ETC PIC18F2680

PIC18FX5X5/X6X0
Flash Microcontroller Programming Specification
1.0
DEVICE OVERVIEW
2.1
In High-Voltage ICSP mode, PIC18FX5X5/X6X0
devices require two programmable power supplies:
one for VDD and one for MCLR/VPP. Both supplies
should have a minimum resolution of 0.25V. Refer to
Section 6.0
“AC/DC
Characteristics
Timing
Requirements for Program/Verify Test Mode” for
additional hardware parameters.
This document includes the programming specifications
for the following devices:
• PIC18F2515
• PIC18F4515
• PIC18F2525
• PIC18F4525
• PIC18F2585
• PIC18F4585
• PIC18F2610
• PIC18F4610
• PIC18F2620
• PIC18F4620
• PIC18F2680
• PIC18F4680
2.0
2.1.1
LOW-VOLTAGE ICSP
PROGRAMMING
In Low-Voltage ICSP mode, PIC18FX5X5/X6X0
devices can be programmed using a VDD source in the
operating range. The MCLR/VPP does not have to be
brought to a different voltage, but can instead be left at
the normal operating voltage. Refer to Section 6.0
“AC/DC Characteristics Timing Requirements for
Program/Verify Test Mode” for additional hardware
parameters.
PROGRAMMING OVERVIEW
OF THE PIC18FX5X5/X6X0
PIC18FX5X5/X6X0 devices can be programmed using
either the high-voltage In-Circuit Serial ProgrammingTM
(ICSPTM) method, or the low-voltage ICSP method.
Both methods can be done with the device in the users’
system. The low-voltage ICSP method is slightly
different than the high-voltage method and these differences are noted where applicable. This programming
specification applies to PIC18FX5X5/X6X0 devices in
all package types.
TABLE 2-1:
Hardware Requirements
2.2
Pin Diagrams
The pin diagrams for the PIC18FX5X5/X6X0 family are
shown in Figure 2-1 and Figure 2-2.
PIN DESCRIPTIONS (DURING PROGRAMMING): PIC18FX5X5/X6X0
During Programming
Pin Name
Pin Name
Pin Type
Pin Description
MCLR/VPP/RE3
VPP
P
Programming Enable
VDD(2)
VDD
P
Power Supply
VSS(2)
VSS
P
Ground
RB5
PGM
I
Low-Voltage ICSP Input when LVP Configuration bit equals ‘1’(1)
RB6
PGC
I
Serial Clock
RB7
PGD
I/O
Serial Data
Legend: I = Input, O = Output, P = Power
Note 1: See Section 5.3 “Single-Supply ICSP Programming” for more detail.
2: All power supply (VDD) and ground (VSS) must be connected.
 2004 Microchip Technology Inc.
DS39622A-page 1
PIC18FX5X5/X6X0
FIGURE 2-1:
PIC18FX5X5/X6X0 FAMILY PIN DIAGRAMS
28-Pin SDIP, SOIC (300 MIL)
Note 1:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
28
27
26
25
24
23
22
21
20
19
18
17
16
15
PIC18F2515/2525
PIC18F4610/4620
MCLR/VPP/RE3
RA0/AN0
RA1/AN1
RA2/AN2/VREF-/CVREF
RA3/AN3/VREF+
RA4/T0CKI/C1OUT
RA5/AN4/SS/LVDIN/C2OUT
VSS
OSC1/CLKI/RA7
OSC2/CLKO/RA6
RC0/T1OSO/T13CKI
RC1/T1OSI/CCP2(1)
RC2/CCP1
RC3/SCK/SCL
RB7/KBI3/PGD
RB6/KBI2/PGC
RB5/KBI1/PGM
RB4/KBI0/AN11
RB3/CCP2(1)/AN9
RB2/INT2/AN8
RB1/INT1/AN10
RB0/INT0/AN12
VDD
VSS
RC7/RX/DT
RC6/TX/CK
RC5/SDO
RC4/SDI/SDA
Pin feature is dependent on device configuration.
MCLR/VPP/RE3
RA0/AN0
RA1/AN1
RA2/AN2/VREF-/CVREF
RA3/AN3/VREF+
RA4/T0CKI/C1OUT
RA5/AN4/SS/LVDIN/C2OUT
RE0/RD/AN5
RE1/WR/AN6
RE2/CS/AN7
VDD
VSS
OSC1/CLKI/RA7
OSC2/CLKO/RA6
RC0/T1OSO/T13CKI
RC1/T1OSI/CCP2(1)
RC2/CCP1/P1A
RC3/SCK/SCL
RD0/PSP0
RD1/PSP1
Note 1:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
PIC18F4515/4525
PIC18F4610/4620
40-Pin PDIP (600 MIL)
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
RB7/KBI3/PGD
RB6/KBI2/PGC
RB5/KBI1/PGM
RB4/KBI0/AN11
RB3/CCP2(1)/AN9
RB2/INT2/AN8
RB1/INT1/AN10
RB0/INT0/FLT0/AN12
VDD
VSS
RD7/PSP7/P1D
RD6/PSP6/P1C
RD5/PSP5/P1B
RD4/PSP4
RC7/RX/DT
RC6/TX/CK
RC5/SDO
RC4/SDI/SDA
RD3/PSP3
RD2/PSP2
Pin feature is dependent on device configuration.
DS39622A-page 2
 2004 Microchip Technology Inc.
PIC18FX5X5/X6X0
PIC18FX5X5/X6X0 FAMILY PIN DIAGRAMS
RC6/TX/CK
RC5/SDO
RC4/SDI/SDA
RD3/PSP3
RD2/PSP2
RD1/PSP1
RD0/PSP0
RC3/SCK/SCL
RC2/CCP1/P1A
RC1/T1OSI/CCP2(1)
NC
FIGURE 2-2:
44
43
42
41
40
39
38
37
36
35
34
44-Pin TQFP
12
13
14
15
16
17
18
19
20
21
22
PIC18F4515/4525
PIC18F4610/4620
33
32
31
30
29
28
27
26
25
24
23
NC
RC0/T1OSO/T13CKI
OSC2/CLKO/RA6
OSC1/CLKI/RA7
VSS
VDD
RE2/CS/AN7
RE1/WR/AN6
RE0/RD/AN5
RA5/AN4/SS/LVDIN/C2OUT
RA4/T0CKI/C1OUT
Pin feature is dependent on device configuration.
RC6/TX/CK
RC5/SDO
RC4/SDI/SDA
RD3/PSP3
RD2/PSP2
RD1/PSP1
RD0/PSP0
RC3/SCK/SCL
RC2/CCP1/P1A
RC1/T1OSI/CCP2(1)
RC0/T1OSO/T13CKI
Note 1:
1
2
3
4
5
6
7
8
9
10
11
NC
NC
RB4/KBI0/AN11
RB5/KBI1/PGM
RB6/KBI2/PGC
RB7/KBI3/PGD
MCLR/VPP/RE3
RA0/AN0
RA1/AN1
RA2/AN2/VREF-/CVREFRA3/AN3/VREF+
RC7/RX/DT
RD4/PSP4
RD5/PSP5/P1B
RD6/PSP6/P1C
RD7/PSP7/P1D
VSS
VDD
RB0/INT0/FLT0/AN12
RB1/INT1/AN10
RB2/INT2/AN8
RB3/CCP2(1)/AN9
44
43
42
41
40
39
38
37
36
35
34
44-Pin QFN
Note 1:
33
32
31
30
29
28
27
26
25
24
23
OSC2/CLKO/RA6
OSC1/CLKI/RA7
VSS
VSS
VDD
VDD
RE2/CS/AN7
RE1/WR/AN6
RE0/RD/AN5
RA5/AN4/SS/LVDIN/C2OUT
RA4/T0CKI/C1OUT
12
13
14
15
16
17
18
19
20
21
22
1
2
3
4
5 PIC18F4515/4525
6
7 PIC18F4610/4620
8
9
10
11
RB3/CCP2(1)/AN9
NC
RB4/KBI0/AN11
RB5/KBI1/PGM
RB6/KBI2/PGC
RB7/KBI3/PGD
MCLR/VPP/RE3
RA0/AN0
RA1/AN1
RA2/AN2/VREF-/CVREFRA3/AN3/VREF+
RC7/RX/DT
RD4/PSP4
RD5/PSP5/P1B
RD6/PSP6/P1C
RD7/PSP7/P1D
VSS
VDD
VDD
RB0/INT0/FLT0/AN12
RB1/INT1/AN10
RB2/INT2/AN8
Pin feature is dependent on device configuration.
 2004 Microchip Technology Inc.
DS39622A-page 3
PIC18FX5X5/X6X0
FIGURE 2-3:
PIC18FX585/X680 FAMILY PIN DIAGRAMS
MCLR/VPP/RE3
RA0/AN0
RA1/AN1
RA2/AN2/VREFRA3/AN3/VREF+
RA4/T0CKI
RA5/AN4/SS/LVDIN
VSS
OSC1/CLKI/RA7
OSC2/CLKO/RA6
RC0/T1OSO/T13CKI
RC1/T1OSI
RC2/CCP1
RC3/SCK/SCL
1
2
3
4
5
6
7
8
9
10
11
12
13
14
PIC18F2585
PIC18F2680
28-Pin SDIP, SOIC (300 MIL)
28
27
26
25
24
23
22
21
20
19
18
17
16
15
RB7/KBI3/PGD
RB6/KBI2/PGC
RB5/KBI1/PGM
RB4/KBI0/AN9
RB3/CANRX
RB2/INT2/CANTX
RB1/INT1/AN8
RB0/INT0/AN10
VDD
VSS
RC7/RX/DT
RC6/TX/CK
RC5/SDO
RC4/SDI/SDA
MCLR/VPP/RE3
RA0/AN0/CVREF
RA1/AN1
RA2/AN2/VREFRA3/AN3/VREF+
RA4/T0CKI
RA5/AN4/SS/LVDIN
RE0/RD/AN5
RE1/WR/AN6/C1OUT
RE2/CS/AN7/C2OUT
VDD
VSS
OSC1/CLKI/RA7
OSC2/CLKO/RA6
RC0/T1OSO/T13CKI
RC1/T1OSI
RC2/CCP1
RC3/SCK/SCL
RD0/PSP0/C1INB
RD1/PSP1/C1INA
DS39622A-page 4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
PIC18F4585
PIC18F4680
40-Pin PDIP (600 MIL)
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
RB7/KBI3/PGD
RB6/KBI2/PGC
RB5/KBI1/PGM
RB4/KBI0/AN9
RB3/CANRX
RB2/INT2/CANTX
RB1/INT1/AN8
RB0/INT0/FLT0/AN10
VDD
VSS
RD7/PSP7/P2D
RD6/PSP6/P2C
RD5/PSP5/P2B
RD4/PSP4/CCP2/P2A
RC7/RX/DT
RC6/TX/CK
RC5/SDO
RC4/SDI/SDA
RD3/PSP3/C2INA
RD2/PSP2/C2INB
 2004 Microchip Technology Inc.
PIC18FX5X5/X6X0
PIC18FX585/X680 FAMILY PIN DIAGRAMS
44
43
42
41
40
39
38
37
36
35
34
44-Pin QFN
RC6/TX/CK
RC5/SDO
RC4/SDI/SDA
RD3/PSP3/C2INA
RD2/PSP2/C2INB
RD1/PSP1/C1INA
RD0/PSP0/C1INB
RC3/SCK/SCL
RC2/CCP1
RC1/T1OSI
RC0/T1OSO/T13CKI
FIGURE 2-4:
PIC18F4585
PIC18F4680
33
32
31
30
29
28
27
26
25
24
23
12
13
14
15
16
17
18
19
20
21
22
1
2
3
4
5
6
7
8
9
10
11
OSC2/CLKO/RA6
OSC1/CLKI/RA7
VSS
VSS
VDD
AVDD
E2/CS/AN7/C2OUT
RE1/WR/AN6/C1OUT
RE0/RD/AN5
RA5/AN4/SS/LVDIN
RA4/T0CKI
44
43
42
41
40
39
38
37
36
35
34
44-Pin TQFP
RC6/TX/CK
RC5/SDO
RC4/SDI/SDA
RD3/PSP3/C2INA
RD2/PSP2/C2INB
RD1/PSP1/C1INA
RD0/PSP0/C1INB
RC3/SCK/SCL
RC2/CCP1
RC1/T1OSI
NC
RB3/CANRX
NC
RB4/KBI0/AN9
RB5/KBI1/PGM
RB6/KBI2/PGC
RB7/KBI3/PGD
MCLR/VPP/RE3
RA0/AN0/CVREFRA1/AN1
RA2/AN2/VREFRA3/AN3/VREF+
RC7/RX/DT
RD4/PSP4/CCP2/P2A
RD5/PSP5/P2B
RD6/PSP6/P2C
RD7/PSP7/P2D
VSS
VDD
VDD
RB0/INT0/FLT0/AN10
RB1/INT1/AN8
RB2/INT2/CANTX
PIC18F4585
PIC18F4680
33
32
31
30
29
28
27
26
25
24
23
12
13
14
15
16
17
18
19
20
21
22
1
2
3
4
5
6
7
8
9
10
11
NC
RC0/T1OSO/T13CKI
OSC2/CLKO/RA6
OSC1/CLKI/RA7
VSS
VDD
RE2/CS/AN7/C2OUT
RE1/WR/AN6/C1OUT
RE0/RD/AN5
RA5/AN4/SS/LVDIN
RA4/T0CKI
NC
NC
RB4/KBI0/AN9
RB5/KBI1/PGM
RB6/KBI2/PGC
RB7/KBI3/PGD
MCLR/VPP/RE3
RA0/AN0/CVREF
RA1/AN1
RA2/AN2/VREFRA3/AN3/VREF+
RC7/RX/DT
RD4/PSP4/CCP2/P2A
RD5/PSP5/P2B
RD6/PSP6/P2C
RD7/PSP7/P2D
VSS
VDD
RB0/INT0/FLT0/AN10
RB1/INT1/AN8
RB2/INT2/CANTX
RB3/CANRX
 2004 Microchip Technology Inc.
DS39622A-page 5
PIC18FX5X5/X6X0
2.3
Memory Map
The code memory space extends from 0000h to
0FFFFh (64 Kbytes) in four 16-Kbyte blocks.
