °C. Amplifier a VDS = 5 V; VGG = 5 V; RG1 = 62 kΩ; f = 50 MHz; Tamb = 25 °C. Fig.13 Unwanted voltage for 1% cross-modulation as a function of gain reduction; typical values; see Fig.35. Fig.14 Drain current as a function of gain reduction; typical values; see Fig.35. 2001 Apr 25 8 Philips Semiconductors Product specification Dual N-channel dual gate MOS-FET BF1203 MGT588 102 handbook, halfpage MGT589 103 handbook, halfpage −103 ϕ rs (deg) yis (mS) | yrs | 10 102 ϕrs 10 | yrs | (µS) −102 bis g is 1 10−1 10 102 f (MHz) 1 10 103 102 −10 −1 103 f (MHz) Amplifier a VDS = 5 V; VG2 = 4 V. ID = 15 mA; Tamb = 25 °C. Amplifier a VDS = 5 V; VG2 = 4 V. ID = 15 mA; Tamb = 25 °C. Fig.15 Input admittance as a function of frequency; typical values. Fig.16 Reverse transfer admittance and phase as a function of frequency; typical values. MGT590 102 handbook, halfpage | yfs | (mS) MGT591 −102 10 handbook, halfpage yos (mS) ϕ fs | yfs | (deg) bos 1 ϕ fs 10 −10 10−1 1 10 102 f (MHz) 10−2 10 −1 103 gos 102 f (MHz) Amplifier a VDS = 5 V; VG2 = 4 V. ID = 15 mA; Tamb = 25 °C. Amplifier a VDS = 5 V; VG2 = 4 V. ID = 15 mA; Tamb = 25 °C. Fig.17 Forward transfer admittance and phase as a function of frequency; typical values. Fig.18 Output admittance as a function of frequency; typical values. 2001 Apr 25 9 103 Philips Semiconductors Product specification Dual N-channel dual gate MOS-FET BF1203 Amplifier a scattering parameters VDS = 5 V; VG2-S = 4 V; ID = 15 mA; Tamb = 25 °C f (MHz) s11 s21 s12 s22 MAGNITUDE (ratio) ANGLE (deg) MAGNITUDE (ratio) ANGLE (deg) MAGNITUDE (ratio) ANGLE (deg) MAGNITUDE (ratio) ANGLE (deg) 50 0.987 −5.12 2.67 174.07 0.0006 85.79 0.997 −1.72 100 0.983 −10.24 2.66 168.16 0.0012 83.27 0.996 −3.42 200 0.976 −20.37 2.61 156.64 0.0023 78.22 0.992 −6.77 300 0.946 −30.36 2.54 145.05 0.0030 73.26 0.986 −10.12 400 0.919 −40.15 2.47 134.13 0.0032 71.40 0.980 −13.33 500 0.885 −49.55 2.37 132.32 0.0029 74.34 0.972 −16.56 600 0.851 −58.50 2.26 113.25 0.0024 90.33 0.965 −19.74 700 0.815 −67.28 2.15 103.20 0.0023 129.94 0.960 −22.90 800 0.778 −75.03 2.02 93.78 0.0035 172.18 0.950 −26.05 900 0.747 −83.30 1.95 84.84 0.0070 171.55 0.951 −29.10 1000 0.710 −90.47 1.83 75.92 0.0104 172.88 0.947 −32.25 2001 Apr 25 10 Philips Semiconductors Product specification Dual N-channel dual gate MOS-FET BF1203 DYNAMIC CHARACTERISTICS AMPLIFIER b Common source; Tamb = 25 °C; VG2-S = 4 V; VDS = 5 V; ID = 12 mA; unless otherwise specified. SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT yfs forward transfer admittance pulsed; Tj = 25 °C 25 30 40 mS Cig1-ss input capacitance at gate 1 f = 1 MHz − 1.7 2.2 pF Cig2-ss input capacitance at gate 2 f = 1 MHz − 4 − pF Coss output capacitance f = 1 MHz − 0.85 − pF Crss reverse transfer capacitance f = 1 MHz − 15 30 fF F noise figure f = 10.7 MHz; GS = 20 mS; BS = 0 − 9 11 dB f = 400 MHz; YS = YS opt − 0.9 1.5 dB f = 800 MHz; YS = YS opt − 1.1 1.8 dB f = 200 MHz; GS = 2 mS; BS = BS opt; GL = 0.5 mS; BL = BL opt; note 1 − 34 − dB f = 400 MHz; GS = 2 mS; BS = BS opt; GL = 1 mS; BL = BL opt; note 1 − 30 − dB f = 800 MHz; GS = 3.3 mS; BS = BS opt; GL = 1 mS; BL = BL opt; note 1 − 25 − dB Gtr Xmod power gain cross-modulation input level for k = 1%; fw = 50 MHz; funw = 60 MHz; note 2 at 0 dB AGC 90 − − dBµV at 10 dB AGC − 92 − dBµV at 40 dB AGC 100 105 − dBµV Notes 1. Calculated from measured s-parameters. 2. Measured in Fig.35 test circuit. 