6N135/6N136 6N135/6N136 General Purpose Type Photocoupler ■ Features ■ Outline Dimensions 1. High speed response t PHL , t PLH ( 6N135 : MAX. 1.5 µ s at R L = 4.1k Ω ) ( 6N136 : MAX. 0.8 µ s at R L = 1.9k Ω ) 2. High common mode rejection voltage ( CM H : TYP. 1kV/ µ s ) 3. Standard dual-in-line package 4. Recognized by UL, file No. E64380 1 ■ Absolute Maximum Ratings Parameter Forward current *1 Peak forward current *2Peak transient forward current Reverse voltage Power dissipation Supply voltage Output voltage Output Average output current Peak output current Base current ( Pin 7 ) Power dissipation *3 Isolation voltage Operating temperature Storage temperature *4 Soldering temperature 6 5 2 5 1 4 6.5 ± 0.5 Internal connection diagram 8 7 6 3 0.8 4 Primary side mark (Sunken place ) ) Symbol IF IF I FM VR P V CC VO V EBO IO I OP IB PO V iso T opr T stg T so1 Rating 25 50 1 5 45 - 0.5 to + 15 - 0.5 to + 15 5 8 16 5 100 2 500 - 55 to + 100 - 55 to + 125 260 0.5TYP Unit mA mA A V mW V V V mA mA mA mW V rms ˚C ˚C ˚C 3 7.62 ± 0.3 9.22 ± 0.5 3.7 ± 0.5 ( Ta = 25˚C ) 2 3.5 ± 0.5 1. Computers, measuring instruments, control equipment 2. High speed line receivers, high speed logic 3. Telephone sets 4. Signal transmission between circuits of different potentials and impedances Emitter-base reverse with( Pin 5 to 7 stand voltage 7 6N ■ Applications Input Model 1.2 ± 0.3 No. 0.85 ± 0.3 8 ( Unit : mm ) θ = 0 to 13˚ 2.54 ± 0.25 0.5 ± 0.1 0.26 ± 0.1 1 NC 5 GND 2 Anode 6 VO 3 Cathode 7 V 4 NC 8 V CC θ B * “ OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip. *1 50% duty cycle, Pulse width : 1ms Decreases at the rate of 1.6mA/˚C if the external temperature is 70˚C or more. *2 Pulse width<=1µ s, 300 P / S *3 40 to 60% RH, AC for 1 minute *4 For 10 seconds “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.” 6N135/6N136 ■ Electro-optical Characteristics Parameter 6N135 *5 Current transfer 6N136 ratio 6N135 6N136 Logic ( 0 ) output voltage Symbol CTR ( 1 ) CTR ( 1 ) CTR ( 2 ) CTR ( 2 ) V OL I OH (1) Logic ( 1 ) output current I OH (2) I OH (3) Logic ( 0 ) supply current I CCL I CCH (1) Logic ( 1 ) supply current I CCH (2) Input forward voltage Input forward voltage temperature coefficient Input reverse voltage Input capacitance *6 Leak current ( input-output ) VF ∆V F / ∆ T a BV R C IN I I-O ( Ta = 0 to + 70˚C unless otherwise specified ) Conditions Ta = 25 ˚C, I F = 16mA V O = 0.4V, V CC = 4.5V I F = 16mA, V O = 0.5V V CC = 4.5V *7 I F = 16mA, V CC = 4.5V T a = 25˚C, I F = 0 V CC = VO = 5.5V T a = 25˚C, I F = 0 V CC = VO = 15V I F = 0, VCC = VO = 15V I F = 16mA, V CC = 15V V O = open T a = 25 ˚C, V CC = 15V V F = open, I O = 0 V CC = 15V V O = open, I F = 0 T a = 25˚C, I F = 16mA I F = 16mA T a = 25˚C, I R = 10 µ A V F = 0, f = 1MHz T a = 25˚C, 45 % RH, t = 5s V I-O = 3kVDC MIN. 7.0 19 5.0 15 - TYP. 40 40 43 43 0.1 MAX. 0.4 Unit % % % % V - 3.0 500 nA - 0.01 1.0 µA - - 50 µA - 200 - µA - 0.02 1.0 µA - - 2.0 µA - 1.7 1.95 V - - 1.9 - mV/ ˚C 5.0 - 60 - V pF - - 1.0 µA *6 Isolation resistance ( input-output ) *6 Capacitance ( input-output ) Transistor current amplification factor R I-O V I-O = 500VDC - 1012 - Ω CI-O f = 1MHz - 0.6 - pF h FE V O = 5V, I O = 3mA - 70 - *5 Current transfer ratio is the ratio of input current and output current expressed in % . *6 Measured as 2-pin element ( Short 1, 2, 3, 4 ) *7 6N135 : IO = 1.1mA, 6N136 : IO = 2.4mA Note ) Typical volue : at Ta = 25 ˚C 6N135/6N136 ■ Switching Characteristics Parameter *8 Propagation delay time Output (1)→(0) 6N135 6N136 *8 Propagation 6N135 *9 delay time 6N136 Output (0)→(1) *10,11 Instantaneous common mode rejection voltage “ output ( 1 ) ” *10,11 Instantaneous common mode rejection voltage “ output ( 0 ) ” *13 Bandwidth *9 ( Ta = 25 ˚C, V CC = 