PC917X/PC918X PC917X/PC918X High Speed, High CMR OPIC Photocoupler ■ Features ■ Outline Dimensions 1. High speed response ( t PHL,tPLH : TYP. 0.3 µ s at R L = 1.9k Ω ) 2. High instantaneous common mode rejection voltage ( CM H : TYP. 1kV/ µ s ) 3. Standard dual-in-line package 4. Recognized by UL, file No. E64380 PC917X/ PC918X 2.54± 0.25 8 0.8 ± 0.2 7 6 5 Primary side mark ( Sunken place ) 2 3 1.2 ± 0.3 ■ Applications Internal connection diagram 8 7 6 5 1 2 3 4 6.5 ± 0.5 PC918 1 ( Unit : mm ) 4 0.85 ± 0.3 0.5 ± 0.1 1 2 3 4 NC Anode Cathode NC The marking of 7.62 ± 0.3 0.5TYP. 3.5 ± 0.5 1. Computers, measuring instruments, controllers 2. High speed line receivers high speed logic 3. Switing regulators 4. Signal transmission between circuits of different potentials and impedances 3.7 ± 0.5 9.22 ± 0.5 0.26 ± 0.1 θ : 0 to 13 ˚ 5 6 7 8 θ GND VO VB V CC PC917 is PC917 * PC917 has no base terminal. ( 7 : NC ) * “ OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip. ■ Absoulte Maximum Ratings Input Output Parameter Forward current Reverse voltage Power dissipation Supply voltage Output voltage *1 Emitter-base voltage Output current Power dissipation *2 Isolation voltage Operating temperature Storage temperature *3 Soldering temperature ( Ta = 25˚C ) Symbol IF VR P V CC VO V EBO IO PO V iso T opr T stg T sol Rating 25 5 45 - 0.5 to + 15 - 0.5 to + 15 5 8 100 2 500 - 55 to + 100 - 55 to + 125 260 Unit mA V mW V V V mA mW V rms ˚C ˚C ˚C *1 Voltage between pin 5 and pin 7 ( applies to PC918X ) *2 40 to 60% RH, AC for 1 minute *3 For 10 seconds “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.” PC917X/PC918X ■ Electro-optical Characteristics Parameter Forward voltage Reverse current Terminal capacitance High level output current High level output current High level output current Input ( 1) ( 2) ( 3) Low level output voltage V OL Low level supply current I CCL Output Transfer characteristics ( Unless otherwise specified, Ta = 0 to + 70˚C ) Symbol VF IR Ct I OH(1) I OH(2) I OH(3) High level supply current ( 1) I CCH(1) High level supply current ( 2) I CCH(2) Current transfer ratio CTR Isolation resistance R ISO Floating capacitance Cf *4 “ High→Low ” propagation delay time t PHL *4 “ Low→High ” propagation delay time t PLH Instantaneous common mode rejection voltage “ Output : High level ” CM H *5 *5 Instantaneous common mode rejection voltage “ Output : Low level ” CM L Conditions Ta = 25˚C, I F = 16mA Ta = 25˚C, V R = 5V Ta = 25˚C, V F = 0, f = 1MH Z Ta = 25˚C, I F = 0, V CC = V O = 5.5V Ta = 25˚C, I F = 0, V CC = V O = 15V I F = 0, VCC = V O = 15V I F = 16mA, I O = 2.4mA, V CC = 4.5V I F = 16mA, V O = open, V CC = 15V Ta = 25˚C, I F = 0, V O = open V CC = 15V I F = 0, V O = open, V CC = 15V Ta = 25˚C, I F = 16mA, V O = 0.4V, V CC = 4.5V Ta = 25˚C, DC500V, 40 to 60% RH Ta = 25˚C, V = 0, f = 1MH Z Ta = 25˚C, R L = 1.9k Ω I F = 16mA, V CC = 5V Ta = 25˚C, R L = 1.9k Ω I F = 16mA, V CC = 5V Ta = 25˚C, I F = 0, R L = 1.9k Ω V CM = 10Vp-p, V CC = 5V Ta = 25˚C, I F = 16mA, R L = 1.9k Ω V CM = 10Vp-p, V CC = 5V MIN. - TYP. 1.7 60 3 - MAX. 1.95 10 250 500 1 50 Unit V µA pF nA µA µA - - 0.4 V - 200 - µA - 0.02 