SHARP GP1A71R

GP1A70R/GP1A71R
GP1A70R/GP1A71R
OPIC Photointerrupter with
Encoder Functions
■ Features
■ Outline Dimensions
1. 2-phase ( A, B ) digital output
2. Sensing accuracy
( GP1A70R Disk slit pitch : 1.14mm )
( GP1A71R Disk slit pitch : 0.7mm )
3. PWB mounting type
( Lead bending type )
4. TTL compatible output
5. Compact, lightweight
( Unit : mm )
6.0
7.2
Internal connection diagram
GP1A70R
1
6
5
2
4
3
OPIC
6.0
1 Anode
2 Cathode
3 V OB
2.5MIN.
10.5
0.75
1. Printers
2. Copiers
3. Numerical control machines
3 4 5 6
6.5
■ Applications
13.0
± 0.15
+
2.0 - 0.2
0.1
12.5
4 GND
5 V CC
6 V OA
2 - φ 2.0±
0.1
2 - C0.2
2
3
1 4.0 ± 0.1
6
4
3 - (1.27)
2
5
1
2 - (1.75)
(2.54)
12.0
(6.56 )
*Tolerance :± 0.3mm
*( ) : Reference dimensions
*“OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation.
An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.
■ Absolute Maximum Ratings
Input
Output
Parameter
Forward current
*1
Peak forward current
Reverse voltage
Power dissipation
Supply voltage
Low level output current
Power dissipation
Operating temperature
Storage temperature
*2
Soldering temperature
( Ta = 25˚C )
Symbol
IF
I FM
VR
P
V CC
I OL
PO
T opr
T stg
Tsol
Rating
50
1
6
75
7
20
250
0 to + 70
- 40 to + 80
260
Unit
mA
A
V
mW
V
mA
mW
˚C
˚C
˚C
*1 Pulse width<=100µ s, Duty ratio 0.01
*2 For 5 seconds
“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.”
GP1A70R/GP1A71R
■ Electro-optical Characteristics
( Ta = 25˚C unless otherwise specified )
Parameter
Symbol
Forward voltage
VF
Reverse current
IR
Operating supply voltage
VCC
High level output voltage
V OH
Low level output voltage
VOL
Supply current
I CC
GP1A70R *5
Duty ratio
DA , D B
GP1A71R
Response frequency
f MAX.
Input
Output
Transfer
characteristics
Conditions
I F = 20mA, Ta= 25˚C
V R = 3V, Ta= 25˚C
*3
V CC= 5V, I F = 20mA
I OL = 8mA, V CC= 5V, I F = 20mA
*4
V CC= 5V, I F = 20mA
*3
*3
V CC= 5V, I F = 20mA, f = 2.5kHz
*3
V CC= 5V, I F = 20mA
MIN.
4.5
2.4
25
25
-
TYP.
1.2
5.0
4.9
0.1
5
50
50
-
MAX.
1.4
10
5.5
0.4
20
75
75
10
*3 Measured under the condition shown in Measurement Conditions.
*4 In the condition that output A and B are low level.
t
t
*5 D A: AH x 100, D B : BH x 100, Duty ratio : Average disk rotation time per turn
t AP
t BP
■ Output Waveforms
Output A
( VOA)
t AH
t AP
Output B
( VOB)
tAB1
t BH
Rotational direction : Counterclockwise when seen
from OPIC light detector
t BP
Fig. 2 Output Power Dissipation vs.
Ambient Temperature
60
300
50
250
Output power dissipation P O ( mW )
Forward current I F ( mA )
Fig. 1 Forward Current vs. Ambient
Temperature
40
30
20
10
200
150
100
50
0
0
0
25
50
70 75
Ambient temperature T a ( ˚C)
100
0
25
50
70 75
Ambient temperature T a ( ˚C)
100
Unit
V
µA
V
V
V
mA
%
%
kHz
GP1A70R/GP1A71R
Fig. 3-a Duty Ratio vs. Frequency
(GP1A70R)
Fig. 3-b Duty Ratio vs. Frequency
(GP1A71R)
80
80
VCC = 5V
I F = 20mA
T a = 25˚C
70
60
Duty ratio ( % )
Duty ratio ( % )
70
t AH
t AP x 100 ( Output A )
50
t BH
t BP x 100 ( Output B )
40
30
t AH
t AP x 100 ( Output A )
50
t BH
t BP x 100 ( Output B )
40
20
2
5
Frequency f ( kHz )
1
1
10
2
5
10
Frequency f ( kHz )
Fig. 4-a Phase Difference vs. Frequency
(GP1A70R )
Fig. 4-b Phase Difference vs. Freauency
(GP1A71R )
130
130
VCC = 5V
I F = 20mA
T a = 25˚C
VCC = 5V
I F = 20mA
120
Phase difference θ AB1 ( deg. )
120
Phase difference θ ABI ( deg. )
60
30
20
110
θ AB1 =
100
t AB1
360˚
t AP
90
80
110
θ AB1 =
t AB1
t AP x 360˚
100
90
80
70
70
2
5
Frequency f ( kHz )
1
1
10
Fig. 5-a Duty Ratio vs.