Addresses 0000h through 07FFh, however, define a
“Boot Block” region that is treated separately from
Block 0. All of these blocks define code protection
boundaries within the code memory space.
TABLE 2-2:
Device
IMPLEMENTATION OF CODE
MEMORY
Code Memory Size (Bytes)
PIC18F2515
PIC18F2525
PIC18F2585
PIC18F4515
000000h-00BFFFh (48K)
PIC18F4525
PIC18F4585
PIC18F2610
PIC18F2620
PIC18F2680
PIC18F4610
000000h-00FFFFh (64K)
PIC18F4620
PIC18F4680
FIGURE 2-5:
MEMORY MAP AND THE CODE MEMORY SPACE
FOR PIC18FX5X5/X6X0 DEVICES
000000h
Code Memory
01FFFFh
MEMORY SIZE/DEVICE
Unimplemented
Read as ‘0’
64 Kbytes
(PIC18FX6X0)
48 Kbytes
(PIC18FX5X5)
Address
Range
Boot Block
Boot Block
000000h
0007FFh
Block 0
Block 0
000800h
003FFFh
Block 1
Block 1
004000h
007FFFh
008000h
Block 2
Block 2
00BFFFh
00C000h
1FFFFFh
Block 3
00FFFFh
Configuration
and ID
Space
Unimplemented
Read ‘0’s
Unimplemented
Read ‘0’s
01FFFFh
3FFFFFh
Note:
Sizes of memory areas are not to scale.
DS39622A-page 6
 2004 Microchip Technology Inc.
PIC18FX5X5/X6X0
In addition to the code memory space, there are three
blocks in the configuration and ID space that are accessible to the user through table reads and table writes.
Their locations in the memory map are shown in
Figure 2-6.
Users may store identification information (ID) in eight
ID registers. These ID registers are mapped in
addresses 200000h through 200007h. The ID locations
read out normally, even after code protection is applied.
Locations 300000h through 30000Dh are reserved for
the configuration bits. These bits select various device
options and are described in Section 5.0 “Configuration Word”. These configuration bits read out normally,
even after code protection.
Locations 3FFFFEh and 3FFFFFh are reserved for the
device ID bits. These bits may be used by the programmer to identify what device type is being programmed
and are described in Section 5.0 “Configuration
Word”. These device ID bits read out normally, even
after code protection.
FIGURE 2-6:
2.3.1
MEMORY ADDRESS POINTER
Memory in the address space, 0000000h to 3FFFFFh,
is addressed via the Table Pointer register, which is
comprised of three Pointer registers:
• TBLPTRU, at RAM address 0FF8h
• TBLPTRH, at RAM address 0FF7h
• TBLPTRL, at RAM address 0FF6h
TBLPTRU
TBLPTRH
TBLPTRL
Addr[21:16]
Addr[15:8]
Addr[7:0]
The 4-bit command, ‘0000’ (Core Instruction), is used
to load the Table Pointer prior to using many read or
write operations.
CONFIGURATION AND ID LOCATIONS FOR PIC18FX5X5/X6X0 DEVICES
000000h
Code Memory
01FFFFh
Unimplemented
Read as ‘0’
1FFFFFh
Configuration
and ID
Space
2FFFFFh
ID Location 1
200000h
ID Location 2
200001h
ID Location 3
200002h
ID Location 4
200003h
ID Location 5
200004h
ID Location 6
200005h
ID Location 7
200006h
ID Location 8
200007h
CONFIG1L
300000h
CONFIG1H
300001h
CONFIG2L
300002h
CONFIG2H
300003h
CONFIG3L
300004h
CONFIG3H
300005h
CONFIG4L
300006h
CONFIG4H
300007h
CONFIG5L
300008h
CONFIG5H
300009h
CONFIG6L
30000Ah
CONFIG6H
30000Bh
CONFIG7L
30000Ch
CONFIG7H
30000Dh
Device ID1
3FFFFEh
Device ID2
3FFFFFh
3FFFFFh
Note:
Sizes of memory areas are not to scale.
 2004 Microchip Technology Inc.
DS39622A-page 7
PIC18FX5X5/X6X0
2.4
High-Level Overview of the
Programming Process
FIGURE 2-8:
Figure 2-8 shows the high-level overview of the
programming process. First, a bulk erase is performed.
Next, the code memory, ID locations and data
EEPROM (PIC18FXX2X and PIC18FXX8X only) are
programmed. These memories are then verified to
ensure that programming was successful. If no errors
are detected, the configuration bits are then
programmed and verified.
2.5
HIGH-LEVEL
PROGRAMMING FLOW
Start
Perform Bulk
Erase
Program Memory
Entering High-Voltage ICSP
Program/Verify Mode
Program IDs
The High-Voltage ICSP Program/Verify mode is
entered by holding PGC and PGD low and then raising
MCLR/VPP to VIHH (high voltage). Once in this mode,
the code memory, data EEPROM (PIC18FXX2X and
PIC18FXX8X only), ID locations and configuration bits
can be accessed and programmed in serial fashion.
Program Data EE
(PIC18FXX2X and
PIC18FXX8X only)
Verify Program
The sequence that enters the device into the Program/
Verify mode places all unused I/Os in the high-impedance
state.
Verify IDs
2.5.1
ENTERING LOW-VOLTAGE ICSP
PROGRAM/VERIFY MODE
Verify Data
When the LVP configuration bit is ‘1’ (see Section 5.3
“Single-Supply ICSP Programming”), the LowVoltage ICSP mode is enabled. Low-Voltage ICSP
Program/Verify mode is entered by holding PGC and
PGD low, placing a logic high on PGM and then raising
MCLR/VPP to VIH. In this mode, the RB5/PGM pin is
dedicated to the programming function and ceases to
be a general purpose I/O pin.
Program
Configuration Bits
Verify
Configuration Bits
The sequence that enters the device into the Program/
Verify mode places all unused I/Os in the high-impedance
state.
FIGURE 2-7:
ENTERING HIGH-VOLTAGE
PROGRAM/VERIFY MODE
P13
Done
FIGURE 2-9:
P15
P12
P1
D110
ENTERING LOW-VOLTAGE
PROGRAM/VERIFY MODE
P12
VIH
MCLR/VPP
MCLR/VPP
VDD
VIH
VDD
PGM
PGD
PGD
PGC
PGC
PGD = Input
DS39622A-page 8
PGD = Input
 2004 Microchip Technology Inc.
PIC18FX5X5/X6X0
2.6
TABLE 2-3:
Serial Program/Verify Operation
The PGC pin is used as a clock input pin and the PGD
pin is used for entering command bits and data input/
output during serial operation. Commands and data are
transmitted on the rising edge of PGC, latched on the
falling edge of PGC and are Least Significant bit (LSb)
first.
COMMANDS FOR
PROGRAMMING
4-Bit
Command
Description
Core Instruction
(Shift in16-bit instruction)
0000
Shift out TABLAT register
0010
Table Read
1000
All instructions are 20 bits, consisting of a leading 4-bit
command followed by a 16-bit operand, which depends
on the type of command being executed. To input a
command, PGC is cycled four times. The commands
needed for programming and verification are shown in
Table 2-3.
Table Read, post-increment
1001
Table Read, post-decrement
1010
Table Read, pre-increment
1011
Table Write
1100
Table Write, post-increment by 2
1101
Depending on the 4-bit command, the 16-bit operand
represents 16 bits of input data or 8 bits of input data
and 8 bits of output data.
Table Write, start programming,
post-increment by 2
1110
Table Write, start programming
1111
2.6.1
4-BIT COMMANDS
Throughout this specification, commands and data are
presented as illustrated in Table 2-4. The 4-bit command is shown MSb first. The command operand, or
“Data Payload”, is shown <MSB><LSB>. Figure 2-10
demonstrates how to serially present a 20-bit
command/operand to the device.
2.6.2
TABLE 2-4:
CORE INSTRUCTION
4-Bit
Command
Data
Payload
1101
3C 40
The core instruction passes a 16-bit instruction to the
CPU core for execution. This is needed to setup
registers as appropriate for use with other commands.
FIGURE 2-10:
SAMPLE COMMAND
SEQUENCE
Core Instruction
Table Write,
post-increment by 2
TABLE WRITE, POST-INCREMENT TIMING (1101)
P2
1
2
3
4
P2A
P2B
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
2
1
3
4
PGC
P5A
P5
P4
P3
PGD
1
0
1
1
0
0
0
0
4-bit Command
0
0
0
1
0
0
0
4
C
16-bit Data Payload
1
1
1
1
0
0
n
n
n
n
3
Fetch Next 4-bit Command
PGD = Input
 2004 Microchip Technology Inc.
DS39622A-page 9
PIC18FX5X5/X6X0
3.0
DEVICE PROGRAMMING
The code sequence to erase the entire device is shown
in Table 3-2 and the flow chart is shown in Figure 3-1.
Programming includes the ability to erase or write the
various memory regions within the device.
In all cases except High-Voltage ICSP Bulk Erase, the
EECON1 register must be configured in order to
operate on a particular memory region.
When using the EECON1 register to act on code memory, the EEPGD bit must be set (EECON1<7> = 1) and
the CFGS bit must be cleared (EECON1<6> = 0). The
WREN bit must be set (EECON1<2> = 1) to enable
writes of any sort (e.g., erases) and this must be done
prior to initiating a write sequence. The FREE bit must
be set (EECON1<4> = 1) in order to erase the program
space being pointed to by the Table Pointer. The erase
or write sequence is initiated by setting the WR bit
(EECON1<1> = 1). It is strongly recommended that the
WREN bit only be set immediately prior to a program
erase.
3.1
ICSP Erase
3.1.1
HIGH-VOLTAGE ICSP BULK ERASE
Erasing code or data EEPROM is accomplished by
configuring two Bulk Erase Control registers located at
3C0004h and 3C0005h. Code memory may be erased
portions at a time, or the user may erase the entire
device in one action. “Bulk Erase” operations will also
clear any code-protect settings associated with the
memory block erased. Erase options are detailed in
Table 3-1. If data EEPROM is code-protected
(CPD = 0), the user must request an erase of data
EEPROM (e.g., 0X84h as shown in Table 3-1, where X
defines the block to be erased).
TABLE 3-1:
BULK ERASE OPTIONS
Description
A bulk erase is the only way to reprogram
code-protect bits from an on-state to an
off-state.
