SHARP GP1A33R

GP1A33R
GP1A33R
OPIC Photointerruper with
Encoder Function
■ Features
■ Outline Dimensions
1. 2-phase ( A, B ) digital output
2. Capable of using plastic disk
3. Sensing accuracy
( Disk slit pitch: 1.14mm )
4. TTL compatible
5. Compact and light
( Unit: mm )
1
5
4 GND
5 V CC
6 V OA
8.0
6.0
4- R1.3 ± 0.15
15.0± 0.15
20.0
4
3 - (1.27)
3
(2.54)
2
1.4 ± 0.15
4 - R2.5
(1.27)
(7.25)
4
3
6.4
11.4
12.0
7.5 ± 0.1
8.0MIN. 4.4
9.9
2.0 ± 0.15
10.5MIN.
1. Electronic typewriters, printers
2. Numerical control machines
2
GP1A33R
■ Applications
6
5
OPIC
6.4 ± 0.15
4.0 ± 0.15
1
1 Anode
2 Cathode
3 V OB
2.5 ± 0.15
0.8 ± 0.15
OPIC
2- φ 2.0
± 0.1
Internal connection
diagram
* Tolerance :± 0.3mm
* ( ): Reference dimensions
6
*“ OPIC” ( Optical IC ) is a trademark of the SHARP Corporation.
An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.
■ Absolute Maximum Ratings
Parameter
Forward current
*1
Peak forward current
Input
Reverse Voltage
Power dissipation
Supply voltage
Low level output current
Output
Power dissipation
Operating temperature
Storage temperature
*2
Soldering temperature
( Ta= 25˚C )
Symbol
IF
I FM
VR
P
V CC
I OL
PO
T opr
T stg
Tsol
Rating
65
1
6
100
7
20
250
0 to + 70
- 40 to + 80
260
Unit
mA
A
V
mW
V
mA
mW
˚C
˚C
˚C
*1 Pulse width<=100 µ s, Duty ratio= 0.01
*2 For 5 seconds
“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.”
GP1A33R
■ Electro-optical Characteristics
( Unless otherwise specified, Ta = 0 to + 70˚C )
Parameter
Forward voltage
Reverse current
Operating supply voltage
High level output voltage
Low level output voltage
Supply current
Input
Output
Transfer
characteristics
Symbol
VF
IR
VCC
VOH
VOL
I CC
DA*5
DB*5
f MAX.
Duty ratio
Response frequency
Conditions
Ta= 25˚C, I F = 30mA
Ta= 25˚C, VR = 3V
*3 VCC =
5V, I F = 30mA
I OL = 8mA, V CC = 5V, I F = 30mA
*3*4
I F = 30mA, VCC = 5V
*3
V CC = 5V, I F = 30mA,
f=2.5kHz
*3
V CC = 5V, I F = 30mA
*3
MIN.
4.5
2.4
20
20
-
TYP.
1.2
5.0
4.9
0.1
5
50
50
-
MAX.
1.5
10
5.5
0.4
20
80
80
5
*3 Measured under the condition shown in Measurement Condition.
*4 In the condition that output A and B are low level.
t
t
*5 D A= t AH x 100, D B = t BH x 100
BP
AP
■ Output Waveforms
Output A
( VOA)
t AH
t AP
Output B
( VOB)
t AB1
t BH
t BP
Rotational direction : Counterclockwise when seen
from OPIC light detector
Fig. 1 Forward Current vs. Ambient
Temperature
Fig. 2 Output Power Dissipation vs.
Ambient Temperature
100
300
Output power dissipation PO ( mW )
90
Forward current I F ( mA )
80
70
65
60
50
40
30
20
250
200
150
100
50
10
0
0
0
25
50
70 75
Ambient temperature T a ( ˚C)
100
0
25
50
70 75
Ambient temperature T a ( ˚C)
100
Unit
V
µA
V
V
V
mA
%
%
kHz
GP1A33R
Fig. 3 Duty Ratio vs. Frequency
Fig. 4 Phase Difference vs. Frequency
Temperature
0.9
130
VCC = 5V
VCC = 5V
0.8
Phase difference θ ABI ( deg. )
T a = 25˚C
0.7
t AH
(
)
t AP Output A
0.6
Duty ratio
120
I F = 30mA
0.5
t BH
(
)
t BP Output B
0.4
0.3
I F = 30mA
T a = 25˚C
110
θ ABI =
100
90
80
70
60
0.2
0.1
1
2
5
10
50
20
1
2
5
Fig. 5 Duty Ratio vs. Ambient Temperature
1.0
t BH
t BP
0.6
VCC = 5V
IF = 30mA
f = 2.5kHz
130
t AH
t AP ( Output A)
0.7
Duty ratio
140
Phase difference θ AB1 ( deg. )
0.8
20
Fig. 6 Phase Difference vs. Ambient
Temperature
VCC = 5V
I F = 30mA
f = 2.5kHz
0.9
10
Frequncy f ( kHz )
Frequency f ( kHz )
( Output B)
0.5
0.4
0.3
120
t AB1
θ AB1 =x t
AP
110
360˚
100
90
80
70
0.2
60
0.1
50
0
40
0
25
50
75
0
100
Ambient temperature Ta ( ˚C )
Fig. 7 Duty Ratio vs. Distance ( X direction )
0.9
t AH
t AP
t BH
t BP
0.6
0.5
VCC = 5V
I F = 30mA
f= 2.5kHz
T a = 25˚C
120
( Output A)
( Output B)
0.4
0.3
100
Fig. 8 Phase Difference vs.