Ambient Temperature
(GP1A70R )
80
Duty ratio ( % )
t AH
t AP x 100 ( Output A )
t BH
t BP x 100 ( Output B )
40
30
10
80
VCC = 5V
I F = 20mA
f= 2.5kHz
70
60
50
2
5
Frequency f ( kHz )
Fig. 5-b Duty Ratio vs.
Ambient Temperature
(GP1A71R )
VCC = 5V
I F = 20mA
f= 2.5kHz
70
Duty ratio ( % )
VCC = 5V
I F = 20mA
T a = 25˚C
60
t AH
x 100 ( Output A )
t AP
50
t BH
x 100 ( Output B )
t BP
40
30
20
20
0
10
20
30 40
50
60
Ambient temperature T a ( ˚C)
70
0
10
30
40
50
60
20
Ambient temperature T a ( ˚C)
70
GP1A70R/GP1A71R
Fig. 6-a Phase Difference vs. Ambient
Temperature
Fig. 6-b Phase Difference vs. Ambient
Temperature
130
130
VCC = 5V
I F = 20mA
f= 2.5kHz
120
Phase difference θ AB1 ( deg. )
Phase difference θ ABI ( deg. )
120
110
θ
AB1 =
100
t AB1
t AP x 360˚
90
80
110
θ
t AB1
t AP x 360˚
100
90
70
0
10
20
30
40
50
Ambient temperature T a ( ˚C)
60
0
70
80
50
60
70
VCC = 5V
I F = 20mA
f= 2.5kHz
T a = 25˚C
60
Duty ratio ( % )
t BH
t BP x 100 ( Output B )
40
30
t AH
(
)
t AP x 100 Output A
50
40
t BH
(
)
t BP x 100 Output B
30
0
20
- 1.0
1.0
Distance X ( mm ) ( Shifting encoder )
130
VCC = 5V
I F = 20mA
f= 2.5kHz
T a = 25˚C
θ
AB1 =
140
VCC = 5V
I F = 20mA
f= 2.5kHz
T a = 25˚C
130
110
100
1.0
Fig. 8-b Phase Difference vs. Distance
( X direction )
(GP1A71R )
Phase difference θAB1 ( deg. )
120
0
Distance X ( mm ) ( Shifting encoder )
Fig. 8-a Phase Difference vs. Distance
( X direction )
(GP1A70R )
t AB1
t AP x 360˚
Reference position
(-)
(+)
GP1A70R
80
70
- 1.0
40
70
t AH
t AP x 100 ( Output A )
50
90
30
80
60
20
- 1.0
20
Fig. 7-b Duty Ratio vs.
Distance ( X direction )
(GP1A71R )
VCC = 5V
I F = 20mA
f= 2.5kHz
T a = 25˚C
70
10
Ambient temperature T a ( ˚C)
Fig. 7-a Duty Ratio vs.
Distance ( Xdirection )
(GP1A70R )
Phase difference θ ABI ( deg. )
AB1 =
80
70
Duty ratio ( % )
VCC = 5V
I F = 20mA
f = 2.5kHz
120
θ AB1 =
t AB1
t AP x 360˚
110
100
Reference position
(-)
(+)
GP1A71R
90
Disk
0
Distance X ( mm ) ( Shifting encoder )
1.0
80
- 1.0
Disk
0
Distance X ( mm ) ( Shifting encoder )
1.0
GP1A70R/GP1A71R
Fig. 9-a Duty Ratio vs.
Distance ( Ydirection )
(GP1A70R )
80
80
VCC = 5V
I F = 20mA
f= 2.5kHz
T a = 25˚C
60
t AH
t AP x 100 ( Output A )
50
t BH
t BP x 100 ( Output B )
40
VCC = 5V
I F = 20mA
f= 2.5kHz
T a = 25˚C
70
Duty ratio ( % )
70
Duty ratio ( % )
Fig. 9-b Duty Ratio vs.