TABLE 3-2:
BULK ERASE COMMAND
SEQUENCE
4-Bit
Data
Command Payload
0000
0000
0000
0000
0000
0000
1100
0000
0000
0000
0000
0000
0000
1100
0E
6E
0E
6E
0E
6E
0F
0E
6E
0E
6E
0E
6E
87
0000
0000
00 00
00 00
FIGURE 3-1:
3C
F8
00
F7
05
F6
0F
3C
F8
00
F7
04
F6
87
Core Instruction
MOVLW 3Ch
MOVWF TBLPTRU
MOVLW 00h
MOVWF TBLPTRH
MOVLW 05h
MOVWF TBLPTRL
Write 0Fh to 3C0005h
MOVLW 3Ch
MOVWF TBLPTRU
MOVLW 00h
MOVWF TBLPTRH
MOVLW 04h
MOVWF TBLPTRL
Write 8787h TO 3C0004h
to erase entire
device.
NOP
Hold PGD low until
erase completes.
BULK ERASE FLOW
Start
Data
Chip Erase
0F87h
Erase Data EEPROM(1)
0084h
Erase Boot Block
0081h
Erase Config Bits
0082h
Erase Block 0
0180h
Erase Block 1
0280h
Erase Block 2
0480h
Erase Block 3
0880h
Note 1:
Note:
PIC18FXX2X and PIC18FXX8X only.
Write 0F0Fh
to 3C0005h
Write 8787h to
3C0004h to Erase
Entire Device
Delay P11+P10
Time
Done
The actual Bulk Erase function is a self-timed operation. Once the erase has started (falling edge of the 4th
PGC after the NOP command), serial execution will
cease until the erase completes (parameter P11).
During this time, PGC may continue to toggle but PGD
must be held low.
DS39622A-page 10
 2004 Microchip Technology Inc.
PIC18FX5X5/X6X0
FIGURE 3-2:
BULK ERASE TIMING
P10
1
2
3
4
2
1
15 16
1
2
3
4
1
2
15 16
1
2
3
4
1
2
n
n
PGC
PGD
0
0
1
1
4-bit Command
P5
P5A
P5
1
1
0
0
16-bit
Data Payload
0
0
0
0
4-bit Command
P5A
0
0
0
0
16-bit
Data Payload
P11
0
0
0
0
4-bit Command
Erase Time
16-bit
Data Payload
PGD = Input
3.1.2
LOW-VOLTAGE ICSP BULK ERASE
When using low-voltage ICSP, the part must be supplied by the voltage specified in parameter #D111 if a
Bulk Erase is to be executed. All other Bulk Erase
details as described above apply.
If it is determined that a program memory erase must
be performed at a supply voltage below the Bulk Erase
limit, refer to the erase methodology described in
Sections 3.1.3 and 3.2.1.
If it is determined that a data EEPROM (PIC18FXX2X
and PIC18FXX8X only) erase must be performed at a
supply voltage below the Bulk Erase limit, follow the
methodology described in Section 3.3 “Data
EEPROM
Programming
(PIC18FXX2X
and
PIC18FXX8X only)” and write ‘1’s to the array.
3.1.3
ICSP ROW ERASE
Regardless of whether high or low-voltage ICSP is
used, it is possible to erase one row (64 bytes of data),
provided the block is not code or write-protected. Rows
are located at static boundaries beginning at program
memory address 000000h, extending to the internal
program memory limit (see Section 2.3 “Memory
Map”).
The Row Erase duration is externally timed and is
controlled by PGC. After the WR bit in EECON1 is set,
a NOP is issued, where the 4th PGC is held high for the
duration of the programming time, P9.
After PGC is brought low, the programming sequence
is terminated. PGC must be held low for the time specified by parameter P10 to allow high-voltage discharge
of the memory array.
The code sequence to Row Erase a PIC18FX5X5/X6X0
device is shown in Table 3-3. The flow chart shown in
Figure 3-3 depicts the logic necessary to completely
erase a PIC18FX5X5/X6X0 device. The timing diagram
that details the “Start Programming” command and
parameters P9 and P10 is shown in Figure 3-5.
Note:
 2004 Microchip Technology Inc.
The TBLPTR register can point at any byte
within the row(s) intended for erase.
DS39622A-page 11
PIC18FX5X5/X6X0
TABLE 3-3:
ERASE CODE MEMORY CODE SEQUENCE
4-bit
Command
Data Payload
Core Instruction
Step 1: Direct access to code memory and enable writes.
0000
0000
0000
8E A6
9C A6
84 A6
BSF
BCF
BSF
EECON1, EEPGD
EECON1, CFGS
EECON1, WREN
CLRF
CLRF
CLRF
TBLPTRU
TBLPTRH
TBLPTRL
Step 2: Point to first row in code memory.
0000
0000
0000
6A F8
6A F7
6A F6
Step 3: Enable erase and erase single row.
0000
0000
0000
88 A6
82 A6
00 00
BSF
EECON1, FREE
BSF
EECON1, WR
NOP - hold PGC high for time P9.
Step 4: Repeat step 3, with address pointer incremented by 64 until all rows are erased.
FIGURE 3-3:
SINGLE ROW ERASE CODE MEMORY FLOW
Start
Addr = 0
Configure
Device for
Row Erases
Start Erase Sequence
and Hold PGC High
until Done
Addr = Addr + 64
Delay P9 + P10
Time for Erase
to Occur
No
All
Rows
Done?
Yes
Done
DS39622A-page 12
 2004 Microchip Technology Inc.
PIC18FX5X5/X6X0
3.2
Code Memory Programming
Programming code memory is accomplished by first
loading data into the write buffer and then initiating a
programming sequence. The write buffer is 64 bytes in
size and can be mapped to any 64-byte area in code
memory beginning at location 000000h. The actual
memory write sequence takes the contents of this
buffer and programs the 64-byte code memory region
that contains the Table Pointer.
The programming duration is externally timed and is
controlled by PGC. After a “Start Programming” command is issued (4-bit command, ‘1111’), a NOP is
issued, where the 4th PGC is held high for the duration
of the programming time, P9.
TABLE 3-4:
After PGC is brought low, the programming sequence
is terminated. PGC must be held low for the time specified by parameter P10 to allow high-voltage discharge
of the memory array.
The code sequence to program a PIC18FX5X5/X6X0
device is shown in Table 3-4. The flow chart shown in
Figure 3-4 depicts the logic necessary to completely
write a PIC18FX5X5/X6X0 device. The timing diagram
that details the “Start Programming” command and
parameters P9 and P10 is shown in Figure 3-5.
Note:
The TBLPTR register must point to the
same 64-byte region when initiating the
programming sequence as it did when the
write buffers were loaded.
WRITE CODE MEMORY CODE SEQUENCE
4-bit
Command
Data Payload
Core Instruction
Step 1: Direct access to code memory and enable writes.
0000
0000
8E A6
9C A6
BSF
BCF
EECON1, EEPGD
EECON1, CFGS
MOVLW
MOVWF
MOVLW
MOVWF
MOVLW
MOVWF
<Addr[21:16]>
TBLPTRU
<Addr[15:8]>
TBLPTRH
<Addr[7:0]>
TBLPTRL
Step 2: Load write buffer.
0000
0000
0000
0000
0000
0000
0E
6E
0E
6E
0E
6E
<Addr[21:16]>
F8
<Addr[15:8]>
F7
<Addr[7:0]>
F6
Step 3: Repeat for all but the last two bytes.
1101
<MSB><LSB>
Write 2 bytes and post-increment address by 2
Step 4: Load write buffer for last two bytes.
1111
0000
<MSB><LSB>
00 00
Write 2 bytes and start programming
NOP - hold PGC high for time P9
To continue writing data, repeat steps 2 through 4, where the address pointer is incremented by 2 at each iteration of the loop.
 2004 Microchip Technology Inc.
DS39622A-page 13
PIC18FX5X5/X6X0
FIGURE 3-4:
PROGRAM CODE MEMORY FLOW
Start
N=1
LoopCount = 0
Configure
Device for
Writes
Load 2 Bytes
to Write
Buffer at <Addr>
N=N+1
All
Bytes
Written?
No
Yes
N=1
LoopCount =
LoopCount + 1
Start Write Sequence
and Hold PGC
High until Done
Delay P9+P10 Time
for Write to Occur
All
Locations
Done?
No
Yes
Done
FIGURE 3-5:
TABLE WRITE AND START PROGRAMMING INSTRUCTION TIMING (1111)
P10
1
2
3
4
1
3
2
4
5
6
15
16
1
2
3
4
PGC
2
3
P5A
P5
PGD
1
P9
1
1
1
1
4-bit Command
n
n
n
n
n
n
n
n
16-bit Data Payload
0
0
0
0
4-bit Command
0
Programming Time
0
0
16-bit
Data Payload
PGD = Input
DS39622A-page 14
 2004 Microchip Technology Inc.
PIC18FX5X5/X6X0
3.2.1
MODIFYING CODE MEMORY
The previous programming example assumed that the
device has been bulk erased prior to programming (see
Section 3.1.1 “High-Voltage ICSP Bulk Erase”). It
may be the case, however, that the user wishes to
modify only a section of an already programmed
device.
TABLE 3-5:
In this case, 64 bytes must be read out of code memory
(as described in Section 4.2 “Verify Code Memory
and ID Locations”) and buffered. Modifications can be
made on this buffer. Then, the 64-byte block of code
memory that was read out must be erased and
rewritten with the modified data.
The WREN bit must be set if the WR bit in EECON1 is
used to initiate a write sequence.
MODIFYING CODE MEMORY
4-bit
Command
Data Payload
Core Instruction
Step 1: Direct access to code memory.
Step 2: Read and modify code memory (see Section 4.1 “Read Code Memory, ID Locations and Configuration Bits”).
0000
0000
8E A6
9C A6
BSF
BCF
EECON1, EEPGD
EECON1, CFGS
Step 3: Set the Table Pointer for the block to be erased.
0000
0000
0000
0000
0000
0000
0E
6E
0E
6E
0E
6E
<Addr[21:16]>
F8
<Addr[8:15]>
F7
<Addr[7:0]>
F6
MOVLW
MOVWF
MOVLW
MOVWF
MOVLW
MOVWF
<Addr[21:16]>
TBLPTRU
<Addr[8:15]>
TBLPTRH
<Addr[7:0]>
TBLPTRL
Step 4: Enable memory writes and setup an erase.
0000
0000
84 A6
88 A6
BSF
BSF
EECON1, WREN
EECON1, FREE
Step 5: Initiate erase.
0000
0000
82 A6
00 00
BSF
EECON1, WR
NOP - hold PGC high for time P9
Step 6: Wait for P10.
Step 7: Load write buffer. The correct bytes will be selected based on the Table Pointer.
0000
0000
0000
0000
0000
0000
1101
.
.
.
1111
0000
0E <Addr[21:16]>
6E F8
0E <Addr[8:15]>
6E F7
0E <Addr[7:0]>
6E F6
<MSB><LSB>
.
.
.
<MSB><LSB>
00 00
MOVLW
MOVWF
MOVLW
MOVWF
MOVLW
MOVWF
Write 2
<Addr[21:16]>
TBLPTRU
<Addr[8:15]>
TBLPTRH
<Addr[7:0]>
TBLPTRL
bytes and post-increment address by 2
Repeat 30 times
Write 2 bytes and start programming
NOP - hold PGC high for time P9
To continue modifying data, repeat Steps 2 through 7, where the address pointer is incremented by 64 at each iteration of the loop.
Step 8: Disable writes.
0000
94 A6
 2004 Microchip Technology Inc.
BCF
EECON1, WREN
DS39622A-page 15
PIC18FX5X5/X6X0
3.3
FIGURE 3-6:
Data EEPROM Programming
(PIC18FXX2X and
PIC18FXX8X only)
PROGRAM DATA FLOW
Start
Data EEPROM is accessed one byte at a time via an
address pointer (register pair EEADRH:EEADR) and a
data latch (EEDATA). Data EEPROM is written by
loading EEADRH:EEADR with the desired memory
location, EEDATA with the data to be written and initiating a memory write by appropriately configuring the
EECON1 register. A byte write automatically erases the
location and writes the new data (erase-before-write).
Set Address
Set Data
Enable Write
When using the EECON1 register to perform a data
EEPROM write, both the EEPGD and CFGS bits must
be cleared (EECON1<7:6> = 00). The WREN bit must
be set (EECON1<2> = 1) to enable writes of any sort
and this must be done prior to initiating a write
sequence. The write sequence is initiated by setting the
WR bit (EECON1<1> = 1).
Start Write
Sequence
Yes
The write begins on the falling edge of the 4th PGC
after the WR bit is set. It ends when the WR bit is
cleared by hardware.
No
Done
?
Yes
After the programming sequence terminates, PGC
must still be held low for the time specified by parameter P10 to allow high-voltage discharge of the memory
array.
