MJE13005 Preferred Device SWITCHMODEt Series NPN Silicon Power Transistors These devices are designed for high−voltage, high−speed power switching inductive circuits where fall time is critical. They are particularly suited for 115 and 220 V SWITCHMODE applications such as Switching Regulator’s, Inverters, Motor Controls, Solenoid/Relay drivers and Deflection circuits. Features • VCEO(sus) 400 V • Reverse Bias SOA with Inductive Loads @ TC = 100_C • Inductive Switching Matrix 2 to 4 A, 25 and 100_C tc @ 3A, http://onsemi.com 4 AMPERE NPN SILICON POWER TRANSISTOR 400 VOLTS − 75 WATTS 100_C is 180 ns (Typ) • 700 V Blocking Capability • SOA and Switching Applications Information • Pb−Free Package is Available* MAXIMUM RATINGS Rating Symbol Value Unit Collector−Emitter Voltage VCEO(sus) 400 Vdc Collector−Emitter Voltage VCEV 700 Vdc Emitter−Base Voltage VEBO 9 Vdc IC Adc Collector Current − Continuous − Peak (Note 1) ICM 4 8 Base Current − Continuous − Peak (Note 1) IB IBM 2 4 Adc Emitter Current − Continuous − Peak (Note 1) IE IEM 6 12 Adc Total Device Dissipation @ TC = 25_C Derate above 25°C PD 2 16 W W/_C Total Device Dissipation @ TC = 25_C Derate above 25°C PD 75 600 W W/_C TJ, Tstg −65 to +150 _C Operating and Storage Junction Temperature Range 1 2 MJE13005G Characteristics Symbol Max Unit Thermal Resistance, Junction−to−Ambient RqJA 62.5 _C/W Thermal Resistance, Junction−to−Case RqJC 1.67 _C/W TL 275 _C Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. 1. Pulse Test: Pulse Width = 5 ms, Duty Cycle ≤ 10%. *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. © Semiconductor Components Industries, LLC, 2006 February, 2006 − Rev. 7 3 MARKING DIAGRAM AY WW A Location Y WW G age THERMAL CHARACTERISTICS Maximum Lead Temperature for Soldering Purposes 1/8″ from Case for 5 Seconds TO−220AB CASE 221A−09 STYLE 1 1 = Assembly = Year = Work Week = Pb−Free Pack- ORDERING INFORMATION Device Package Shipping MJE13005 TO−220 50 Units / Rail TO−220 (Pb−Free) 50 Units / Rail MJE13005G Preferred devices are recommended choices for future use and best overall value. Publication Order Number: MJE13005/D MJE13005 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted) Characteristic Symbol Min Typ Max Unit VCEO(sus) 400 − − Vdc − − − − 1 5 − 1 OFF CHARACTERISTICS (Note 2) Collector−Emitter Sustaining Voltage (IC = 10 mA, IB = 0) Collector Cutoff Current (VCEV = Rated Value, VBE(off) = 1.5 Vdc) (VCEV = Rated Value, VBE(off) = 1.5 Vdc, TC = 100_C) ICEV mAdc Emitter Cutoff Current (VEB = 9 Vdc, IC = 0) IEBO − IS/b − See Figure 11 RBSOA − See Figure 12 mAdc SECOND BREAKDOWN Second Breakdown Collector Current with base forward biased Clamped Inductive SOA with Base Reverse Biased ON CHARACTERISTICS (Note 2) DC Current Gain (IC = 1 Adc, VCE = 5 Vdc) (IC = 2 Adc, VCE = 5 Vdc) hFE − 10 8 − − 60 40 − − − − − − − − 0.5 0.6 1 1 − − − − − − 1.2 1.6 1.5 fT 4 − − MHz Cob − 65 − pF td − 0.025 0.1 ms tr − 0.3 0.7 ms ts − 1.7 4 ms tf − 0.4 0.9 ms tsv − 0.9 4 ms tc − 0.32 0.9 ms tfi − 0.16 − ms Collector−Emitter Saturation Voltage (IC = 1 Adc, IB = 0.2 Adc) (IC = 2 Adc, IB = 0.5 Adc) (IC = 4 Adc, IB = 1 Adc) (IC = 2 Adc, IB = 0.5 Adc, TC = 100_C) VCE(sat) Base−Emitter Saturation Voltage (IC = 1 Adc, IB = 0.2 Adc) (IC = 2 Adc, IB = 0.5 Adc) (IC = 2 Adc, IB = 0.5 Adc, TC = 100_C) VBE(sat) Vdc Vdc DYNAMIC CHARACTERISTICS Current−Gain − Bandwidth