1 µA - - 2 µA 19 - - % 5 x 1010 1011 - Ω - 0.6 1 pF - 0.3 0.8 µs - 0.3 1.2 µs - 1 000 - V/ µ s - - 1 000 - V/ µ s *4 Test Circuit for Propagation Delay Time ( PC918X ) Pulse input Pulse width 10µ s Pulse oscillator IF IF = 16mA Duty ratio1/10 IF monitor 0 1 8 2 7 3 6 4 5 VO 5V 5V 1.9k Ω 0.01 µF 1.5V 1.5V VO VOL CL = 15pF tPLH tPHL 100 Ω *5 Test Circuit for Instantaneous Common Mode Rejection Voltage ( PC918X ) IF = IF 16 mA GL SW A 10V VCM 1 8 2 7 3 6 4 5 B VFF VCM + - 5V 0V 1.9k Ω 90% tr VO 0.01µ F 10% 90% 10% CMH VO tf 2V IF = 0mA CML VO 0.8V IF = 16mA 5V VO When the switch for infrared light emitting diode sets to A. When the switch for infrared light emitting diode sets to B. PC917X/PC918X Fig. 2 Power Dissipation vs. Ambient Temperature 30 120 25 100 Power dissipation P, P O ( mW ) Forward current I F ( mA ) Fig. 1 Forward Current vs. Ambient Temperature 20 15 10 5 0 - 55 0 25 50 75 Ambient temperature T a 100 PO 80 60 P 45 40 20 0 - 40 125 0 25 50 75 Ambient temperature T ( ˚C) Fig. 3 Forward Current vs. Forward Voltage 100 a 125 ( ˚C ) Fig. 4 Output Current vs. Output Voltage 20 100 18 V CC = 5V T a = 25˚C Dotted line shows pulse characteristics Output current I O ( mA ) Forward current I F ( mA ) 16 10 T a = 0˚C 1 25˚C 50˚C 70˚C I F = 25mA 14 20mA 12 10 15mA 8 10mA 6 0.1 5mA 4 2 0.01 1.0 1.2 1.4 1.6 1.8 Forward voltage V F ( V ) 2.0 0 0 2.2 Fig. 5 Relative Current Transfer Ratio vs. Forward Current 2 4 6 8 10 12 14 16 Output voltage V O ( V ) 110 I F = 16mA V O = 0.4V V CC = 5V Relative current transfer ratio ( % ) Relative current transfer ratio ( % ) V CC = 5V T a = 25˚C 100 50 CTR = 100% at I F = 16mA 0 0.1 1 10 Forward current I F ( mA ) 20 Fig. 6 Relative Current Transfer Ratio vs. Ambient Temperature 150 V O = 0.4V 18 100 90 80 70 CTR = 100% at T a = 25˚C 100 60 - 60 - 40 - 20 0 20 40 60 Ambient temperature T a ( ˚C ) 80 100 PC917X/PC918X Fig. 7 Propagation Delay Time vs. Ambient Temperature Fig. 8 High Level Output Current vs. Ambient Temperature 800 High level output current I OH ( A ) ( ns ) PLH Propagation delay time t PHL , t 600 t PHL 400 t PLH 200 0 - 60 - 40 - 20 0 20 40 60 80 10 -5 10 -6 10 -7 10 -8 10 -9 VCC = VO = 5V I F = 16mA V CC = 5V RL = 1.9k Ω 100 10 - 10 10 - 11 - 60 - 40 - 20 Ambient temperature T a ( ˚C ) 0 20 40 60 80 100 Ambient temperature T a ( ˚C ) Fig. 9 Frequency Response Test Circuit for Frequency Response ( PC918X) 0 I F = 16mA T a = 25˚C -5 R L = 100 Ω 15V 220 Ω 470 Ω - 15 20k Ω AC Input - 25 0.2 0.5 1 2 5 100 Ω 1k Ω - 20 - 30 0.1 1 8 2 7 3 6 4 5 5V 560 Ω Voltage gain Av ( dB ) - 10 1.6V DC 0.25VP - PAC 10 Frequency f ( MHz ) ■ Precautions for Use ( 1 ) It is recommended that a by-pass capacitor of more than 0.01 µ F is added between VCC and GND near the device in order to stabilize power supply line. ( 2 ) Transistor of detector side in bipolar configuration is apt to be affected by static electricity for its minute design. When handling them, general counterplan against static electricity should be taken to avoid breakdown of devices or degradation of characteristics. ( 3 ) As for other general cautions, refer to the chapter “ Precautions for Use ”. RL VO