FIGURE 3-7:
No
WR bit
Clear?
Done
DATA EEPROM WRITE TIMING
P10
1
2
3
4
1
2
1
15 16
2
PGC
P5A
P5
PGD
0
0
0
P11A
0
4-bit Command
n
16-bit Data
Payload
Poll WR bit, Repeat until Clear
(see below)
BSF EECON1, WR
n
PGD = Input
1
2
3
4
1
2
15 16
1
2
3
4
1
2
15 16
PGC
P5
P5
P5A
P5A
Poll WR bit
PGD
0
0
0
0
4-bit Command
0
MOVF EECON1, W, 0
PGD = Input
DS39622A-page 16
0
0
0
4-bit Command
MOVWF TABLAT
Shift Out Data
(see Figure 4-6)
PGD = Output
 2004 Microchip Technology Inc.
PIC18FX5X5/X6X0
TABLE 3-6:
PROGRAMMING DATA MEMORY
4-bit
Command
Data Payload
Core Instruction
Step 1: Direct access to data EEPROM.
0000
0000
9E A6
9C A6
BCF
BCF
EECON1, EEPGD
EECON1, CFGS
Step 2: Set the data EEPROM address pointer.
0000
0000
0000
0000
0E
6E
OE
6E
<Addr>
A9
<AddrH>
AA
MOVLW
MOVWF
MOVLW
MOVWF
<Addr>
EEADR
<AddrH>
EEADRH
MOVLW
MOVWF
<Data>
EEDATA
BSF
EECON1, WREN
BSF
EECON1, WR
Step 3: Load the data to be written.
0000
0000
0E <Data>
6E A8
Step 4: Enable memory writes.
0000
84 A6
Step 5: Initiate write.
0000
82 A6
Step 6: Poll WR bit, repeat until the bit is clear.
0000
0000
0000
0010
50 A6
6E F5
00 00
<MSB><LSB>
MOVF
EECON1, W, 0
MOVWF
TABLAT
NOP
Shift out data(1)
Step 7: Disable writes.
0000
94 A6
BCF
EECON1, WREN
Repeat steps 2 through 7 to write more data.
Note 1: See Figure 4-4 for details on shift out data timing.
 2004 Microchip Technology Inc.
DS39622A-page 17
PIC18FX5X5/X6X0
3.4
ID Location Programming
The ID locations are programmed much like the code
memory. The ID registers are mapped in addresses
200000h through 200007h. These locations read out
normally even after code protection.
Note:
Table 3-7 demonstrates the code sequence required to
write the ID locations.
In order to modify the ID locations, refer to the methodology described in Section 3.2.1 “Modifying Code
Memory”. As with code memory, the ID locations must
be erased before modified.
The user only needs to fill the first 8 bytes
of the write buffer in order to write the ID
locations.
TABLE 3-7:
WRITE ID SEQUENCE
4-bit
Command
Data Payload
Core Instruction
Step 1: Direct access to code memory and enable writes.
0000
0000
8E A6
9C A6
BSF
BCF
EECON1, EEPGD
EECON1, CFGS
Step 2: Load write buffer with 8 bytes and write.
0000
0000
0000
0000
0000
0000
1101
1101
1101
1111
0000
0E 20
6E F8
0E 00
6E F7
0E 00
6E F6
<MSB><LSB>
<MSB><LSB>
<MSB><LSB>
<MSB><LSB>
00 00
DS39622A-page 18
MOVLW
MOVWF
MOVLW
MOVWF
MOVLW
MOVWF
Write
Write
Write
Write
NOP -
20h
TBLPTRU
00h
TBLPTRH
00h
TBLPTRL
2 bytes and post-increment address by 2
2 bytes and post-increment address by 2
2 bytes and post-increment address by 2
2 bytes and start programming
hold PGC high for time P9
 2004 Microchip Technology Inc.
PIC18FX5X5/X6X0
3.5
Boot Block Programming
3.6
The code sequence detailed in Table 3-4 should be
used, except that the address data used in “Step 2” will
be in the range of 000000h to 0007FFh.
Configuration Bits Programming
Unlike code memory, the configuration bits are programmed a byte at a time. The “Table Write, Begin
Programming” 4-bit command (1111) is used, but only
8 bits of the following 16-bit payload will be written. The
LSB of the payload will be written to even addresses and
the MSB will be written to odd addresses. The code
sequence to program two consecutive configuration
locations is shown in Table 3-8.
Note:
TABLE 3-8:
4-bit
Command
The address must be explicitly written for
each byte programmed. The addresses
can not be incremented in this mode.
SET ADDRESS POINTER TO CONFIGURATION LOCATION
Data Payload
Core Instruction
Step 1: Enable writes and direct access to config memory.
0000
0000
8E A6
8C A6
BSF
BSF
EECON1, EEPGD
EECON1, CFGS
Step 2(1): Set Table Pointer for config byte to be written. Write even/odd addresses.
0000
0000
0000
0000
0000
0000
1111
0000
0000
0000
1111
0000
Note 1:
0E 30
6E F8
0E 00
6E F7
0E 00
6E F6
<MSB ignored><LSB>
00 00
0E 01
6E F6
<MSB><LSB ignored>
00 00
MOVLW 30h
MOVWF TBLPTRU
MOVLW 00h
MOVWF TBLPRTH
MOVLW 00h
MOVWF TBLPTRL
Load 2 bytes and start programming
NOP - hold PGC high for time P9
MOVLW 01h
MOVWF TBLPTRL
Load 2 bytes and start programming
NOP - hold PGC high for time P9
Enabling the write protection of configuration bits (WRTC = 0 in CONFIG6H) will prevent further writing of configuration
bits. Always write all the configuration bits before enabling the write protection for configuration bits.
FIGURE 3-8:
CONFIGURATION PROGRAMMING FLOW
Start
Start
Load Even
Configuration
Address
Load Odd
Configuration
Address
Program
LSB
Program
MSB
Delay P9 Time
for Write
Delay P9 Time
for Write
Done
Done
 2004 Microchip Technology Inc.
DS39622A-page 19
PIC18FX5X5/X6X0
4.0
READING THE DEVICE
4.1
Read Code Memory, ID Locations
and Configuration Bits
The 4-bit command is shifted in LSb first. The read is
executed during the next 8 clocks, then shifted out on
PGD during the last 8 clocks, LSb to MSb. A delay of
P6 must be introduced after the falling edge of the 8th
PGC of the operand to allow PGD to transition from an
input to an output. During this time, PGC must be held
low (see Figure 4-1). This operation also increments
the Table Pointer pointer by one, pointing to the next
byte in code memory for the next read.
Code memory is accessed one byte at a time via the
4-bit command, ‘1001’ (table read, post-increment).
The contents of memory pointed to by the Table Pointer
(TBLPTRU:TBLPTRH:TBLPTRL) is serially output on
PGD.
TABLE 4-1:
This technique will work to read any memory in the
000000h to 3FFFFFh address space, so it also applies
to the reading of the ID and Configuration registers.
READ CODE MEMORY SEQUENCE
4-bit
Command
Data Payload
Core Instruction
Step 1: Set Table Pointer.
0000
0000
0000
0000
0000
0000
0E
6E
0E
6E
0E
6E
<Addr[21:16]>
F8
<Addr[15:8]>
F7
<Addr[7:0]>
F6
MOVLW
MOVWF
MOVLW
MOVWF
MOVLW
MOVWF
Addr[21:16]
TBLPTRU
<Addr[15:8]>
TBLPTRH
<Addr[7:0]>
TBLPTRL
Step 2: Read memory and then shift out on PGD, LSb to MSb.
1001
00 00
FIGURE 4-1:
TBLRD *+
TABLE READ POST-INCREMENT INSTRUCTION TIMING (1001)
1
2
3
4
1
2
3
4
5
6
7
9
8
10
11
12
13
14
15
1
16
2
3
4
PGC
P5
P5A
P6
P14
PGD
1
0
0
LSb 1
1
2
3
4
5
Shift Data Out
PGD = Input
DS39622A-page 20
PGD = Output
6
MSb
n
n
n
n
Fetch Next 4-bit Command
PGD = Input
 2004 Microchip Technology Inc.
PIC18FX5X5/X6X0
4.2
Verify Code Memory and ID
Locations
The verify step involves reading back the code memory
space and comparing it against the copy held in the
programmer’s buffer. Memory reads occur a single byte
at a time, so two bytes must be read to compare
against the word in the programmer’s buffer. Refer to
Section 4.1 “Read Code Memory, ID Locations and
Configuration Bits” for implementation details of
reading code memory.
FIGURE 4-2:
The Table Pointer must be manually set to 200000h
(base address of the ID locations) once the code
memory has been verified. The post-increment feature
of the table read 4-bit command may not be used to
increment the Table Pointer beyond the code memory
space. In a 64-Kbyte device, for example, a postincrement read of address FFFFh will wrap the Table
Pointer back to 000000h, rather than point to
unimplemented address 010000h.
VERIFY CODE MEMORY FLOW
Start
Set Pointer = 0
Set Pointer = 200000h
Read Low Byte
with Post-increment
Read Low Byte
Read High Byte
with Post-increment
Increment
Pointer
Read High byte
Does
Word = Expect
Data?
Does
No
Word = Expect
Data?
Failure,
Report
Error
Yes
No
All
Code Memory
Verified?
Yes
No
Failure,
Report
Error
Yes
No
All
ID Locations
Verified?
Yes
Done
 2004 Microchip Technology Inc.
DS39622A-page 21
PIC18FX5X5/X6X0
4.3
FIGURE 4-3:
Verify Configuration Bits
READ DATA EEPROM
FLOW
A configuration address may be read and output on
PGD via the 4-bit command, ‘1001’. Configuration data
is read and written in a byte-wise fashion, so it is not
necessary to merge two bytes into a word prior to a
compare.
The result may then be immediately
compared to the appropriate configuration data in the
programmer’s memory for verification. Refer to
Section 4.1 “Read Code Memory, ID Locations and
Configuration Bits” for implementation details of
reading configuration data.
4.4
Start
Set
Address
Read
Byte
Read Data EEPROM Memory
Move to TABLAT
Data EEPROM is accessed one byte at a time via an
address pointer (register pair EEADRH:EEADR) and a
data latch (EEDATA). Data EEPROM is read by loading
EEADRH:EEADR with the desired memory location
and initiating a memory read by appropriately configuring the EECON1 register. The data will be loaded into
EEDATA, where it may be serially output on PGD via
the 4-bit command, ‘0010’ (Shift Out Data Holding register). A delay of P6 must be introduced after the falling
edge of the 8th PGC of the operand to allow PGD to
transition from an input to an output. During this time,
PGC must be held low (see Figure 4-4).
Shift Out Data
No
Done
?
Yes
Done
The command sequence to read a single byte of data
is shown in Table 4-2.
TABLE 4-2:
READ DATA EEPROM MEMORY
4-bit
Command
Data Payload
Core Instruction
Step 1: Direct access to data EEPROM.
0000
0000
9E A6
9C A6
BCF
BCF
EECON1, EEPGD
EECON1, CFGS
Step 2: Set the data EEPROM address pointer.
0000
0000
0000
0000
0E
6E
OE
6E
<Addr>
A9
<AddrH>
AA
MOVLW
MOVWF
MOVLW
MOVWF
<Addr>
EEADR
<AddrH>
EEADRH
BSF
EECON1, RD
Step 3: Initiate a memory read.
0000
80 A6
Step 4: Load data into the Serial Data Holding register.
0000
0000
0000
0010
Note 1:
50 A8
6E F5
00 00
<MSB><LSB>
MOVF
EEDATA, W, 0
MOVWF
TABLAT
NOP
Shift Out Data(1)
The <LSB> is undefined. The <MSB> is the data.
DS39622A-page 22
 2004 Microchip Technology Inc.
PIC18FX5X5/X6X0
FIGURE 4-4:
1
SHIFT OUT DATA HOLDING REGISTER TIMING (0010)
2
3
4
1
2
3
4
5
6
7
9
8
10
11
12
13
14
15
16
1
2
3
4
PGC
P5
P5A
P6
P14
PGD
0
1
0
LSb 1
0
2
3
4
5
6
Shift Data Out
PGD = Input
4.5
Verify Data EEPROM
A data EEPROM address may be read via a sequence
of core instructions (4-bit command, ‘0000’) and then
output on PGD via the 4-bit command, ‘0010’ (Shift Out
Data Holding register). The result may then be
immediately compared to the appropriate data in the
programmer’s memory for verification. Refer to
Section 4.4 “Read Data EEPROM Memory” for
implementation details of reading data EEPROM.