2001 Apr 25 11 Philips Semiconductors Product specification Dual N-channel dual gate MOS-FET BF1203 MCD952 20 handbook, halfpage VG2-S = 4 V ID (mA) 2.5 V 2V 3V VG1-S = 1.5 V ID (mA) 3.5 V 16 MCD953 24 handbook, halfpage 1.4 V 16 12 1.3 V 1.2 V 1.5 V 8 1.1 V 8 1V 4 0.9 V 1V 0 0 0 0.4 0.8 1.2 0 1.6 2 VG1-S (V) Amplifier b VDS = 5 V. Tj = 25 °C. 2 4 6 8 10 VDS (V) Amplifier b VG2-S = 4 V. Tj = 25 °C. Fig.19 Transfer characteristics; typical values. Fig.20 Output characteristics; typical values. MCD954 100 handbook, halfpage VG2-S = 4 V IG1 (µA) MCD955 40 handbook, halfpage 3.5 V 3.5 V yfs (mS) 3V 80 VG2-S = 4 V 30 3V 60 2.5 V 20 2.5 V 40 2V 10 20 2V 1.5 V 1V 0 0 0.5 1 1.5 0 0 2 2.5 VG1-S (V) 4 8 12 16 20 ID (mA) Amplifier b VDS DS = 5 V. Tjj = 25 °C. Amplifier b VDS = 5 V. Tj = 25 °C. Fig.21 Gate 1 current as a function of gate 1 voltage; typical values. Fig.22 Forward transfer admittance as a function of drain current; typical values. 2001 Apr 25 12 Philips Semiconductors Product specification Dual N-channel dual gate MOS-FET BF1203 MCD956 20 MCD957 16 handbook, halfpage handbook, halfpage (mA) ID (mA) ID 16 12 12 8 8 4 4 0 0 0 10 20 30 40 50 IG1 (µA) 0 1 2 3 4 5 VGG (V) Amplifier b VDS = 5 V; VG2-S = 4 V. Tj = 25 °C. Amplifier b VDS = 5 V; VG2-S = 4 V; Tj = 25 °C. RG1 = 120 kΩ (connected to VGG); see Fig.35. Fig.23 Drain current as a function of gate 1 current; typical values. Fig.24 Drain current as a function of gate 1 supply voltage (= VGG); typical values. MCD958 20 handbook, halfpage RG1 = 68 kΩ ID (mA) 16 MCD959 16 handbook, halfpage ID (mA) 82 kΩ VGG = 5 V 4.5 V 12 4V 100 kΩ 12 120 kΩ 3.5 V 150 kΩ 3V 8 180 kΩ 8 220 kΩ 4 4 0 0 0 2 4 6 VGG = VDS (V) 0 2 4 VG2-S (V) Amplifier b VG2-S = 4 V; Tj = 25 °C. RG1 connected to VGG; see Fig.35. Amplifier b VDS = 5 V; Tj = 25 °C. RG1 = 120 kΩ (connected to VGG); see Fig.35. Fig.25 Drain current as a function of gate 1 (= VGG) and drain supply voltage; typical values. Fig.26 Drain current as a function of gate 2 voltage; typical values. 2001 Apr 25 13 6 Philips Semiconductors Product specification Dual N-channel dual gate MOS-FET BF1203 MCD960 40 MCD961 0 handbook, gain halfpage handbook, halfpage IG1 (µA) reduction (dB) −10 VGG = 5 V 30 4.5 V −20 4V 20 3.5 V −30 3V 10 −40 −50 0 0 2 4 VG2-S (V) 6 0 1 2 3 VAGC (V) 4 Amplifier b VDS = 5 V; Tj = 25 °C. RG1 = 120 kΩ (connected to VGG); see Fig.35. Amplifier b VDS = 5 V; VGG = 5 V; RG1 = 120 kΩ; f = 50 MHz; Tamb = 25 °C. Fig.27 Gate 1 current as a function of gate 2 voltage; typical values. Fig.28 Typical gain reduction as a function of the AGC voltage; see Fig.35. MCD962 120 MCD963 16 handbook, halfpage handbook, halfpage Vunw (dBµV) ID (mA) 110 12 100 8 90 4 80 0 0 10 20 30 40 50 gain reduction (dB) 0 10 20 30 40 50 gain reduction (dB) Amplifier b VDS = 5 V; VGG = 5 V; RG1 = 120 kΩ; f= 50 MHz; funw = 60 MHz; Tamb = 25 °C. Amplifier b VDS = 5 V; VGG = 5 V; RG1 = 120 kΩ; f = 50 MHz; Tamb = 25 °C. Fig.29 Unwanted voltage for 1% cross-modulation as a function of gain reduction; typical values; see Fig.35. Fig.30 Drain current as a function of gain reduction; typical values; see Fig.35. 2001 Apr 25 14 Philips Semiconductors Product specification Dual N-channel dual gate MOS-FET BF1203 MGT592 102 handbook, halfpage MGT593 103 handbook, halfpage −103 ϕ rs (deg) yis (mS) | yrs| 10 102 ϕrs 10 | yrs| (µS) −102 bis 1 −10 g is 10−1 10 102 f (MHz) 1 10 103 102 −1 103 f (MHz) Amplifier b VDS = 5 V; VG2 = 4 V. ID = 12 mA; Tamb = 25 °C. Amplifier b VDS = 5 V; VG2 = 4 V. ID = 12 mA; Tamb = 25 °C. Fig.31 Input admittance as a function of frequency; typical values. Fig.32 Reverse transfer admittance and phase as a function of frequency; typical values. MGT594 102 handbook, halfpage | yfs | MGT595 −102 10 handbook, halfpage yos (mS) ϕ fs | yfs | (deg) (mS) bos 1 −10 10 ϕ fs 1 10 102 10−1 f (MHz) 10−2 10 −1 103 gos 102 f (MHz) Amplifier b VDS = 5 V; VG2 = 4 V. ID = 12 mA; Tamb = 25 °C. Amplifier b VDS = 5 V; VG2 = 4 V. ID = 12 mA; Tamb = 25 °C. Fig.33 Forward transfer admittance and phase as a function of frequency; typical values. Fig.34 Output admittance as a function of frequency; typical values. 