PD - 95349C IRF7494PbF HEXFET® Power MOSFET Applications High frequency DC-DC converters l Lead-Free l VDSS RDS(on) max ID 150V 44mΩ@VGS = 10V 5.1A Benefits l Low Gate to Drain Charge to Reduce Switching Losses l Fully Characterized Capacitance Including Effective COSS to Simplify Design, (See App. Note AN1001) l Fully Characterized Avalanche Voltage and Current A A D S 1 8 S 2 7 D S 3 6 D G 4 5 D SO-8 Top View Absolute Maximum Ratings Parameter Max. VDS Drain-to-Source Voltage 150 VGS Gate-to-Source Voltage ± 20 Units V ID @ TA = 25°C Continuous Drain Current, VGS @ 10V 5.1 ID @ TA = 70°C Continuous Drain Current, VGS @ 10V 4.0 IDM Pulsed Drain Current 40 PD @TA = 25°C Maximum Power Dissipation 2.5 W Linear Derating Factor 0.02 W/°C 33 -55 to + 150 V/ns c h dv/dt TJ Peak Diode Recovery dv/dt Operating Junction and TSTG Storage Temperature Range A °C Thermal Resistance Parameter i RθJL Junction-to-Drain Lead RθJA Junction-to-Ambient (PCB Mount) e Typ. Max. ––– 20 ––– 50 Units °C/W Notes through are on page 8 www.irf.com 1 10/15/09 IRF7494PbF Static @ TJ = 25°C (unless otherwise specified) Parameter V(BR)DSS ∆V(BR)DSS/∆TJ Min. Typ. Max. Units Drain-to-Source Breakdown Voltage 150 ––– ––– RDS(on) Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance ––– ––– 0.13 35 ––– 44 VGS(th) IDSS Gate Threshold Voltage Drain-to-Source Leakage Current 2.5 ––– ––– ––– 4.0 10 ––– ––– 250 IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage ––– ––– ––– ––– 100 -100 V Conditions VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 3.1A V µA f VDS = VGS, ID = 250µA VDS = 120V, VGS = 0V VDS = 120V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V Dynamic @ TJ = 25°C (unless otherwise specified) Parameter gfs Qg Forward Transconductance Total Gate Charge Qgs Qgd td(on) Min. Typ. Max. Units 12 ––– ––– 35 Gate-to-Source Charge ––– Gate-to-Drain ("Miller") Charge Turn-On Delay Time ––– ––– tr td(off) Rise Time Turn-Off Delay Time tf Ciss Conditions ––– 53 S VDS = 50V, ID = 5.1A ID = 3.1A 6.4 ––– nC 13 9 ––– ––– ––– ––– 10 29 ––– ––– Fall Time Input Capacitance ––– ––– 14 1783 ––– ––– Coss Crss Output Capacitance Reverse Transfer Capacitance ––– ––– 222 104 ––– ––– Coss Output Capacitance ––– 886 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Coss Coss eff. Output Capacitance Effective Output Capacitance ––– ––– 121 189 ––– ––– VGS = 0V, VDS = 120V, ƒ = 1.0MHz VGS = 0V, VDS = 0V to 120V VDS = 75V VGS = 10V VDD = 75V ns ID = 3.1A RG = 6.8Ω VGS = 10V VGS = 0V pF f f VDS = 25V ƒ = 1.0MHz g Avalanche Characteristics EAS IAR Parameter Single Pulse Avalanche Energy Avalanche Current c Typ. ––– ––– d Units mJ A Max. 262 3.1 Diode Characteristics Parameter IS Continuous Source Current ISM (Body Diode) Pulsed Source Current VSD trr Qrr 2 Min. Typ. Max. Units ––– ––– Conditions MOSFET symbol 2.3 A showing the integral reverse D G (Body Diode) Diode Forward Voltage ––– ––– 40 ––– ––– 1.3 V p-n junction diode. TJ = 25°C, IS = 3.1A, VGS = 0V Reverse Recovery Time Reverse Recovery Charge ––– ––– 45 93 ––– ––– ns nC TJ = 25°C, IF = 3.1A, VDD = 25V di/dt = 100A/µs c S f f www.irf.com IRF7494PbF 100 100 10 BOTTOM 1 4.25V 0.1 TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15.0V 10.0V 8.00V 5.50V 5.00V 4.75V 4.50V 4.25V 10 BOTTOM 4.25V 1 ≤60µs PULSE WIDTH Tj = 150°C ≤60µs PULSE WIDTH Tj = 25°C 0.01 0.1 0.1 1 10 100 0.1 V DS, Drain-to-Source Voltage (V) 1 10 100 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 2.5 RDS(on) , Drain-to-Source On Resistance (Normalized) 100 ID, Drain-to-Source Current (A) VGS 15.0V 10.0V 8.00V 5.50V 5.00V 4.75V 4.50V 4.25V VDS = 50V ≤60µs PULSE WIDTH 10 T J = 150°C T J = 25°C 1 ID = 5.1A VGS = 10V 2.0 1.5 1.0 0.5 0.1 3.0 3.5 4.0 4.5 5.0 5.5 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 6.