Distance ( X direction )
Phase difference θ AB1 ( deg. )
0.7
25
50
75
Ambient temperature Ta ( ˚C )
130
V CC = 5V
I F = 30mA
f= 2.5kHz
T a = 25˚C
0.8
Duty ratio
t ABI
t AP x 360˚
110
θ AB1 =
100
t AB1
t AP
90
x 360˚
Reference position
(-)
80
(+)
70
0.2
60
0.1
- 1.0
50
- 1.0
GP1A33R
Disk
- 0.5
0
0.5
Distance X ( mm ) ( Shifting encoder )
1.0
- 0.5
0
0.5
Distance X ( mm ) ( Shifting encoder )
1.0
GP1A33R
0.9
0.6
0.5
t AH
t AP
( Output A )
t BH
t BP
( Output B )
V CC = 5V
I F = 30mA
f= 2.5kHz
T a = 25˚C
120
Phase difference θ AB1 ( deg. )
0.7
Duty ratio
130
VCC = 5V
I F = 30mA
f= 2.5kHz
T a = 25˚C
0.8
Fig.10 Phase Difference vs.
Distance ( Y direction )
0.4
0.3
110
θ AB1 =
100
t AB1
x 360˚
t AP
90
GP1A33R
80
(+)
70
(-)
0.2
60
Disk
0.1
- 1.0
- 0.5
0
0.5
50
- 1.0
1.0
Distance Y ( mm ) ( Shifting encoder )
VCC = 5V
I F = 30mA
f = 2.5kHz
T a = 25˚C
0.8
0.7
t AH
( Output A )
t AP
t BH
( Output B )
t BP
0.6
0.5
0
0.5
1.0
0.4
0.3
Fig.12 Phase Difference vs.
Distance ( Z direction )
130
VCC = 5V
I F = 30mA
f = 2.5kHz
T a = 25˚C
120
Phase difference θ AB1 ( deg. )
0.9
- 0.5
Distance Y ( mm ) ( Shifting encoder )
Fig.11 Duty Ratio vs. Distance ( Z direction )
Duty ratio
Reference
position
Fig. 9 Duty Ratio vs. Distance ( Y direction )
110
θ AB1 =
100
t AB1
x 360˚
t AP
90
80
( Detecting side)
Z
70
OPIC
Disk
60
0.2
( Emitting side )
0.1
0
0.1
0.2
0.3
0.4
0.5
0.6
Distance Z ( mm ) ( Shifting encoder )
0.7
0.8
50
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
Distance Z ( mm ) ( Shifting encoder )
0.8
GP1A33R
<Basic Design>
Measurement Conditions
R O ( distance between the disk center and half point of a slit ) ,
P ( slit pitch ) , S 1 and S 2 ( installing position of photointerrupter ) will be provided by the following equations.
Slit pitch : P ( slit center )
A
15
20
R O=
GP1A33R
8
10
R
3
.8
9
4-R1.3
x 10.89 ( mm )
N: number of slits
2x p x RO
( mm )
N
S 1= R O- 1.765 ( mm ) , S 2= S 1+ 6.7 ( mm )
Note ) When the number of slits is changed, values in
parenthesis are also changed according to the number.
1.4
6.4
S2
(15.825)
Disk center
P=
N
60
11.4
f 26.48, 0.1t
60 slits
Enlarged drawing
of A portion
4
Slit pitch : P
A
S1
9.9
r2
0.8 2
7.5
12
0.5
Disk
(9.125)
r1
P
r1= r2
( Ex. ) In the case of
N= 100P/R
100
R O=
x 10.89 ( mm )
60
= 18.15mm
2x p x 18.15
P=
100
= 1.14mm
S 1= 18.15- 1.765
= 16.385mm
S 2= 16.385+ 6.7
= 23.085mm
Disk center
■ Precautions for Use
( 1 ) This module is designed to be operated at I F = 30mA TYP.
( 2 ) Fixing torque : MAX. 0.6N • m
( 3 ) In order to stabilize power supply line, connect a by-pass capacitor of more than 0.01 µF
between Vcc and GND near the device.
( 4 ) As for other general cautions, refer to the chapter “ Precautions for Use ” .