4.6
Blank Check
The term “Blank Check” means to verify that the device
has no programmed memory cells. All memories must
be verified: code memory, data EEPROM, ID locations
and configuration bits. The Device ID registers
(3FFFFEh:3FFFFFh) should be ignored.
n
MSb
n
n
Fetch Next 4-bit Command
PGD = Output
FIGURE 4-5:
n
PGD = Input
BLANK CHECK FLOW
Start
Blank Check Device
Is
Device
Blank?
Yes
Continue
No
Abort
A “blank” or “erased” memory cell will read as a ‘1’. So,
“Blank Checking” a device merely means to verify that
all bytes read as FFh except the configuration bits.
Unused (reserved) configuration bits will read ‘0’ (programmed). Refer to Table 5-2 for blank configuration
expect data for the various PIC18FX5X5/X6X0
devices.
Given that “Blank Checking” is merely code and data
EEPROM verification with FFh expect data, refer to
Section 4.4 “Read Data EEPROM Memory” and
Section 4.2 “Verify Code Memory and ID Locations”
for implementation details.
 2004 Microchip Technology Inc.
DS39622A-page 23
PIC18FX5X5/X6X0
5.0
CONFIGURATION WORD
5.3
The LVP bit in Configuration register, CONFIG4L,
enables
Single-Supply
(Low-Voltage)
ICSP
Programming. The LVP bit defaults to a ‘1’ from the
factory.
The PIC18FX5X5/X6X0 devices have several configuration words. These bits can be set or cleared to select
various device configurations. All other memory areas
should be programmed and verified prior to setting configuration words. These bits may be read out normally,
even after read or code-protected.
5.1
If Single-Supply Programming mode is not used, the
LVP bit can be programmed to a ‘0’ and RB5/PGM
becomes a digital I/O pin. However, the LVP bit may only
be programmed by entering the High-Voltage ICSP
mode, where MCLR/VPP is raised to VIHH. Once the LVP
bit is programmed to a ‘0’, only the High-Voltage ICSP
mode is available and only the High-Voltage ICSP mode
can be used to program the device.
ID Locations
A user may store identification information (ID) in eight
ID locations mapped in 200000h:200007h. It is recommended that the Most Significant nibble of each ID be
0Fh. In doing so, if the user code inadvertently tries to
execute from the ID space, the ID data will execute as
a NOP.
5.2
Note 1: The normal ICSP mode is always available, regardless of the state of the LVP
bit, by applying VIHH to the MCLR/VPP
pin.
Device ID Word
The device ID word for the PIC18FX5X5/X6X0 devices
is located at 3FFFFEh:3FFFFFh. These bits may be
used by the programmer to identify what device type is
being programmed and read out normally, even after
code or read-protected.
TABLE 5-1:
Single-Supply ICSP Programming
2: While in Low-Voltage ICSP mode, the
RB5 pin can no longer be used as a
general purpose I/O.
DEVICE ID VALUE
Device ID Value
Device
Note:
DEVID2
DEVID1
PIC18F2515
0Ch
111x xxxx
PIC18F2525
0Ch
110x xxxx
PIC18F2585
0Eh
111x xxxx
PIC18F4515
0Ch
011x xxxx
PIC18F4525
0Ch
010x xxxx
PIC18F4585
0Eh
101x xxxx
PIC18F2610
0Ch
101x xxxx
PIC18F2620
0Ch
100x xxxx
PIC18F2680
0Eh
110x xxxx
PIC18F4610
0Ch
001x xxxx
PIC18F4620
0Ch
000x xxxx
PIC18F4680
0Eh
100x xxxx
The ‘x’s in DEVID1 contain the device revision code.
DS39622A-page 24
 2004 Microchip Technology Inc.
PIC18FX5X5/X6X0
TABLE 5-2:
CONFIGURATION BITS AND DEVICE IDS
File Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
300001h
CONFIG1H
IESO
FCMEN
—
—
FOSC3
FOSC2
300002h
CONFIG2L
—
—
—
BORV1
BORV0
BOREN1
300003h
CONFIG2H
—
—
—
300005h
CONFIG3H MCLRE
Bit 1
Bit 0
Default/
Unprogrammed
Value
FOSC1
FOSC0
00-- 0111
BOREN0 PWRTEN
WDTPS3 WDTPS2 WDTPS1 WDTPS0
—
—
—
—
LPT1OSC PBADEN
---1 1111
WDTEN
---1 1111
CCP2MX
1--- -011
—(2)
1--- -01-(2)
300006h
CONFIG4L
DEBUG
XINST
—
—
—
LVP
—
STVREN
10-- -1-1
300008h
CONFIG5L
—
—
—
—
CP3
CP2
CP1
CP0
---- 1111
300009h
CONFIG5H
CPD
CPB
—
—
—
—
—
—
11-- ----
30000Ah
CONFIG6L
—
—
—
—
WRT3
WRT2
WRT1
WRT0
---- 1111
30000Bh
CONFIG6H
WRTD
WRTB
WRTC
—
—
—
—
—
111- ----
—
—
—
—
EBTR3
EBTR2
EBTR1
EBTR0
---- 1111
30000Dh CONFIG7H
—
EBTRB
—
—
—
—
—
—
3FFFFEh DEVID1(1)
DEV2
DEV1
DEV0
REV4
REV3
REV2
REV1
REV0
3FFFFFh DEVID2(1)
DEV10
DEV9
DEV8
DEV7
DEV6
DEV5
DEV4
DEV3
30000Ch CONFIG7L
Legend:
Note 1:
2:
3:
-1-- ---xxxx xxxx(1)
0000 1100(3)
0000 1110(2)
x = unknown, u = unchanged, - = unimplemented, q = value depends on condition.
Shaded cells are unimplemented, read as ‘0’.
DEVID registers are read-only and cannot be programmed by the user.
PIC18FXX8X devices only.
PIC18FXX1X and PIC18FXX2X devices only.
 2004 Microchip Technology Inc.
DS39622A-page 25
PIC18FX5X5/X6X0
5.4
Embedding Configuration Word
Information in the HEX File
To allow portability of code, a PIC18FX5X5/X6X0
programmer is required to read the configuration word
locations from the hex file. If configuration word
information is not present in the hex file, then a simple
warning message should be issued. Similarly, while
saving a hex file, all configuration word information
must be included. An option to not include the configuration word information may be provided. When
embedding configuration word information in the hex
file, it should start at address 300000h.
Microchip Technology Inc. feels strongly that this
feature is important for the benefit of the end customer.
5.5
Embedding Data EEPROM
Information In the HEX File
To allow portability of code, a PIC18FX5X5/X6X0
programmer is required to read the data EEPROM
information from the hex file. If data EEPROM information is not present, a simple warning message should
be issued. Similarly, when saving a hex file, all data
EEPROM information must be included. An option to
not include the data EEPROM information may be
provided. When embedding data EEPROM information
in the hex file, it should start at address F00000h.
5.6
Checksum Computation
The checksum is calculated by summing the following:
• The contents of all code memory locations
• The configuration word, appropriately masked
• ID locations
The Least Significant 16 bits of this sum are the
checksum.
Table 5-3 (pages 27 through 32) describes how to
calculate the checksum for each device.
Note:
The checksum calculation differs depending on the code-protect setting. Since the
code memory locations read out differently
depending on the code-protect setting, the
table describes how to manipulate the
actual code memory values to simulate
the values that would be read from a
protected device. When calculating a
checksum by reading a device, the entire
code memory can simply be read and
summed. The configuration word and ID
locations can always be read.
Microchip Technology Inc. believes that this feature is
important for the benefit of the end customer.
DS39622A-page 26
 2004 Microchip Technology Inc.
PIC18FX5X5/X6X0
TABLE 5-3:
CHECKSUM COMPUTATION
CodeProtect
Device
Checksum
0xAA at 0
and Max
Address
None
SUM(0000:07FF)+SUM(0800:3FFF)+SUM(4000:7FFF)+
SUM(8000:BFFF)+SUM(C000:FFFF)+(CONFIG0 & 0000)+
(CONFIG1 & 00CF)+(CONFIG2 & 001F)+(CONFIG3 & 001F)+
(CONFIG4 & 0000)+(CONFIG5 & 0087)+(CONFIG6 & 00C5)+
(CONFIG7 & 0000)+(CONFIG8 & 000F)+(CONFIG9 & 00C0)+
(CONFIG10 & 000F)+(CONFIG11 & 00E0)+(CONFIG12 & 000F)+
(CONFIG13 & 0040)
0466
03BC
Boot
Block
SUM(0800:3FFF)+SUM(4000:7FFF)+SUM(8000:BFFF)+
SUM(C000:FFFF)+(CONFIG0 & 0000)+(CONFIG1 & 00CF)+
(CONFIG2 & 001F)+(CONFIG3 & 001F)+(CONFIG4 & 0000)+
(CONFIG5 & 0087)+(CONFIG6 & 00C5)+(CONFIG7 & 0000)+
(CONFIG8 & 000F)+(CONFIG9 & 00C0)+(CONFIG10 & 000F)+
(CONFIG11 & 00E0)+(CONFIG12 & 000F)+(CONFIG13 & 0040)+
SUM(IDs)
0C36
0BEB
Boot/ SUM(8000:BFFF)+SUM(C000:FFFF)+(CONFIG0 & 0000)+
Block1/ (CONFIG1 & 00CF)+(CONFIG2 & 001F)+(CONFIG3 & 001F)+
Block2 (CONFIG4 & 0000)+(CONFIG5 & 0087)+(CONFIG6 & 00C5)+
(CONFIG7 & 0000)+(CONFIG8 & 000F)+(CONFIG9 & 00C0)+
(CONFIG10 & 000F)+(CONFIG11 & 00E0)+(CONFIG12 & 000F)+
(CONFIG13 & 0040)+SUM(IDs)
8433
83E8
(CONFIG0 & 0000)+(CONFIG1 & 00CF)+(CONFIG2 & 001F)+
(CONFIG3 & 001F)+(CONFIG4 & 0000)+(CONFIG5 & 0087)+
(CONFIG6 & 00C5)+(CONFIG7 & 0000)+(CONFIG8 & 000F)+
(CONFIG9 & 00C0)+(CONFIG10 & 000F)+(CONFIG11 & 00E0)+
(CONFIG12 & 000F)+(CONFIG13 & 0040)+SUM(IDs)
0427
0431
None
SUM(0000:07FF)+SUM(0800:3FFF)+SUM(4000:7FFF)+SUM(8000:BFFF)+
SUM(C000:FFFF)+(CONFIG0 & 0000)+(CONFIG1 & 00CF)+
(CONFIG2 & 001F)+(CONFIG3 & 001F)+(CONFIG4 & 0000)+
(CONFIG5 & 0087)+(CONFIG6 & 00C5)+(CONFIG7 & 0000)+
(CONFIG8 & 000F)+(CONFIG9 & 00C0)+(CONFIG10 & 000F)+
(CONFIG11 & 00E0)+(CONFIG12 & 000F)+(CONFIG13 & 0040)
0466
03BC
Boot
Block
SUM(0800:3FFF)+SUM(4000:7FFF)+SUM(8000:BFFF)+SUM(C000:FFFF)+
(CONFIG0 & 0000)+(CONFIG1 & 00CF)+(CONFIG2 & 001F)+
(CONFIG3 & 001F)+(CONFIG4 & 0000)+(CONFIG5 & 0087)+
(CONFIG6 & 00C5)+(CONFIG7 & 0000)+(CONFIG8 & 000F)+
(CONFIG9 & 00C0)+(CONFIG10 & 000F)+(CONFIG11 & 00E0)+
(CONFIG12 & 000F)+(CONFIG13 & 0040)+SUM(IDs)
0C36
0BEB
8433
83E8
0427
0431
PIC18F2515
All
PIC18F2525
Boot/ SUM(8000:BFFF)+SUM(C000:FFFF)+(CONFIG0 & 0000)+
Block1/ (CONFIG1 & 00CF)+(CONFIG2 & 001F)+(CONFIG3 & 001F)+
Block2 (CONFIG4 & 0000)+(CONFIG5 & 0087)+(CONFIG6 & 00C5)+
(CONFIG7 & 0000)+(CONFIG8 & 000F)+(CONFIG9 & 00C0)+
(CONFIG10 & 000F)+(CONFIG11 & 00E0)+(CONFIG12 & 000F)+
(CONFIG13 & 0040)+SUM(IDs)
All
Legend:
Blank
Value
Item
CFGW
SUM[a:b]
SUM_ID
+
&
(CONFIG0 & 0000)+(CONFIG1 & 00CF)+(CONFIG2 & 001F)+
(CONFIG3 & 001F)+(CONFIG4 & 0000)+(CONFIG5 & 0087)+
(CONFIG6 & 00C5)+(CONFIG7 & 0000)+(CONFIG8 & 000F)+
(CONFIG9 & 00C0)+(CONFIG10 & 000F)+(CONFIG11 & 00E0)+
(CONFIG12 & 000F)+(CONFIG13 & 0040)+SUM(IDs)