Distance ( Y direction )
(GP1A71R )
30
60
t AH
t AP x 100 ( Output A )
50
t BH
t BP x 100 ( Output B )
40
30
20
- 1.0
0
20
- 1.0
1.0
Fig.10-a Phase Difference vs. Distance
( Y direction )
(GP1A70R )
VCC = 5V
I F = 20mA
f= 2.5kHz
T a = 25˚C
Phase difference θ ABI ( deg. )
120
110
θ AB1 =
100
GP1A70R
( +)
Reference
position
(- )
80
140
VCC = 5V
I F = 20mA
f= 2.5kHz
T a = 25˚C
130
t AB1
t AP x 360˚
90
Fig.10-b Phase Difference vs. Distance
( Y direction )
(GP1A71R )
Phase difference θ AB1 ( deg. )
130
1.0
0
Distance Y ( mm ) ( Shifting encoder )
Distance Y ( mm ) ( Shifting encoder )
120
θ AB1 =
110
GP1A71R
100
( +)
Reference
position
(- )
90
Disk
70
- 1.0
0
80
- 1.0
1.0
Distance Y ( mm ) ( Shifting encoder )
80
Duty ratio ( % )
Duty ratio ( % )
80
VCC = 5V
I F = 20mA
f= 2.5kHz
T a = 25˚C
70
t AH
t AP x 100 ( Output A )
50
40
1.0
Fig.11-b Duty Ratio vs.
Distance ( Z direction )
(GP1A71R )
VCC = 5V
I F = 20mA
f= 2.5kHz
T a = 25˚C
60
Disk
0
Distance Y ( mm ) ( Shifting encoder )
Fig.11-a Duty Ratio vs.
Distance ( Z direction )
(GP1A70R )
70
t AB1
t AP x 360˚
t BH
t BP x 100 ( Output B )
30
60
t AH
(
)
t AP x 100 Output A
50
t BH
x 100 ( Output B )
t BP
40
30
20
20
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
Distance Z ( mm ) ( Shifting encoder )
0.8
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1
Distance Z ( mm ) ( Shifting encoder )
GP1A70R/GP1A71R
Fig.12-a Phase Difference vs. Distance
( Z direction )
(GP1A70R )
120
140
VCC = 5V
I F = 20mA
f= 2.5kHz
T a = 25˚C
t AB1
x 360˚
θ AB1 = t
AP
90
( Detecting side )
Z
OPIC Disk
( Detecting side )
100
Z
GP1A71R
( Emitting side )
90
GP1A70R
( Emitting side )
60
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
Disk
OPIC
80
0
0.8
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Distance Z ( mm ) ( Shifting encoder)
Distance Z ( mm ) ( Shifting encoder)
( Unit : mm )
<Measurement Conditions>
3˚
1.5˚
6˚
3˚
R10.89
R13.45
RO
X'
7.2
RO
GP1A70R
X
GP1A71R
X
R13.24
X'
7.2
70
110
R15.8
13
Disk center
13
Disk center
6
8.625
4
S
2.0
6.5
0.3
0.1
10.5
11.185
0.75
0.1
6.5
0.5
2.0
6
4
S
< GP1A70R Basic Design>
RO ( distance between the disk center and half point of
a slit ) and S ( installing position of GP1A70R) will be
provided by the following equations.
< GP1A71R Basic Design>
RO ( distance between the disk center and half point of
a slit ) and S ( installing position of GP1A71R) will be
provided by the following equations.
RO=N /60 x 10.89 ( mm ) N : number of slits
S= RO- 2.265 (mm )
RO= N/120 x 13.45 ( mm ) N : number of slits
S= RO- 2.265 (mm)
■ Precautions for Use
( 1 ) This device is designed to be used under the condition of IF = 20mA
( 2 ) It is recommended that a by-pass capacitor of more than 0.01µF be added
between V CC and GND near the device in order to stabilize power supply line.
( 3 ) As for other general cautions, refer to the chapter “ Precautions for Use” .
10.5
80
t AB1
x 360˚
θ AB1 = t
AP
120
0.75
100
VCC = 5V
I F = 20mA
f= 2.5kHz
T a = 25˚C
130
Phase difference θ AB1 ( deg. )
110
Phase difference θ ABI ( deg. )
Fig.12-b Phase Difference vs. Distance
( Z direction )
(GP1A71R )