5V, I F = 16mA ) Symbol t PHL t PHL t PLH t PLH RL = RL = RL = RL = Conditions 4.1kΩ 1.9kΩ 4.1kΩ 1.9kΩ MIN. - TYP. 0.3 0.3 0.4 0.3 MAX. 1.5 0.8 1.5 0.8 Unit µs µs µs µs CM H *12 I F = 0, V CM = 10V P-P - 1 000 - V/ µ s CM L *12 V CM = 10V P-P , I F = 16mA - - 1 000 - V/ µ s - 2.0 - MHz R L = 100Ω BW *8 R L = 4.1k Ω is equivalent to one LSTTL and 6.1k Ω pull-up resistor. R L =1.9kΩ is equivalent to one TTL and 5.6kΩ pull-up resistor. *10 Instantaneous common mode rejection voltage “ output ( 1 ) ” represents a common mode voltage variation that can hold the output above ( 1 ) level ( VO > 2.0V) . Instantaneous common mode rejection voltage “ output ( 0 ) ” represents a common mode voltage variation that can hold the output above ( 0 ) level ( VO < 0.8V) . *12 6N135 : RL = 4.1k Ω 6N136 : RL = 1.9kΩ *13 Bandwidth represents a point where AC input goes down by 3dB. *9 Test Circuit for Propagation Delay Time Pulse input Duty ratio Pulse Generator IF 0 IF = 1/10 IF monitor 1 8 2 7 3 6 4 5 100 Ω VCC VO 5V RL 1.5V VO 0.01 µ F 1.5V CL = 15pF t PHL t PLH *11 Test Circuit for Instantaneous Common Mode Rejection Voltage IF A B 1 8 2 7 3 6 4 5 VFF VCM + - VCC = 5V RL VO 0.01 µ F 10V VCM 0V CMH VO CML VO 90% 10% 10% 90% tr IF = 0 2V 0.8V IF = 16mA tf 5V VOL 6N135/6N136 Fig. 1 Forward Current vs. Ambient Temperature Fig. 2 Power Dissipation vs. Ambient Temperature 120 Power dissipation P, P O ( mW ) 30 20 Forward current I F ( mA ) 25 15 10 5 PO 100 80 60 P 45 40 20 0 - 55 0 25 50 75 100 Ambient temperature T a ( ˚C ) 0 -40 125 Fig. 3 Forward Current vs. Forward Voltage 0 25 50 70 75 100 Ambient temperature T a ( ˚C ) 125 Fig. 4 Relative Current Transfer Ratio vs. Forward Current 150 100 Relative current transfer ratio ( % ) Forward current I F ( mA ) V CC = 5V 10 T a = 0˚C 1 25˚C 50˚C 70˚C 0.1 0.01 1.0 1.2 1.4 1.6 1.8 Forward voltage V F ( V ) 2.0 50 CTR = 100% at I F = 16mA 1 10 Forward current I F ( mA ) 110 T a = 25 ˚C Dotted line shows pulse characteristics Relative current transfer ratio ( % ) V CC = 5V 18 16 I F = 25mA 14 20mA 12 10 15mA 8 10mA 6 5mA 4 100 Fig. 6 Relative Current Transfer Ratio vs. Ambient Temperature 20 Output current I O ( mA ) T a = 25 ˚C 100 0 0.1 2.2 Fig. 5 Output Current vs. Output Voltage VO = 0.4V I F = 16mA VO = 0.4V V CC = 5V 100 90 80 70 2 CTR = 100 % at T a = 25 ˚C 0 0 2 4 6 8 10 12 14 Output voltage V O ( V ) 16 18 20 60 - 60 - 40 - 20 0 20 40 60 Ambient temperature T a ( ˚C ) 80 100 6N135/6N136 Fig. 7 Propagation Delay Time vs. Ambient Temperature 800 10 -5 10 -6 10 -7 10 -8 10 -9 V CC = VO = 5V OH (A) ( ns ) 6N136 (RL = 1.9k Ω ) PLH 600 High level output current I ,t I F = 16mA V CC = 5V 6N135 (RL = 4.1k Ω ) PHL Propagation delay time t Fig. 8 High Level Output Current vs. Ambient Temperature t PHL 400 t PLH 200 0 - 60 - 40 - 20 0 20 40 60 80 100 10 - 10 10 - 11 - 60 - 40 - 20 Ambient temperature T a ( ˚C ) 0 20 40 60 80 100 Ambient temperature T a ( ˚C ) Fig. 9 Frequency Response 0 IF = 16mA T a = 25˚C Test Circuit for Frequency Characteristic RL = 100Ω -10 15V 220Ω 470Ω -15 20k Ω AC Input -25 0.1 0.2 0.5 1 2 5 100 Ω -20 -30 1 8 2 7 3 6 4 5 5V 1kΩ 560 Ω Voltage gain A V ( dB ) -5 1.6V DC 0.25VP - P AC 10 Frequency f ( MHz ) ■ Precautions for Use ( 1 ) It is recommended that a by-pass capacitor of more than 0.01 µ F be added between V CC and GND near the device in order to stabilize power supply line. ( 2 ) Transistor of detector side in bipolar configuration is apt to be affected by static electricity for its minute design. When handling them, general counterplan against static electricity should be taken to avoid breakdown of devices or degradation of characteristics. ● As for other general cautions, please refer to the chapter “ Precautions for Use ” . ( Page 78 to 93 ) RL VO