SHARP 6N135

6N135/6N136
6N135/6N136
General Purpose Type
Photocoupler
■ Features
■ Outline Dimensions
1. High speed response t PHL , t PLH
( 6N135 : MAX. 1.5 µ s at R L = 4.1k Ω )
( 6N136 : MAX. 0.8 µ s at R L = 1.9k Ω )
2. High common mode rejection voltage
( CM H : TYP. 1kV/ µ s )
3. Standard dual-in-line package
4. Recognized by UL, file No. E64380
1
■ Absolute Maximum Ratings
Parameter
Forward current
*1
Peak forward current
*2Peak transient
forward current
Reverse voltage
Power dissipation
Supply voltage
Output voltage
Output
Average output current
Peak output current
Base current ( Pin 7 )
Power dissipation
*3
Isolation voltage
Operating temperature
Storage temperature
*4
Soldering temperature
6
5
2
5
1
4
6.5 ± 0.5
Internal
connection
diagram
8
7
6
3
0.8
4
Primary side mark
(Sunken place )
)
Symbol
IF
IF
I FM
VR
P
V CC
VO
V EBO
IO
I OP
IB
PO
V iso
T opr
T stg
T so1
Rating
25
50
1
5
45
- 0.5 to + 15
- 0.5 to + 15
5
8
16
5
100
2 500
- 55 to + 100
- 55 to + 125
260
0.5TYP
Unit
mA
mA
A
V
mW
V
V
V
mA
mA
mA
mW
V rms
˚C
˚C
˚C
3
7.62 ± 0.3
9.22 ± 0.5
3.7 ± 0.5
( Ta = 25˚C )
2
3.5 ± 0.5
1. Computers, measuring instruments, control
equipment
2. High speed line receivers, high speed logic
3. Telephone sets
4. Signal transmission between circuits of
different potentials and impedances
Emitter-base reverse with( Pin 5 to 7
stand voltage
7
6N
■ Applications
Input
Model
1.2 ± 0.3 No.
0.85 ± 0.3
8
( Unit : mm )
θ = 0 to 13˚
2.54 ± 0.25
0.5 ± 0.1
0.26 ± 0.1
1
NC
5
GND
2
Anode
6
VO
3
Cathode
7
V
4
NC
8
V CC
θ
B
* “ OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation.
An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.
*1 50% duty cycle, Pulse width : 1ms
Decreases at the rate of 1.6mA/˚C if the external temperature is 70˚C or more.
*2 Pulse width<=1µ s, 300 P / S
*3 40 to 60% RH, AC for 1 minute
*4 For 10 seconds
“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.”
6N135/6N136
■ Electro-optical Characteristics
Parameter
6N135
*5
Current transfer
6N136
ratio
6N135
6N136
Logic ( 0 ) output voltage
Symbol
CTR ( 1 )
CTR ( 1 )
CTR ( 2 )
CTR ( 2 )
V OL
I OH (1)
Logic ( 1 ) output current
I OH (2)
I OH (3)
Logic ( 0 ) supply current
I CCL
I CCH (1)
Logic ( 1 ) supply current
I CCH (2)
Input forward voltage
Input forward voltage
temperature coefficient
Input reverse voltage
Input capacitance
*6
Leak current
( input-output )
VF
∆V F / ∆ T a
BV R
C IN
I I-O
( Ta = 0 to + 70˚C unless otherwise specified )
Conditions
Ta = 25 ˚C, I F = 16mA
V O = 0.4V, V CC = 4.5V
I F = 16mA, V O = 0.5V
V CC = 4.5V
*7
I F = 16mA, V CC = 4.5V
T a = 25˚C, I F = 0
V CC = VO = 5.5V
T a = 25˚C, I F = 0
V CC = VO = 15V
I F = 0, VCC = VO = 15V
I F = 16mA, V CC = 15V
V O = open
T a = 25 ˚C, V CC = 15V
V F = open, I O = 0
V CC = 15V
V O = open, I F = 0
T a = 25˚C, I F = 16mA
I F = 16mA
T a = 25˚C, I R = 10 µ A
V F = 0, f = 1MHz
T a = 25˚C, 45 % RH, t = 5s
V I-O = 3kVDC
MIN.
7.0
19
5.0
15
-
TYP.
40
40
43
43
0.1
MAX.
0.4
Unit
%
%
%
%
V
-
3.0
500
nA
-
0.01
1.0
µA
-
-
50
µA
-
200
-
µA
-
0.02
1.0
µA
-
-
2.0
µA
-
1.7
1.95
V
-
- 1.9
-
mV/ ˚C
5.0
-
60
-
V
pF
-
-
1.0
µA
*6
Isolation resistance
( input-output )
*6
Capacitance ( input-output )
Transistor current
amplification factor
R I-O
V I-O = 500VDC
-
1012
-
Ω
CI-O
f = 1MHz
-
0.6
-
pF
h FE
V O = 5V, I O = 3mA
-
70
-
*5 Current transfer ratio is the ratio of input current and output
current expressed in % .
*6 Measured as 2-pin element ( Short 1, 2, 3, 4 )
*7 6N135 : IO = 1.1mA, 6N136 : IO = 2.4mA
Note ) Typical volue : at Ta = 25 ˚C
6N135/6N136
■ Switching Characteristics
Parameter
*8
Propagation
delay time
Output (1)→(0)
6N135
6N136
*8 Propagation
6N135
*9 delay time
6N136
Output (0)→(1)
*10,11
Instantaneous common
mode rejection voltage
“ output ( 1 ) ”
*10,11
Instantaneous common
mode rejection voltage
“ output ( 0 ) ”
*13
Bandwidth
*9
( Ta = 25 ˚C, V CC = 5V, I F = 16mA )
Symbol
t PHL
t PHL
t PLH
t PLH
RL =
RL =
RL =
RL =
Conditions
4.1kΩ
1.9kΩ
4.1kΩ
1.9kΩ
MIN.