2001 Apr 25 15 103 Philips Semiconductors Product specification Dual N-channel dual gate MOS-FET BF1203 VAGC handbook, full pagewidth R1 10 kΩ C1 4.7 nF C3 4.7 nF L1 C2 RGEN 50 Ω R2 50 Ω DUT ≈ 2.2 µH RL 50 Ω C4 4.7 nF RG1 4.7 nF VGG VI VDS MGS315 Fig.35 Cross-modulation test set-up (for one MOS-FET). Amplifier b scattering parameters VDS = 5 V; VG2-S = 4 V; ID = 12 mA; Tamb = 25 °C f (MHz) s21 s11 s12 s22 MAGNITUDE (ratio) ANGLE (deg) MAGNITUDE (ratio) ANGLE (deg) MAGNITUDE (ratio) ANGLE (deg) MAGNITUDE (ratio) ANGLE (deg) 50 0.988 −3.30 2.93 166.05 0.0006 87.62 0.994 −1.45 100 0.987 −6.60 2.92 172.11 0.0013 86.02 0.993 −2.92 200 0.981 −13.19 2.90 164.49 0.0025 82.03 0.990 −5.72 300 0.969 −19.81 2.87 156.59 0.0036 76.76 0.986 −8.57 400 0.957 −26.42 2.84 149.17 0.0045 73.59 0.981 −11.32 500 0.941 −33.04 2.79 141.47 0.0051 71.13 0.975 −14.22 600 0.925 −39.44 2.73 134.25 0.0054 69.07 0.971 −17.04 700 0.907 −45.89 2.67 126.81 0.0055 68.03 0.966 −19.92 800 0.889 −51.93 2.60 119.56 0.0055 68.55 0.958 −22.77 900 0.827 −57.82 2.54 112.70 0.0048 69.87 0.957 −25.54 1000 0.853 −63.24 2.46 105.72 0.0042 78.19 0.954 −28.41 2001 Apr 25 16 Philips Semiconductors Product specification Dual N-channel dual gate MOS-FET BF1203 PACKAGE OUTLINE Plastic surface mounted package; 6 leads SOT363 D E B y X A HE 6 v M A 4 5 Q pin 1 index A A1 1 2 e1 3 bp c Lp w M B e detail X 0 1 2 mm scale DIMENSIONS (mm are the original dimensions) UNIT A A1 max bp c D E e e1 HE Lp Q v w y mm 1.1 0.8 0.1 0.30 0.20 0.25 0.10 2.2 1.8 1.35 1.15 1.3 0.65 2.2 2.0 0.45 0.15 0.25 0.15 0.2 0.2 0.1 OUTLINE VERSION SOT363 2001 Apr 25 REFERENCES IEC JEDEC EIAJ SC-88 17 EUROPEAN PROJECTION ISSUE DATE 97-02-28 Philips Semiconductors Product specification Dual N-channel dual gate MOS-FET BF1203 DATA SHEET STATUS DATA SHEET STATUS(1) PRODUCT STATUS(2) DEFINITIONS Objective data Development This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice. Preliminary data Qualification This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product. Product data Production This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A. Notes 1. Please consult the most recently issued data sheet before initiating or completing a design. 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com. DEFINITIONS DISCLAIMERS Short-form specification The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook. Life support applications These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application. Limiting values definition Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Right to make changes Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Application information Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification. 2001 Apr 25 18 Philips Semiconductors Product specification Dual N-channel dual gate MOS-FET BF1203 NOTES 2001 Apr 25 19 Philips Semiconductors – a worldwide company Argentina: see South America Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140, Tel. +61 2 9704 8141, Fax. +61 2 9704 8139 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773 Belgium: see The Netherlands Brazil: see South America Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 68 9211, Fax. +359 2 68 9102 Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381, Fax. +1 800 943 0087 China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700 Colombia: see