=
=
=
=
=
Description
Configuration Word
Sum of locations, a to b inclusive
Byte-wise sum of lower four bits of all customer ID locations
Addition
Bit-wise AND
 2004 Microchip Technology Inc.
DS39622A-page 27
PIC18FX5X5/X6X0
TABLE 5-3:
CHECKSUM COMPUTATION (CONTINUED)
CodeProtect
Device
Checksum
0xAA at 0
and Max
Address
None
SUM(0000:07FF)+SUM(0800:3FFF)+SUM(4000:7FFF)+SUM(8000:BFFF)+
SUM(C000:FFFF)+(CONFIG0 & 0000)+(CONFIG1 & 00CF)+
(CONFIG2 & 001F)+(CONFIG3 & 001F)+(CONFIG4 & 0000)+
(CONFIG5 & 0086)+(CONFIG6 & 00C5)+(CONFIG7 & 0000)+
(CONFIG8 & 000F)+(CONFIG9 & 00C0)+(CONFIG10 & 000F)+
(CONFIG11 & 00E0)+(CONFIG12 & 000F)+(CONFIG13 & 0040)
0465
03BB
Boot
Block
SUM(0800:3FFF)+SUM(4000:7FFF)+SUM(8000:BFFF)+SUM(C000:FFFF)+
(CONFIG0 & 0000)+(CONFIG1 & 00CF)+(CONFIG2 & 001F)+
(CONFIG3 & 001F)+(CONFIG4 & 0000)+(CONFIG5 & 0086)+
(CONFIG6 & 00C5)+(CONFIG7 & 0000)+(CONFIG8 & 000F)+
(CONFIG9 & 00C0)+(CONFIG10 & 000F)+(CONFIG11 & 00E0)+
(CONFIG12 & 000F)+(CONFIG13 & 0040)+SUM(IDs)
0C34
0BE9
8431
83E6
(CONFIG0 & 0000)+(CONFIG1 & 00CF)+(CONFIG2 & 001F)+
(CONFIG3 & 001F)+(CONFIG4 & 0000)+(CONFIG5 & 0086)+
(CONFIG6 & 00C5)+(CONFIG7 & 0000)+(CONFIG8 & 000F)+
(CONFIG9 & 00C0)+(CONFIG10 & 000F)+(CONFIG11 & 00E0)+
(CONFIG12 & 000F)+(CONFIG13 & 0040)+SUM(IDs)
0425
042F
None
SUM(0000:07FF)+SUM(0800:3FFF)+SUM(4000:7FFF)+SUM(8000:BFFF)+
SUM(C000:FFFF)+(CONFIG0 & 0000)+(CONFIG1 & 00CF)+
(CONFIG2 & 001F)+(CONFIG3 & 001F)+(CONFIG4 & 0000)+
(CONFIG5 & 0087)+(CONFIG6 & 00C5)+(CONFIG7 & 0000)+
(CONFIG8 & 000F)+(CONFIG9 & 00C0)+(CONFIG10 & 000F)+
(CONFIG11 & 00E0)+(CONFIG12 & 000F)+(CONFIG13 & 0040)
0466
03BC
Boot
Block
SUM(0800:3FFF)+SUM(4000:7FFF)+SUM(8000:BFFF)+SUM(C000:FFFF)+
(CONFIG0 & 0000)+(CONFIG1 & 00CF)+(CONFIG2 & 001F)+
(CONFIG3 & 001F)+(CONFIG4 & 0000)+(CONFIG5 & 0087)+
(CONFIG6 & 00C5)+(CONFIG7 & 0000)+(CONFIG8 & 000F)+
(CONFIG9 & 00C0)+(CONFIG10 & 000F)+(CONFIG11 & 00E0)+
(CONFIG12 & 000F)+(CONFIG13 & 0040)+SUM(IDs)
0C36
0BEB
8433
83E8
0427
0431
PIC18F2585
Boot/ SUM(8000:BFFF)+SUM(C000:FFFF)+(CONFIG0 & 0000)+
Block1/ (CONFIG1 & 00CF)+(CONFIG2 & 001F)+(CONFIG3 & 001F)+
Block2 (CONFIG4 & 0000)+(CONFIG5 & 0086)+(CONFIG6 & 00C5)+
(CONFIG7 & 0000)+(CONFIG8 & 000F)+(CONFIG9 & 00C0)+
(CONFIG10 & 000F)+(CONFIG11 & 00E0)+(CONFIG12 & 000F)+
(CONFIG13 & 0040)+SUM(IDs)
All
PIC18F2610
Boot/ SUM(8000:BFFF)+SUM(C000:FFFF)+(CONFIG0 & 0000)+(CONFIG1 & 00CF)+
Block1/ (CONFIG2 & 001F)+(CONFIG3 & 001F)+(CONFIG4 & 0000)+
Block2 (CONFIG5 & 0087)+(CONFIG6 & 00C5)+(CONFIG7 & 0000)+
(CONFIG8 & 000F)+(CONFIG9 & 00C0)+(CONFIG10 & 000F)+
(CONFIG11 & 00E0)+(CONFIG12 & 000F)+(CONFIG13 & 0040)+SUM(IDs)
All
Legend:
Blank
Value
Item
CFGW
SUM[a:b]
SUM_ID
+
&
DS39622A-page 28
(CONFIG0 & 0000)+(CONFIG1 & 00CF)+(CONFIG2 & 001F)+
(CONFIG3 & 001F)+(CONFIG4 & 0000)+(CONFIG5 & 0087)+
(CONFIG6 & 00C5)+(CONFIG7 & 0000)+(CONFIG8 & 000F)+
(CONFIG9 & 00C0)+(CONFIG10 & 000F)+(CONFIG11 & 00E0)+
(CONFIG12 & 000F)+(CONFIG13 & 0040)+SUM(IDs)
=
=
=
=
=
Description
Configuration Word
Sum of locations, a to b inclusive
Byte-wise sum of lower four bits of all customer ID locations
Addition
Bit-wise AND
 2004 Microchip Technology Inc.
PIC18FX5X5/X6X0
TABLE 5-3:
CHECKSUM COMPUTATION (CONTINUED)
CodeProtect
Device
Checksum
0xAA at 0
and Max
Address
None
SUM(0000:07FF)+SUM(0800:3FFF)+SUM(4000:7FFF)+SUM(8000:BFFF)+
SUM(C000:FFFF)+(CONFIG0 & 0000)+(CONFIG1 & 00CF)+
(CONFIG2 & 001F)+(CONFIG3 & 001F)+(CONFIG4 & 0000)+
(CONFIG5 & 0087)+(CONFIG6 & 00C5)+(CONFIG7 & 0000)+
(CONFIG8 & 000F)+(CONFIG9 & 00C0)+(CONFIG10 & 000F)+
(CONFIG11 & 00E0)+(CONFIG12 & 000F)+(CONFIG13 & 0040)
0466
03BC
Boot
Block
SUM(0800:3FFF)+SUM(4000:7FFF)+SUM(8000:BFFF)+SUM(C000:FFFF)+
(CONFIG0 & 0000)+(CONFIG1 & 00CF)+(CONFIG2 & 001F)+
(CONFIG3 & 001F)+(CONFIG4 & 0000)+(CONFIG5 & 0087)+
(CONFIG6 & 00C5)+(CONFIG7 & 0000)+(CONFIG8 & 000F)+
(CONFIG9 & 00C0)+(CONFIG10 & 000F)+(CONFIG11 & 00E0)+
(CONFIG12 & 000F)+(CONFIG13 & 0040)+SUM(IDs)
0C36
0BEB
8433
83E8
(CONFIG0 & 0000)+(CONFIG1 & 00CF)+(CONFIG2 & 001F)+
(CONFIG3 & 001F)+(CONFIG4 & 0000)+(CONFIG5 & 0087)+
(CONFIG6 & 00C5)+(CONFIG7 & 0000)+(CONFIG8 & 000F)+
(CONFIG9 & 00C0)+(CONFIG10 & 000F)+(CONFIG11 & 00E0)+
(CONFIG12 & 000F)+(CONFIG13 & 0040)+SUM(IDs)
0427
0431
None
SUM(0000:07FF)+SUM(0800:3FFF)+SUM(4000:7FFF)+SUM(8000:BFFF)+
SUM(C000:FFFF)+(CONFIG0 & 0000)+(CONFIG1 & 00CF)+
(CONFIG2 & 001F)+(CONFIG3 & 001F)+(CONFIG4 & 0000)+
(CONFIG5 & 0086)+(CONFIG6 & 00C5)+(CONFIG7 & 0000)+
(CONFIG8 & 000F)+(CONFIG9 & 00C0)+(CONFIG10 & 000F)+
(CONFIG11 & 00E0)+(CONFIG12 & 000F)+(CONFIG13 & 0040)
0465
03BB
Boot
Block
SUM(0800:3FFF)+SUM(4000:7FFF)+SUM(8000:BFFF)+SUM(C000:FFFF)+
(CONFIG0 & 0000)+(CONFIG1 & 00CF)+(CONFIG2 & 001F)+
(CONFIG3 & 001F)+(CONFIG4 & 0000)+(CONFIG5 & 0086)+
(CONFIG6 & 00C5)+(CONFIG7 & 0000)+(CONFIG8 & 000F)+
(CONFIG9 & 00C0)+(CONFIG10 & 000F)+(CONFIG11 & 00E0)+
(CONFIG12 & 000F)+(CONFIG13 & 0040)+SUM(IDs)
0C34
0BE9
8431
83E6
0425
042F
PIC18F2620
Boot/ SUM(8000:BFFF)+SUM(C000:FFFF)+(CONFIG0 & 0000)+(CONFIG1 & 00CF)+
Block1/ (CONFIG2 & 001F)+(CONFIG3 & 001F)+(CONFIG4 & 0000)+
Block2 (CONFIG5 & 0087)+(CONFIG6 & 00C5)+(CONFIG7 & 0000)+
(CONFIG8 & 000F)+(CONFIG9 & 00C0)+(CONFIG10 & 000F)+
(CONFIG11 & 00E0)+(CONFIG12 & 000F)+(CONFIG13 & 0040)+SUM(IDs)
All
PIC18F2680
Boot/ SUM(8000:BFFF)+SUM(C000:FFFF)+(CONFIG0 & 0000)+(CONFIG1 & 00CF)+
Block1/ (CONFIG2 & 001F)+(CONFIG3 & 001F)+(CONFIG4 & 0000)+
Block2 (CONFIG5 & 0086)+(CONFIG6 & 00C5)+(CONFIG7 & 0000)+
(CONFIG8 & 000F)+(CONFIG9 & 00C0)+(CONFIG10 & 000F)+
(CONFIG11 & 00E0)+(CONFIG12 & 000F)+(CONFIG13 & 0040)+SUM(IDs)
All
Legend:
Blank
Value
Item
CFGW
SUM[a:b]
SUM_ID
+
&
(CONFIG0 & 0000)+(CONFIG1 & 00CF)+(CONFIG2 & 001F)+
(CONFIG3 & 001F)+(CONFIG4 & 0000)+(CONFIG5 & 0086)+
(CONFIG6 & 00C5)+(CONFIG7 & 0000)+(CONFIG8 & 000F)+
(CONFIG9 & 00C0)+(CONFIG10 & 000F)+(CONFIG11 & 00E0)+
(CONFIG12 & 000F)+(CONFIG13 & 0040)+SUM(IDs)
