GP1A70R/GP1A71R GP1A70R/GP1A71R OPIC Photointerrupter with Encoder Functions ■ Features ■ Outline Dimensions 1. 2-phase ( A, B ) digital output 2. Sensing accuracy ( GP1A70R Disk slit pitch : 1.14mm ) ( GP1A71R Disk slit pitch : 0.7mm ) 3. PWB mounting type ( Lead bending type ) 4. TTL compatible output 5. Compact, lightweight ( Unit : mm ) 6.0 7.2 Internal connection diagram GP1A70R 1 6 5 2 4 3 OPIC 6.0 1 Anode 2 Cathode 3 V OB 2.5MIN. 10.5 0.75 1. Printers 2. Copiers 3. Numerical control machines 3 4 5 6 6.5 ■ Applications 13.0 ± 0.15 + 2.0 - 0.2 0.1 12.5 4 GND 5 V CC 6 V OA 2 - φ 2.0± 0.1 2 - C0.2 2 3 1 4.0 ± 0.1 6 4 3 - (1.27) 2 5 1 2 - (1.75) (2.54) 12.0 (6.56 ) *Tolerance :± 0.3mm *( ) : Reference dimensions *“OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip. ■ Absolute Maximum Ratings Input Output Parameter Forward current *1 Peak forward current Reverse voltage Power dissipation Supply voltage Low level output current Power dissipation Operating temperature Storage temperature *2 Soldering temperature ( Ta = 25˚C ) Symbol IF I FM VR P V CC I OL PO T opr T stg Tsol Rating 50 1 6 75 7 20 250 0 to + 70 - 40 to + 80 260 Unit mA A V mW V mA mW ˚C ˚C ˚C *1 Pulse width<=100µ s, Duty ratio 0.01 *2 For 5 seconds “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.” GP1A70R/GP1A71R ■ Electro-optical Characteristics ( Ta = 25˚C unless otherwise specified ) Parameter Symbol Forward voltage VF Reverse current IR Operating supply voltage VCC High level output voltage V OH Low level output voltage VOL Supply current I CC GP1A70R *5 Duty ratio DA , D B GP1A71R Response frequency f MAX. Input Output Transfer characteristics Conditions I F = 20mA, Ta= 25˚C V R = 3V, Ta= 25˚C *3 V CC= 5V, I F = 20mA I OL = 8mA, V CC= 5V, I F = 20mA *4 V CC= 5V, I F = 20mA *3 *3 V CC= 5V, I F = 20mA, f = 2.5kHz *3 V CC= 5V, I F = 20mA MIN. 4.5 2.4 25 25 - TYP. 1.2 5.0 4.9 0.1 5 50 50 - MAX. 1.4 10 5.5 0.4 20 75 75 10 *3 Measured under the condition shown in Measurement Conditions. *4 In the condition that output A and B are low level. t t *5 D A: AH x 100, D B : BH x 100, Duty ratio : Average disk rotation time per turn t AP t BP ■ Output Waveforms Output A ( VOA) t AH t AP Output B ( VOB) tAB1 t BH Rotational direction : Counterclockwise when seen from OPIC light detector t BP Fig. 2 Output Power Dissipation vs. Ambient Temperature 60 300 50 250 Output power dissipation P O ( mW ) Forward current I F ( mA ) Fig. 1 Forward Current vs. Ambient Temperature 40 30 20 10 200 150 100 50 0 0 0 25 50 70 75 Ambient temperature T a ( ˚C) 100 0 25 50 70 75 Ambient temperature T a ( ˚C) 100 Unit V µA V V V mA % % kHz GP1A70R/GP1A71R Fig. 3-a Duty Ratio vs. Frequency (GP1A70R) Fig. 3-b Duty Ratio vs. Frequency (GP1A71R) 80 80 VCC = 5V I F = 20mA T a = 25˚C 70 60 Duty ratio ( % ) Duty ratio ( % ) 70 t AH t AP x 100 ( Output A ) 50 t BH t BP x 100 ( Output B ) 40 30 t AH t AP x 100 ( Output A ) 50 t BH t BP x 