South America Czech Republic: see Austria Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V, Tel. +45 33 29 3333, Fax. +45 33 29 3905 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615 800, Fax. +358 9 6158 0920 France: 7 - 9 Rue du Mont Valérien, BP317, 92156 SURESNES Cedex, Tel. +33 1 4728 6600, Fax. +33 1 4728 6638 Germany: Hammerbrookstraße 69, D-20097 HAMBURG, Tel. +49 40 2353 60, Fax. +49 40 2353 6300 Hungary: Philips Hungary Ltd., H-1119 Budapest, Fehervari ut 84/A, Tel: +36 1 382 1700, Fax: +36 1 382 1800 India: Philips INDIA Ltd, Band Box Building, 2nd floor, 254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025, Tel. +91 22 493 8541, Fax. +91 22 493 0966 Indonesia: PT Philips Development Corporation, Semiconductors Division, Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510, Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080 Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200 Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007 Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI), Tel. +39 039 203 6838, Fax +39 039 203 6800 Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057 Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3 750 5214, Fax. +60 3 757 4880 Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087 Middle East: see Italy Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Tel. +31 40 27 82785, Fax. +31 40 27 88399 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9 849 4160, Fax. +64 9 849 7811 Norway: Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341 Pakistan: see Singapore Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474 Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW, Tel. +48 22 5710 000, Fax. +48 22 5710 001 Portugal: see Spain Romania: see Italy Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095 755 6918, Fax. +7 095 755 6919 Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762, Tel. +65 350 2538, Fax. +65 251 6500 Slovakia: see Austria Slovenia: see Italy South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 58088 Newville 2114, Tel. +27 11 471 5401, Fax. +27 11 471 5398 South America: Al. Vicente Pinzon, 173, 6th floor, 04547-130 SÃO PAULO, SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 821 2382 Spain: Balmes 22, 08007 BARCELONA, Tel. +34 93 301 6312, Fax. +34 93 301 4107 Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, Tel. +46 8 5985 2000, Fax. +46 8 5985 2745 Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1 488 2741 Fax. +41 1 488 3263 Taiwan: Philips Semiconductors, 5F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 2 2134 2451, Fax. +886 2 2134 2874 Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 60/14 MOO 11, Bangna Trad Road KM. 3, Bagna, BANGKOK 10260, Tel. +66 2 361 7910, Fax. +66 2 398 3447 Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye, ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813 Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461 United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421 United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381, Fax. +1 800 943 0087 Uruguay: see South America Vietnam: see Singapore Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Tel. +381 11 3341 299, Fax.+381 11 3342 553 For all other countries apply to: Philips Semiconductors, Marketing Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825 Internet: http://www.semiconductors.philips.com SCA 72 © Philips Electronics N.V. 2001 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights. Printed in The Netherlands 613512/03/pp20 Date of release: 2001 Apr 25 Document order number: 9397 750 08296