=
=
=
=
=
Description
Configuration Word
Sum of locations, a to b inclusive
Byte-wise sum of lower four bits of all customer ID locations
Addition
Bit-wise AND
 2004 Microchip Technology Inc.
DS39622A-page 29
PIC18FX5X5/X6X0
TABLE 5-3:
CHECKSUM COMPUTATION (CONTINUED)
CodeProtect
Device
Checksum
0xAA at 0
and Max
Address
None
SUM(0000:07FF)+SUM(0800:3FFF)+SUM(4000:7FFF)+SUM(8000:BFFF)+
SUM(C000:FFFF)+(CONFIG0 & 0000)+(CONFIG1 & 00CF)+
(CONFIG2 & 001F)+(CONFIG3 & 001F)+(CONFIG4 & 0000)+
(CONFIG5 & 0087)+(CONFIG6 & 00C5)+(CONFIG7 & 0000)+
(CONFIG8 & 000F)+(CONFIG9 & 00C0)+(CONFIG10 & 000F)+
(CONFIG11 & 00E0)+(CONFIG12 & 000F)+(CONFIG13 & 0040)
0466
03BC
Boot
Block
SUM(0800:3FFF)+SUM(4000:7FFF)+SUM(8000:BFFF)+SUM(C000:FFFF)+
(CONFIG0 & 0000)+(CONFIG1 & 00CF)+(CONFIG2 & 001F)+
(CONFIG3 & 001F)+(CONFIG4 & 0000)+(CONFIG5 & 0087)+
(CONFIG6 & 00C5)+(CONFIG7 & 0000)+(CONFIG8 & 000F)+
(CONFIG9 & 00C0)+(CONFIG10 & 000F)+(CONFIG11 & 00E0)+
(CONFIG12 & 000F)+(CONFIG13 & 0040)+SUM(IDs)
0C36
0BEB
8433
83E8
(CONFIG0 & 0000)+(CONFIG1 & 00CF)+(CONFIG2 & 001F)+
(CONFIG3 & 001F)+(CONFIG4 & 0000)+(CONFIG5 & 0087)+
(CONFIG6 & 00C5)+(CONFIG7 & 0000)+(CONFIG8 & 000F)+
(CONFIG9 & 00C0)+(CONFIG10 & 000F)+(CONFIG11 & 00E0)+
(CONFIG12 & 000F)+(CONFIG13 & 0040)+SUM(IDs)
0427
0431
None
SUM(0000:07FF)+SUM(0800:3FFF)+SUM(4000:7FFF)+SUM(8000:BFFF)+
SUM(C000:FFFF)+(CONFIG0 & 0000)+(CONFIG1 & 00CF)+
(CONFIG2 & 001F)+(CONFIG3 & 001F)+(CONFIG4 & 0000)+
(CONFIG5 & 0087)+(CONFIG6 & 00C5)+(CONFIG7 & 0000)+
(CONFIG8 & 000F)+(CONFIG9 & 00C0)+(CONFIG10 & 000F)+
(CONFIG11 & 00E0)+(CONFIG12 & 000F)+(CONFIG13 & 0040)
0466
03BC
Boot
Block
SUM(0800:3FFF)+SUM(4000:7FFF)+SUM(8000:BFFF)+SUM(C000:FFFF)+
(CONFIG0 & 0000)+(CONFIG1 & 00CF)+(CONFIG2 & 001F)+
(CONFIG3 & 001F)+(CONFIG4 & 0000)+(CONFIG5 & 0087)+
(CONFIG6 & 00C5)+(CONFIG7 & 0000)+(CONFIG8 & 000F)+
(CONFIG9 & 00C0)+(CONFIG10 & 000F)+(CONFIG11 & 00E0)+
(CONFIG12 & 000F)+(CONFIG13 & 0040)+SUM(IDs)
0C36
0BEB
8433
83E8
0427
0431
PIC18F4515
Boot/ SUM(8000:BFFF)+SUM(C000:FFFF)+(CONFIG0 & 0000)+(CONFIG1 & 00CF)+
Block1/ (CONFIG2 & 001F)+(CONFIG3 & 001F)+(CONFIG4 & 0000)+
Block2 (CONFIG5 & 0087)+(CONFIG6 & 00C5)+(CONFIG7 & 0000)+
(CONFIG8 & 000F)+(CONFIG9 & 00C0)+(CONFIG10 & 000F)+
(CONFIG11 & 00E0)+(CONFIG12 & 000F)+(CONFIG13 & 0040)+SUM(IDs)
All
PIC18F4525
Boot/ SUM(8000:BFFF)+SUM(C000:FFFF)+(CONFIG0 & 0000)+(CONFIG1 & 00CF)+
Block1/ (CONFIG2 & 001F)+(CONFIG3 & 001F)+(CONFIG4 & 0000)+
Block2 (CONFIG5 & 0087)+(CONFIG6 & 00C5)+(CONFIG7 & 0000)+
(CONFIG8 & 000F)+(CONFIG9 & 00C0)+(CONFIG10 & 000F)+
(CONFIG11 & 00E0)+(CONFIG12 & 000F)+(CONFIG13 & 0040)+SUM(IDs)
All
Legend:
Blank
Value
Item
CFGW
SUM[a:b]
SUM_ID
+
&
DS39622A-page 30
(CONFIG0 & 0000)+(CONFIG1 & 00CF)+(CONFIG2 & 001F)+
(CONFIG3 & 001F)+(CONFIG4 & 0000)+(CONFIG5 & 0087)+
(CONFIG6 & 00C5)+(CONFIG7 & 0000)+(CONFIG8 & 000F)+
(CONFIG9 & 00C0)+(CONFIG10 & 000F)+(CONFIG11 & 00E0)+
(CONFIG12 & 000F)+(CONFIG13 & 0040)+SUM(IDs)
=
=
=
=
=
Description
Configuration Word
Sum of locations, a to b inclusive
Byte-wise sum of lower four bits of all customer ID locations
Addition
Bit-wise AND
 2004 Microchip Technology Inc.
PIC18FX5X5/X6X0
TABLE 5-3:
CHECKSUM COMPUTATION (CONTINUED)
CodeProtect
Device
Checksum
0xAA at 0
and Max
Address
None
SUM(0000:07FF)+SUM(0800:3FFF)+SUM(4000:7FFF)+SUM(8000:BFFF)+
SUM(C000:FFFF)+(CONFIG0 & 0000)+(CONFIG1 & 00CF)+
(CONFIG2 & 001F)+(CONFIG3 & 001F)+(CONFIG4 & 0000)+
(CONFIG5 & 0086)+(CONFIG6 & 00C5)+(CONFIG7 & 0000)+
(CONFIG8 & 000F)+(CONFIG9 & 00C0)+(CONFIG10 & 000F)+
(CONFIG11 & 00E0)+(CONFIG12 & 000F)+(CONFIG13 & 0040)
0465
03BB
Boot
Block
SUM(0800:3FFF)+SUM(4000:7FFF)+SUM(8000:BFFF)+SUM(C000:FFFF)+
(CONFIG0 & 0000)+(CONFIG1 & 00CF)+(CONFIG2 & 001F)+
(CONFIG3 & 001F)+(CONFIG4 & 0000)+(CONFIG5 & 0086)+
(CONFIG6 & 00C5)+(CONFIG7 & 0000)+(CONFIG8 & 000F)+
(CONFIG9 & 00C0)+(CONFIG10 & 000F)+(CONFIG11 & 00E0)+
(CONFIG12 & 000F)+(CONFIG13 & 0040)+SUM(IDs)
0C34
0BE9
8431
83E6
(CONFIG0 & 0000)+(CONFIG1 & 00CF)+(CONFIG2 & 001F)+
(CONFIG3 & 001F)+(CONFIG4 & 0000)+(CONFIG5 & 0086)+
(CONFIG6 & 00C5)+(CONFIG7 & 0000)+(CONFIG8 & 000F)+
(CONFIG9 & 00C0)+(CONFIG10 & 000F)+(CONFIG11 & 00E0)+
(CONFIG12 & 000F)+(CONFIG13 & 0040)+SUM(IDs)
0425
042F
None
SUM(0000:07FF)+SUM(0800:3FFF)+SUM(4000:7FFF)+SUM(8000:BFFF)+
SUM(C000:FFFF)+(CONFIG0 & 0000)+(CONFIG1 & 00CF)+
(CONFIG2 & 001F)+(CONFIG3 & 001F)+(CONFIG4 & 0000)+
(CONFIG5 & 0087)+(CONFIG6 & 00C5)+(CONFIG7 & 0000)+
(CONFIG8 & 000F)+(CONFIG9 & 00C0)+(CONFIG10 & 000F)+
(CONFIG11 & 00E0)+(CONFIG12 & 000F)+(CONFIG13 & 0040)
0466
03BC
Boot
Block
SUM(0800:3FFF)+SUM(4000:7FFF)+SUM(8000:BFFF)+SUM(C000:FFFF)+
(CONFIG0 & 0000)+(CONFIG1 & 00CF)+(CONFIG2 & 001F)+
(CONFIG3 & 001F)+(CONFIG4 & 0000)+(CONFIG5 & 0087)+
(CONFIG6 & 00C5)+(CONFIG7 & 0000)+(CONFIG8 & 000F)+
(CONFIG9 & 00C0)+(CONFIG10 & 000F)+(CONFIG11 & 00E0)+
(CONFIG12 & 000F)+(CONFIG13 & 0040)+SUM(IDs)
0C36
0BEB
8433
83E8
0427
0431
PIC18F4585
Boot/ SUM(8000:BFFF)+SUM(C000:FFFF)+(CONFIG0 & 0000)+(CONFIG1 & 00CF)+
Block1/ (CONFIG2 & 001F)+(CONFIG3 & 001F)+(CONFIG4 & 0000)+
Block2 (CONFIG5 & 0086)+(CONFIG6 & 00C5)+(CONFIG7 & 0000)+
(CONFIG8 & 000F)+(CONFIG9 & 00C0)+(CONFIG10 & 000F)+
(CONFIG11 & 00E0)+(CONFIG12 & 000F)+(CONFIG13 & 0040)+SUM(IDs)
All
PIC18F4610
Boot/ SUM(8000:BFFF)+SUM(C000:FFFF)+(CONFIG0 & 0000)+(CONFIG1 & 00CF)+
Block1/ (CONFIG2 & 001F)+(CONFIG3 & 001F)+(CONFIG4 & 0000)+
Block2 (CONFIG5 & 0087)+(CONFIG6 & 00C5)+(CONFIG7 & 0000)+
(CONFIG8 & 000F)+(CONFIG9 & 00C0)+(CONFIG10 & 000F)+
(CONFIG11 & 00E0)+(CONFIG12 & 000F)+(CONFIG13 & 0040)+SUM(IDs)
All
Legend:
Blank
Value
Item
CFGW
SUM[a:b]
SUM_ID
+
&
(CONFIG0 & 0000)+(CONFIG1 & 00CF)+(CONFIG2 & 001F)+
(CONFIG3 & 001F)+(CONFIG4 & 0000)+(CONFIG5 & 0087)+
(CONFIG6 & 00C5)+(CONFIG7 & 0000)+(CONFIG8 & 000F)+
(CONFIG9 & 00C0)+(CONFIG10 & 000F)+(CONFIG11 & 00E0)+
(CONFIG12 & 000F)+(CONFIG13 & 0040)+SUM(IDs)