-
TYP.
0.3
0.3
0.4
0.3
MAX.
1.5
0.8
1.5
0.8
Unit
µs
µs
µs
µs
CM H
*12
I F = 0, V CM = 10V P-P
-
1 000
-
V/ µ s
CM L
*12
V CM = 10V P-P , I F = 16mA
-
- 1 000
-
V/ µ s
-
2.0
-
MHz
R L = 100Ω
BW
*8 R L = 4.1k Ω is equivalent to one LSTTL and 6.1k Ω pull-up resistor. R L =1.9kΩ is equivalent to one TTL and 5.6kΩ pull-up resistor.
*10 Instantaneous common mode rejection voltage “ output ( 1 ) ” represents a common
mode voltage variation that can hold the output above ( 1 ) level ( VO > 2.0V) .
Instantaneous common mode rejection voltage “ output ( 0 ) ” represents a common
mode voltage variation that can hold the output above ( 0 ) level ( VO < 0.8V) .
*12 6N135 : RL = 4.1k Ω 6N136 : RL = 1.9kΩ
*13 Bandwidth represents a point where AC input goes down by 3dB.
*9 Test Circuit for Propagation Delay Time
Pulse input
Duty ratio
Pulse
Generator
IF
0
IF
= 1/10
IF monitor
1
8
2
7
3
6
4
5
100 Ω
VCC
VO
5V
RL
1.5V
VO
0.01 µ F
1.5V
CL = 15pF
t PHL
t PLH
*11 Test Circuit for Instantaneous Common Mode Rejection Voltage
IF
A
B
1
8
2
7
3
6
4
5
VFF
VCM
+
-
VCC = 5V
RL
VO
0.01 µ F
10V
VCM
0V
CMH
VO
CML
VO
90%
10%
10%
90%
tr
IF = 0
2V
0.8V
IF = 16mA
tf
5V
VOL
6N135/6N136
Fig. 1 Forward Current vs.
Ambient Temperature
Fig. 2 Power Dissipation vs.
Ambient Temperature
120
Power dissipation P, P O ( mW )
30
20
Forward current I
F
( mA )
25
15
10
5
PO
100
80
60
P
45
40
20
0
- 55
0
25
50
75
100
Ambient temperature T a ( ˚C )
0
-40
125
Fig. 3 Forward Current vs.
Forward Voltage
0
25
50 70 75
100
Ambient temperature T a ( ˚C )
125
Fig. 4 Relative Current Transfer Ratio vs.
Forward Current
150
100
Relative current transfer ratio ( % )
Forward current I F ( mA )
V CC = 5V
10
T a = 0˚C
1
25˚C
50˚C
70˚C
0.1
0.01
1.0
1.2
1.4
1.6
1.8
Forward voltage V F ( V )
2.0
50
CTR = 100% at
I F = 16mA
1
10
Forward current I F ( mA )
110
T a = 25 ˚C
Dotted line shows
pulse characteristics
Relative current transfer ratio ( % )
V CC = 5V
18
16
I F = 25mA
14
20mA
12
10
15mA
8
10mA
6
5mA
4
100
Fig. 6 Relative Current Transfer Ratio vs.
Ambient Temperature
20
Output current I O ( mA )
T a = 25 ˚C
100
0
0.1
2.2
Fig. 5 Output Current vs. Output Voltage
VO = 0.4V
I F = 16mA
VO = 0.4V
V CC = 5V
100
90
80
70
2
CTR = 100 % at T a = 25 ˚C
0
0
2
4
6
8 10 12 14
Output voltage V O ( V )
16
18
20
60
- 60 - 40
- 20
0
20
40
60
Ambient temperature T a ( ˚C )
80
100
6N135/6N136
Fig. 7 Propagation Delay Time vs.
Ambient Temperature
800
10
-5
10
-6
10
-7
10
-8
10
-9
V CC = VO = 5V
OH
(A)
( ns )
6N136 (RL = 1.9k Ω )
PLH
600
High level output current I
,t
I F = 16mA
V CC = 5V
6N135 (RL = 4.1k Ω )
PHL
Propagation delay time t
Fig. 8 High Level Output Current vs.
Ambient Temperature
t PHL
400
t PLH
200
0
- 60 - 40 - 20
0
20
40
60
80
100
10
- 10
10
- 11
- 60 - 40 - 20
Ambient temperature T a ( ˚C )
0
20
40
60
80
100
Ambient temperature T a ( ˚C )
Fig. 9 Frequency Response
0
IF = 16mA
T a = 25˚C
Test Circuit for Frequency Characteristic
RL = 100Ω
-10
15V
220Ω
470Ω
-15
20k Ω
AC
Input
-25
0.1
0.2
0.5
1
2
5
100 Ω
-20
-30
1
8
2
7
3
6
4
5
5V
1kΩ
560 Ω
Voltage gain A V ( dB )
-5
1.6V DC
0.25VP - P AC
10
Frequency f ( MHz )
■ Precautions for Use
( 1 ) It is recommended that a by-pass capacitor of more than 0.01 µ F be added between V CC and
GND near the device in order to stabilize power supply line.
( 2 ) Transistor of detector side in bipolar configuration is apt to be affected by static electricity
for its minute design. When handling them, general counterplan against static electricity
should be taken to avoid breakdown of devices or degradation of characteristics.
● As for other general cautions, please refer to the chapter “ Precautions for Use ” .
( Page 78 to 93 )
RL
VO