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) Fig 4. Normalized On-Resistance vs. Temperature 3 IRF7494PbF 100000 14.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED ID= 3.1A C oss = C ds + C gd 10000 C, Capacitance (pF) VGS, Gate-to-Source Voltage (V) C rss = C gd Ciss 1000 Coss Crss 100 12.0 VDS= 120V VDS= 75V 10.0 VDS= 30V 8.0 6.0 4.0 2.0 0.0 10 1 10 100 0 1000 5 VDS, Drain-to-Source Voltage (V) 100 20 25 30 35 40 45 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 15 Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage Fig 5. Typical Capacitance vs. Drain-to-Source Voltage OPERATION IN THIS AREA LIMITED BY R DS(on) 100 T J = 150°C 10 T J = 25°C 1 100µsec 10 1msec 1 T A = 25°C 0.1 10msec Tj = 150°C Single Pulse VGS = 0V 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 10 QG, Total Gate Charge (nC) 1.0 0 1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRF7494PbF 6 RD VDS ID, Drain Current (A) 5 VGS D.U.T. RG 4 + -V DD 10V 3 Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 2 Fig 10a. Switching Time Test Circuit 1 VDS 90% 0 25 50 75 100 125 150 T A , Ambient Temperature (°C) 10% VGS Fig 9. Maximum Drain Current vs. Ambient Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms Thermal Response ( Z thJA ) °C/W 100 D = 0.50 0.20 0.10 0.05 0.02 0.01 10 1 0.1 0.01 0.001 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + TA SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 50 RDS(on), Drain-to -Source On Resistance (m Ω) RDS(on), Drain-to -Source On Resistance ( mΩ) IRF7494PbF 45 Vgs = 10V 40 35 30 0 5 10 15 20 25 30 35 40 100 ID = 5.1A 90 80 T J = 125°C 70 60 50 T J = 25°C 40 30 20 4 45 ID, Drain Current (A) VCC QGS VG Fig 14a&b. Basic Gate Charge Test Circuit and Waveform 15V V(BR)DSS L VDS D.U.T RG IAS 20V I AS tp DRIVER + V - DD 0.01Ω Fig 15a&b. Unclamped Inductive Test circuit and Waveforms 6 14 16 18 20 700 QGD Charge tp 12 QG VGS 1K 10 Fig 13. On-Resistance vs. Gate Voltage EAS , Single Pulse Avalanche Energy (mJ) DUT 0 8 VGS, Gate -to -Source Voltage (V) Fig 12. On-Resistance vs. Drain Current L 6 ID 1.4A 2.5A BOTTOM 3.1A 600 TOP 500 400 300 200 100 0 A 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 15c. Maximum Avalanche Energy vs. Drain Current www.irf.com IRF7494PbF SO-8 Package Outline(Mosfet & Fetky) Dimensions are shown in milimeters (inches) ' ',0 % $ + >@ ( $ 0,1 $ E F ' ( H %$6,& H ; H H ;E >@ $ $ 0,//,0(7(56 0$; $ ,1&+(6 0,1 0$; %$6,& %$6,& %$6,& + . / \ .[ & \ >@ ;F ;/ & $ % )22735,17 127(6 ',0(16,21,1*72/(5$1&,1*3(5$60(<0 &21752//,1*',0(16,210,//,0(7(5 ',0(16,216$5(6+2:1,10,//,0(7(56>,1&+(6@ 287/,1(&21)250672-('(&287/,1(06$$ ',0(16,21'2(6127,1&/8'(02/'3527586,216 02/'3527586,21612772(;&(('>@ ',0(16,21'2(6127,1&/8'(02/'3527586,216 02/'3527586,21612772(;&(('>@ ',0(16,21,67+(/(1*7+2)/($')2562/'(5,1*72 $68%675$7( ;>@ >@ ;>@ ;>@ SO-8 Part Marking Information (;$03/(7+,6,6$1,5)026)(7 ,17(51$7,21$/ 5(&7,),(5 /2*2 ;;;; ) '$7(&2'(<:: 3 ',6*1$7(6/($')5(( 352'8&7237,21$/ < /$67',*,72)7+(<($5 :: :((. $ $66(0%/<6,7(&2'( /27&2'( 3$57180%(5 Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 7 IRF7494PbF SO-8 Tape and Reel Dimensions are shown in millimeters (inches) TERMINAL NUMBER 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 330.00 (12.992) MAX. 14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541. Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 55mH, RG = 25Ω, IAS = 3.1A. When mounted on 1 inch square copper board, t ≤ 10 sec. Pulse width ≤ 400µs; duty cycle ≤ 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. ISD ≤ 3.1A, di/dt ≤ 1907A/µs, VDD ≤ V(BR)DSS, TJ ≤ 150°C. Rθ is measured at TJ of approximately 90°C. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualifications Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.10/2009 8 www.irf.com