=
=
=
=
=
Description
Configuration Word
Sum of locations, a to b inclusive
Byte-wise sum of lower four bits of all customer ID locations
Addition
Bit-wise AND
 2004 Microchip Technology Inc.
DS39622A-page 31
PIC18FX5X5/X6X0
TABLE 5-3:
CHECKSUM COMPUTATION (CONTINUED)
CodeProtect
Device
Checksum
0xAA at 0
and Max
Address
None
SUM(0000:07FF)+SUM(0800:3FFF)+SUM(4000:7FFF)+SUM(8000:BFFF)+
SUM(C000:FFFF)+(CONFIG0 & 0000)+(CONFIG1 & 00CF)+
(CONFIG2 & 001F)+(CONFIG3 & 001F)+(CONFIG4 & 0000)+
(CONFIG5 & 0087)+(CONFIG6 & 00C5)+(CONFIG7 & 0000)+
(CONFIG8 & 000F)+(CONFIG9 & 00C0)+(CONFIG10 & 000F)+
(CONFIG11 & 00E0)+(CONFIG12 & 000F)+(CONFIG13 & 0040)
0466
03BC
Boot
Block
SUM(0800:3FFF)+SUM(4000:7FFF)+SUM(8000:BFFF)+SUM(C000:FFFF)+
(CONFIG0 & 0000)+(CONFIG1 & 00CF)+(CONFIG2 & 001F)+
(CONFIG3 & 001F)+(CONFIG4 & 0000)+(CONFIG5 & 0087)+
(CONFIG6 & 00C5)+(CONFIG7 & 0000)+(CONFIG8 & 000F)+
(CONFIG9 & 00C0)+(CONFIG10 & 000F)+(CONFIG11 & 00E0)+
(CONFIG12 & 000F)+(CONFIG13 & 0040)+SUM(IDs)
0C36
0BEB
8433
83E8
(CONFIG0 & 0000)+(CONFIG1 & 00CF)+(CONFIG2 & 001F)+
(CONFIG3 & 001F)+(CONFIG4 & 0000)+(CONFIG5 & 0087)+
(CONFIG6 & 00C5)+(CONFIG7 & 0000)+(CONFIG8 & 000F)+
(CONFIG9 & 00C0)+(CONFIG10 & 000F)+(CONFIG11 & 00E0)+
(CONFIG12 & 000F)+(CONFIG13 & 0040)+SUM(IDs)
0427
0431
None
SUM(0000:07FF)+SUM(0800:3FFF)+SUM(4000:7FFF)+SUM(8000:BFFF)+
SUM(C000:FFFF)+(CONFIG0 & 0000)+(CONFIG1 & 00CF)+
(CONFIG2 & 001F)+(CONFIG3 & 001F)+(CONFIG4 & 0000)+
(CONFIG5 & 0086)+(CONFIG6 & 00C5)+(CONFIG7 & 0000)+
(CONFIG8 & 000F)+(CONFIG9 & 00C0)+(CONFIG10 & 000F)+
(CONFIG11 & 00E0)+(CONFIG12 & 000F)+(CONFIG13 & 0040)
0465
03BB
Boot
Block
SUM(0800:3FFF)+SUM(4000:7FFF)+SUM(8000:BFFF)+SUM(C000:FFFF)+
(CONFIG0 & 0000)+(CONFIG1 & 00CF)+(CONFIG2 & 001F)+
(CONFIG3 & 001F)+(CONFIG4 & 0000)+(CONFIG5 & 0086)+
(CONFIG6 & 00C5)+(CONFIG7 & 0000)+(CONFIG8 & 000F)+
(CONFIG9 & 00C0)+(CONFIG10 & 000F)+(CONFIG11 & 00E0)+
(CONFIG12 & 000F)+(CONFIG13 & 0040)+SUM(IDs)
0C34
0BE9
8431
83E6
0425
042F
PIC18F4620
Boot/ SUM(8000:BFFF)+SUM(C000:FFFF)+(CONFIG0 & 0000)+(CONFIG1 & 00CF)+
Block1/ (CONFIG2 & 001F)+(CONFIG3 & 001F)+(CONFIG4 & 0000)+
Block2 (CONFIG5 & 0087)+(CONFIG6 & 00C5)+(CONFIG7 & 0000)+
(CONFIG8 & 000F)+(CONFIG9 & 00C0)+(CONFIG10 & 000F)+
(CONFIG11 & 00E0)+(CONFIG12 & 000F)+(CONFIG13 & 0040)+SUM(IDs)
All
PIC18F4680
Boot/ SUM(8000:BFFF)+SUM(C000:FFFF)+(CONFIG0 & 0000)+(CONFIG1 & 00CF)+
Block1/ (CONFIG2 & 001F)+(CONFIG3 & 001F)+(CONFIG4 & 0000)+
Block2 (CONFIG5 & 0086)+(CONFIG6 & 00C5)+(CONFIG7 & 0000)+
(CONFIG8 & 000F)+(CONFIG9 & 00C0)+(CONFIG10 & 000F)+
(CONFIG11 & 00E0)+(CONFIG12 & 000F)+(CONFIG13 & 0040)+SUM(IDs)
All
Legend:
Blank
Value
Item
CFGW
SUM[a:b]
SUM_ID
+
&
DS39622A-page 32
(CONFIG0 & 0000)+(CONFIG1 & 00CF)+(CONFIG2 & 001F)+
(CONFIG3 & 001F)+(CONFIG4 & 0000)+(CONFIG5 & 0086)+
(CONFIG6 & 00C5)+(CONFIG7 & 0000)+(CONFIG8 & 000F)+
(CONFIG9 & 00C0)+(CONFIG10 & 000F)+(CONFIG11 & 00E0)+
(CONFIG12 & 000F)+(CONFIG13 & 0040)+SUM(IDs)
=
=
=
=
=
Description
Configuration Word
Sum of locations, a to b inclusive
Byte-wise sum of lower four bits of all customer ID locations
Addition
Bit-wise AND
 2004 Microchip Technology Inc.
PIC18FX5X5/X6X0
6.0
AC/DC CHARACTERISTICS
TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE
Standard Operating Conditions
Operating Temperature: 25°C is recommended
Param
No.
Characteristic
Min
Max
Units
VIHH
High-Voltage Programming Voltage on MCLR/VPP
9.00
13.25
V
D110A VIHL
Low-Voltage Programming Voltage on MCLR/VPP
2.00
5.50
V
D111
Supply Voltage During Programming
2.00
5.50
V
Normal programming
4.50
5.50
V
Bulk erase operations
D110
Sym
VDD
Conditions
D112
IPP
Programming Current on MCLR/VPP
—
300
µA
D113
IDDP
Supply Current During Programming
—
10
mA
D031
VIL
Input Low Voltage
VSS
0.2 VDD
V
D041
VIH
Input High Voltage
0.8 VDD
VDD
V
D080
VOL
Output Low Voltage
—
0.6
V
IOL = 8.5 mA @ 4.5V
D090
VOH
Output High Voltage
VDD – 0.7
—
V
IOH = -3.0 mA @ 4.5V
D012
CIO
Capacitive Loading on I/O pin (PGD)
—
50
pF
To meet AC specifications
P1
TR
MCLR/VPP Rise Time to enter
Program/Verify mode
—
1.0
µs
(Note 1)
P2
TPGC
Serial Clock (PGC) Period
100
—
ns
VDD = 5.0V
1
—
µs
VDD = 2.0V
P2A
TPGCL Serial Clock (PGC) Low Time
40
—
ns
VDD = 5.0V
400
—
ns
VDD = 2.0V
40
—
ns
VDD = 5.0V
VDD = 2.0V
P2B
TPGCH Serial Clock (PGC) High Time
P3
TSET1 Input Data Setup Time to Serial Clock ↓
P4
THLD1 Input Data Hold Time from PGC ↓
15
—
ns
P5
TDLY1 Delay between 4-bit Command and Command
Operand
40
—
ns
P5A
TDLY1A Delay between 4-bit Command Operand and next
4-bit Command
40
—
ns
P6
TDLY2 Delay between Last PGC ↓ of Command Byte to
First PGC ↑ of Read of Data Word
20
—
ns
400
—
ns
15
—
ns
P9
TDLY5 PGC High Time (minimum programming time)
1
—
ms
P10
TDLY6 PGC Low Time after Programming
(high-voltage discharge time)
40
—
µs
P11
TDLY7 Delay to allow Self-Timed Data Write or
Bulk Erase to occur
5
—
ms
P11A
TDRWT Data Write Polling Time
4
—
ms
P12
THLD2 Input Data Hold Time from MCLR/VPP ↑
2
—
µs
P13
TSET2 VDD ↑ Setup Time to MCLR/VPP ↑
100
—
ns
P14
TVALID Data Out Valid from PGC ↑
10
—
ns
P15
TSET3 PGM ↑ Setup Time to MCLR/VPP ↑
2
—
µs
Note 1:
Do not allow excess time when transitioning MCLR between VIL and VIHH; this can cause spurious program
executions to occur. The maximum transition time is:
1 TCY + TPWRT (if enabled) + 1024 TOSC (for LP, HS, HS/PLL and XT modes only) +
2 ms (for HS/PLL mode only) + 1.5 µs (for EC mode only)
where TCY is the instruction cycle time, TPWRT is the Power-up Timer period, and TOSC is the oscillator period.
For specific values, refer to the Electrical Characteristics section of the device data sheet for the particular device.
 2004 Microchip Technology Inc.
DS39622A-page 33
PIC18FX5X5/X6X0
NOTES:
DS39622A-page 34
 2004 Microchip Technology Inc.
Note the following details of the code protection feature on Microchip devices:
•
Microchip products meet the specification contained in their particular Microchip Data Sheet.
•
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
•
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
•
Microchip is willing to work with the customer who is concerned about the integrity of their code.
•
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is intended through suggestion only
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect
to the accuracy or use of such information, or infringement of
patents or other intellectual property rights arising from such
use or otherwise. Use of Microchip’s products as critical
components in life support systems is not authorized except
with express written approval by Microchip. No licenses are
conveyed, implicitly or otherwise, under any intellectual
property rights.
Trademarks
The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, MPLAB, PIC, PICmicro, PICSTART,
PRO MATE and PowerSmart are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.
AmpLab, FilterLab, microID, MXDEV, MXLAB, PICMASTER,
SEEVAL, SmartShunt and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.
Application Maestro, dsPICDEM, dsPICDEM.net,
dsPICworks, ECAN, ECONOMONITOR, FanSense,
FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP,
ICEPIC, Migratable Memory, MPASM, MPLIB, MPLINK,
MPSIM, PICkit, PICDEM, PICDEM.net, PICtail, PowerCal,
PowerInfo, PowerMate, PowerTool, rfLAB, rfPIC, Select
Mode, SmartSensor, SmartTel and Total Endurance are
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.
Serialized Quick Turn Programming (SQTP) is a service mark
of Microchip Technology Incorporated in the U.S.A.
All other trademarks mentioned herein are property of their
respective companies.
© 2004, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.
Printed on recycled paper.
Microchip received ISO/TS-16949:2002 quality system certification for
its worldwide headquarters, design and wafer fabrication facilities in
Chandler and Tempe, Arizona and Mountain View, California in October
2003. The Company’s quality system processes and procedures are for
its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial
EEPROMs, microperipherals, nonvolatile memory and analog
products. In addition, Microchip’s quality system for the design and
manufacture of development systems is ISO 9001:2000 certified.
DS39622A-page 35
 2004 Microchip Technology Inc.
WORLDWIDE SALES AND SERVICE
AMERICAS
China - Beijing
Korea
Corporate Office
Unit 706B
Wan Tai Bei Hai Bldg.
No. 6 Chaoyangmen Bei Str.
Beijing, 100027, China
Tel: 86-10-85282100
Fax: 86-10-85282104
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5932 or
82-2-558-5934
China - Chengdu
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8850
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com
3780 Mansell Road, Suite 130
Alpharetta, GA 30022
Tel: 770-640-0034
Fax: 770-640-0307
Rm. 2401-2402, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86766200
Fax: 86-28-86766599
Boston
China - Fuzhou
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848
Fax: 978-692-3821
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506
Fax: 86-591-7503521
Atlanta
Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
2767 S. Albright Road
Kokomo, IN 46902
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888
Fax: 949-263-1338
San Jose
1300 Terra Bella Avenue
Mountain View, CA 94043
Tel: 650-215-1444
Fax: 650-961-0286
Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699
Fax: 905-673-6509
ASIA/PACIFIC
Australia
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Hong Kong SAR
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Singapore
Taiwan
Kaohsiung Branch
30F - 1 No. 8
Min Chuan 2nd Road
Kaohsiung 806, Taiwan
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan
Taiwan Branch
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139
EUROPE
China - Shanghai
Austria
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700
Fax: 86-21-6275-5060
Durisolstrasse 2
A-4600 Wels
Austria
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393
Denmark
China - Shenzhen
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45-4420-9895 Fax: 45-4420-9910
Rm. 1812, 18/F, Building A, United Plaza
No. 5022 Binhe Road, Futian District
Shenzhen 518033, China
Tel: 86-755-82901380
Fax: 86-755-8295-1393
China - Shunde
Room 401, Hongjian Building, No. 2
Fengxiangnan Road, Ronggui Town, Shunde
District, Foshan City, Guangdong 528303, China
Tel: 86-757-28395507 Fax: 86-757-28395571
China - Qingdao
Rm. B505A, Fullhope Plaza,
No. 12 Hong Kong Central Rd.
Qingdao 266071, China
Tel: 86-532-5027355 Fax: 86-532-5027205
India
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062
Japan
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122
France
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany
Steinheilstrasse 10
D-85737 Ismaning, Germany
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy
Via Quasimodo, 12
20025 Legnano (MI)
Milan, Italy
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands
P. A. De Biesbosch 14
NL-5152 SC Drunen, Netherlands
Tel: 31-416-690399
Fax: 31-416-690340
United Kingdom
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44-118-921-5869
Fax: 44-118-921-5820
01/26/04
DS39622A-page 36
 2004 Microchip Technology Inc.