100 ( Output B ) 40 20 2 5 Frequency f ( kHz ) 1 1 10 2 5 10 Frequency f ( kHz ) Fig. 4-a Phase Difference vs. Frequency (GP1A70R ) Fig. 4-b Phase Difference vs. Freauency (GP1A71R ) 130 130 VCC = 5V I F = 20mA T a = 25˚C VCC = 5V I F = 20mA 120 Phase difference θ AB1 ( deg. ) 120 Phase difference θ ABI ( deg. ) 60 30 20 110 θ AB1 = 100 t AB1 360˚ t AP 90 80 110 θ AB1 = t AB1 t AP x 360˚ 100 90 80 70 70 2 5 Frequency f ( kHz ) 1 1 10 Fig. 5-a Duty Ratio vs. Ambient Temperature (GP1A70R ) 80 Duty ratio ( % ) t AH t AP x 100 ( Output A ) t BH t BP x 100 ( Output B ) 40 30 10 80 VCC = 5V I F = 20mA f= 2.5kHz 70 60 50 2 5 Frequency f ( kHz ) Fig. 5-b Duty Ratio vs. Ambient Temperature (GP1A71R ) VCC = 5V I F = 20mA f= 2.5kHz 70 Duty ratio ( % ) VCC = 5V I F = 20mA T a = 25˚C 60 t AH x 100 ( Output A ) t AP 50 t BH x 100 ( Output B ) t BP 40 30 20 20 0 10 20 30 40 50 60 Ambient temperature T a ( ˚C) 70 0 10 30 40 50 60 20 Ambient temperature T a ( ˚C) 70 GP1A70R/GP1A71R Fig. 6-a Phase Difference vs. Ambient Temperature Fig. 6-b Phase Difference vs. Ambient Temperature 130 130 VCC = 5V I F = 20mA f= 2.5kHz 120 Phase difference θ AB1 ( deg. ) Phase difference θ ABI ( deg. ) 120 110 θ AB1 = 100 t AB1 t AP x 360˚ 90 80 110 θ t AB1 t AP x 360˚ 100 90 70 0 10 20 30 40 50 Ambient temperature T a ( ˚C) 60 0 70 80 50 60 70 VCC = 5V I F = 20mA f= 2.5kHz T a = 25˚C 60 Duty ratio ( % ) t BH t BP x 100 ( Output B ) 40 30 t AH ( ) t AP x 100 Output A 50 40 t BH ( ) t BP x 100 Output B 30 0 20 - 1.0 1.0 Distance X ( mm ) ( Shifting encoder ) 130 VCC = 5V I F = 20mA f= 2.5kHz T a = 25˚C θ AB1 = 140 VCC = 5V I F = 20mA f= 2.5kHz T a = 25˚C 130 110 100 1.0 Fig. 8-b Phase Difference vs. Distance ( X direction ) (GP1A71R ) Phase difference θAB1 ( deg. ) 120 0 Distance X ( mm ) ( Shifting encoder ) Fig. 8-a Phase Difference vs. Distance ( X direction ) (GP1A70R ) t AB1 t AP x 360˚ Reference position (-) (+) GP1A70R 80 70 - 1.0 40 70 t AH t AP x 100 ( Output A ) 50 90 30 80 60 20 - 1.0 20 Fig. 7-b Duty Ratio vs. Distance ( X direction ) (GP1A71R ) VCC = 5V I F = 20mA f= 2.5kHz T a = 25˚C 70 10 Ambient temperature T a ( ˚C) Fig. 7-a Duty Ratio vs. Distance ( Xdirection ) (GP1A70R ) Phase difference θ ABI ( deg. ) AB1 = 80 70 Duty ratio ( % ) VCC = 5V I F = 20mA f = 2.5kHz 120 θ AB1 = t AB1 t AP x 360˚ 110 100 Reference position (-) (+) GP1A71R 90 Disk 0 Distance X ( mm ) ( Shifting encoder ) 1.0 80 - 1.0 Disk 0 Distance X ( mm ) ( Shifting encoder ) 1.0 GP1A70R/GP1A71R Fig. 9-a Duty Ratio vs. Distance ( Ydirection ) (GP1A70R ) 80 80 VCC = 5V I F = 20mA f= 2.5kHz T a = 25˚C 60 t AH t AP x 100 ( Output A ) 50 t BH t BP x 100 ( Output B ) 40 VCC = 5V I F = 20mA f= 2.5kHz T a = 25˚C 70 Duty ratio ( % ) 70 Duty ratio ( % ) Fig. 9-b Duty Ratio vs. Distance ( Y direction ) (GP1A71R ) 30 60 t AH t AP x 100 ( Output A ) 50 t BH t BP x 100 ( Output B ) 40 30 20 - 1.0 0 20 - 1.0 1.0 Fig.10-a Phase Difference vs. Distance ( Y direction ) (GP1A70R ) VCC = 5V I F = 20mA f= 2.5kHz T a = 25˚C Phase difference θ ABI ( deg. ) 120 110 θ AB1 = 100 GP1A70R ( +) Reference position (- ) 80 140 VCC = 5V I F = 20mA f= 2.5kHz T a = 25˚C 130 t AB1 t AP x 360˚ 90 Fig.10-b Phase Difference vs. Distance ( Y direction ) (GP1A71R ) Phase difference θ AB1 ( deg. ) 130 1.0 0 Distance Y ( mm ) ( Shifting encoder ) Distance Y ( mm ) ( Shifting encoder ) 120 θ AB1 = 110 GP1A71R 100 ( +) Reference position (- ) 90 Disk 70 - 1.0 0 80 - 1.0 1.0 Distance Y ( mm ) ( Shifting encoder ) 80 Duty ratio ( % ) Duty ratio ( % ) 80 VCC = 5V I F = 20mA f= 2.5kHz T a = 25˚C 70 t AH t AP x 100 ( Output A ) 50 40 1.0 Fig.11-b Duty Ratio vs. Distance ( Z direction ) (GP1A71R ) VCC = 5V I F = 20mA f= 2.5kHz T a = 25˚C 60 Disk 0 Distance Y ( mm ) ( Shifting encoder ) Fig.11-a Duty Ratio vs. Distance ( Z direction ) (GP1A70R ) 70 t AB1 t AP x 360˚ t BH t BP x 100 ( Output B ) 30 60 t AH ( ) t AP x 100 Output A 50 t BH x 100 ( Output B ) t BP 40 30 20 20 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Distance Z ( mm ) ( Shifting encoder ) 0.8 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 Distance Z ( mm ) ( Shifting encoder ) GP1A70R/GP1A71R Fig.12-a Phase Difference vs. Distance ( Z direction ) (GP1A70R ) 120 140 VCC = 5V I F = 20mA f= 2.5kHz T a = 25˚C t AB1 x 360˚ θ AB1 = t AP 90 ( Detecting side ) Z OPIC Disk ( Detecting side ) 100 Z GP1A71R ( Emitting side ) 90 GP1A70R ( Emitting side ) 60 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Disk OPIC 80 0 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Distance Z ( mm ) ( Shifting encoder) Distance Z ( mm ) ( Shifting encoder) ( Unit : mm ) <Measurement Conditions> 3˚ 1.5˚ 6˚ 3˚ R10.89 R13.45 RO X' 7.2 RO GP1A70R X GP1A71R X R13.24 X' 7.2 70 110 R15.8 13 Disk center 13 Disk center 6 8.625 4 S 2.0 6.5 0.3 0.1 10.5 11.185 0.75 0.1 6.5 0.5 2.0 6 4 S < GP1A70R Basic Design> RO ( distance between the disk center and half point of a slit ) and S ( installing position of GP1A70R) will be provided by the following equations. < GP1A71R Basic Design> RO ( distance between the disk center and half point of a slit ) and S ( installing position of GP1A71R) will be provided by the following equations. RO=N /60 x 10.89 ( mm ) N : number of slits S= RO- 2.265 (mm ) RO= N/120 x 13.45 ( mm ) N : number of slits S= RO- 2.265 (mm) ■ Precautions for Use ( 1 ) This device is designed to be used under the condition of IF = 20mA ( 2 ) It is recommended that a by-pass capacitor of more than 0.01µF be added between V CC and GND near the device in order to stabilize power supply line. ( 3 ) As for other general cautions, refer to the chapter “ Precautions for Use” . 10.5 80 t AB1 x 360˚ θ AB1 = t AP 120 0.75 100 VCC = 5V I F = 20mA f= 2.5kHz T a = 25˚C 130 Phase difference θ AB1 ( deg. ) 110 Phase difference θ ABI ( deg. ) Fig.12-b Phase Difference vs. Distance ( Z direction ) (GP1A71R )