Product (IC = 500 mAdc, VCE = 10 Vdc, f = 1 MHz) Output Capacitance (VCB = 10 Vdc, IE = 0, f = 0.1 MHz) SWITCHING CHARACTERISTICS Resistive Load (Table 2) Delay Time Rise Time Storage Time (VCC = 125 Vdc, IC = 2 A, IB1 = IB2 = 0.4 A, tp = 25 ms, Duty Cycle v 1%) Fall Time Inductive Load, Clamped (Table 2, Figure 13) Voltage Storage Time Crossover Time (IC = 2 A, Vclamp = 300 Vdc, IB1 = 0.4 A, VBE(off) = 5 Vdc, TC = 100_C) Fall Time 2. Pulse Test: Pulse Width = 300 ms, Duty Cycle = 2%. http://onsemi.com 2 VCE , COLLECTOR−EMITTER VOLTAGE (VOLTS MJE13005 100 hFE , DC CURRENT GAIN 70 TJ = 150°C 50 25°C 30 20 −55 °C 10 VCE = 2 V VCE = 5 V 7 5 0.04 0.06 0.1 0.2 0.4 0.6 1 IC, COLLECTOR CURRENT (AMP) 2 4 2 TJ = 25°C 1.6 IC = 1 A VCE(sat) , COLLECTOR−EMITTER SATURATION VOLTAGE (VOLTS) VBE, BASE−EMITTER VOLTAGE (VOLTS) 0.9 TJ = −55°C 25°C 0.7 25°C 0.5 150°C 0.3 0.04 0.06 0.1 0.2 0.4 0.6 1 2 4 0.4 0 0.03 0.05 0.1 IC/IB = 4 0.45 TJ = −55°C 0.35 25°C 0.25 0.15 150°C 0.05 0.04 0.06 0.1 0.2 0.4 0.6 1 2 4 Figure 4. Collector−Emitter Saturation Voltage 2k C, CAPACITANCE (pF) IC, COLLECTOR CURRENT (A) μ 3 Figure 3. Base−Emitter Voltage TJ = 150°C 125°C 100°C 75°C 50°C 25°C 0.1 −0.4 2 IC, COLLECTOR CURRENT (AMP) 1k 1 1 0.55 VCE = 250 V 10 0.2 0.3 0.5 0.7 IB, BASE CURRENT (AMP) IC, COLLECTOR CURRENT (AMP) 10 k 100 4A Figure 2. Collector Saturation Region 1.3 VBE(sat) @ IC/IB = 4 VBE(on) @ VCE = 2 V 3A 0.8 Figure 1. DC Current Gain 1.1 2A 1.2 REVERSE FORWARD −0.2 0 +0.2 +0.4 VBE, BASE−EMITTER VOLTAGE (VOLTS) Cib 1k 700 500 300 200 100 70 50 30 20 0.3 +0.6 Figure 5. Collector Cutoff Region Cob 0.5 1 3 5 10 30 50 VR, REVERSE VOLTAGE (VOLTS) Figure 6. Capacitance http://onsemi.com 3 100 300 MJE13005 ICPK Vclamp 90% Vclamp IC tsv 90% IC trv tfi tti tc VCE 10% Vclamp IB 90% IB1 10% ICPK 2% IC TIME Figure 7. Inductive Switching Measurements ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎ Table 1. Typical Inductive Switching Performance IC AMP TC _C tsv ns trv ns tfi ns tti ns tc ns 2 25 100 600 900 70 110 100 240 80 130 180 320 3 25 100 650 950 60 100 140 330 60 100 200 350 4 25 100 550 850 70 110 160 350 100 160 220 390 NOTE: All Data recorded in the inductive Switching Circuit In Table 2. SWITCHING TIMES NOTE In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCHMODE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measurements must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined. tsv = Voltage Storage Time, 90% IB1 to 10% Vclamp trv = Voltage Rise Time, 10−90% Vclamp tfi = Current Fall Time, 90−10% IC tti = Current Tail, 10−2% IC tc = Crossover Time, 10% Vclamp to 10% IC An enlarged portion of the inductive switching waveforms is shown in Figure 7 to aid in the visual identity of these terms. For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN−222: PSWT = 1/2 VCCIC(tc)f In general, t rv + t fi ] t c. However, at lower test currents this relationship may not be valid. As is common with most switching transistors, resistive switching is specified at 25°C and has become a benchmark for designers. However, for designers of high frequency converter circuits, the user oriented specifications which make this a “SWITCHMODE” transistor are the inductive switching speeds (tc and tsv) which are guaranteed at 100_C. RESISTIVE SWITCHING PERFORMANCE 10 1 VCC = 125 V IC/IB = 5 TJ = 25°C 0.5 t, TIME (s) μ t, TIME (s) μ tr 0.2 0.1 0.05 2 1 0.5 td @ VBE(off) = 5 V 0.3 0.02 0.01 0.04 VCC = 125 V IC/IB = 5 TJ = 25°C ts 5 tf 0.2 0.1 0.2 0.4 1 2 0.1 0.04 4 0.1 0.2 0.5 1 IC, COLLECTOR CURRENT (AMP) IC, COLLECTOR CURRENT (AMP) Figure 8. Turn−On Time Figure 9. Turn−Off Time http://onsemi.com 4 2 4 MJE13005 Table 2. Test Conditions for Dynamic Performance RESISTIVE SWITCHING REVERSE BIAS SAFE OPERATING AREA AND INDUCTIVE SWITCHING +5 V VCC 1N4933 33 +125 V MJE210 TEST CIRCUITS 0.001 mF DUTY CYCLE ≤ 10% tr, tf ≤ 10 ns RC 2N222 2 1k 68 5.1 k IB T.U.T. 47 100 1/2 W NOTE PW and VCC Adjusted for Desired IC RB Adjusted for Desired IB1 Coil Data: Ferroxcube Core #6656 Full Bobbin (~16 Turns) #16 *SELECTED FOR ≥ 1 kV D1 51 −4.0 V MJE200 − VBE(off) GAP for 200 mH/20 A Lcoil = 200 mH VCC = 125 V RC = 62 W D1 = 1N5820 or Equiv. RB = 22 W VCC = 20 V Vclamp = 300 Vdc TEST WAVEFORMS OUTPUT WAVEFORMS tf CLAMPED tf UNCLAMPED ≈ t2 IC t t1 VCE r(t), TRANSIENT THERMAL RESISTANCE (NORMALIZED) TIME 1 0.7 0.5 Lcoil (IC 0 Test Equipment Scope−Tektronics 475 or Equivalent −8 V tr, tf < 10 ns Duty Cycle = 1.0% RB and RC adjusted for desired IB and IC pk) Vclamp 0.1 0.1 0.02 0.01 SINGLE PULSE 0.02 0.05 0.1 P(pk) ZqJC(t) = r(t) RqJC RqJC = 1.67°C/W MAX D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT t1 TJ(pk) − TC = P(pk) ZqJC(t) 0.05 0.02 0.01 0.01 VCC t t2 pk) 0.2 0.2 0.03 t2 ≈ Lcoil (IC 25 ms D = 0.5 0.3 0.07 0.05 t1 ≈ tf VCE or Vclamp +10 V t1 ADJUSTED TO OBTAIN IC IC(pk) SCOPE RB VCE 1k 2N2905 TUT Vclamp IC RB 1k +5 V 1N493 3 0.02 mF 270 CIRCUIT VALUES MR826* 33 1N4933 5V PW L 0.2 0.5 1 2 5 t, TIME (ms) 10 20 Figure 10. Typical Thermal Response [ZqJC(t)] http://onsemi.com 5 t1 t2 DUTY CYCLE, D = t1/t2 50 100 200 500 1k MJE13005 SAFE OPERATING AREA INFORMATION The Safe Operating Area Figures 11 and 12 are specified ratings for these devices under the test conditions shown. 4 5 2 IC(pk) , COLLECTOR CURRENT (AMP) IC, COLLECTOR CURRENT (AMP) 10 500 ms 5 ms dc 1 0.5 1 ms 0.2 0.1 0.05 0.02 0.01 MJE13005 5 7 10 20 30 50 70 100 200 300 VCE, COLLECTOR−EMITTER VOLTAGE (VOLTS) TC ≤ 100°C IB1 = 2.0 A 3 2 1 MJE13005 0 500 400 VBE(off) = 9 V 0 100 200 300 400 500 600 5V 3V 1.5 V 700 800 VCE, COLLECTOR−EMITTER CLAMP VOLTAGE (VOLTS) Figure 11. Forward Bias Safe Operating Area Figure 12. Reverse Bias Switching Safe Operating Area FORWARD BIAS REVERSE BIAS There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC − VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 11 is based on TC = 25_C; T J(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC ≥ 25_C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 11 may be found at any case temperature by using the appropriate curve on Figure 13. T J(pk) may be calculated from the data in Figure 10. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. For inductive loads, high voltage and high current must be sustained simultaneously during turn−off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage−current conditions during reverse biased turn−off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 12 gives the complete RBSOA characteristics. POWER DERATING FACTOR 1 SECOND BREAKDOWN DERATING 0.8 0.6 THERMAL DERATING 0.4 0.2 0 20 40 60 80 100 120 140 TC, CASE TEMPERATURE (°C) Figure 13. Forward Bias Power Derating http://onsemi.com 6 160 MJE13005 PACKAGE DIMENSIONS TO−220AB CASE 221A−09 ISSUE AA SEATING PLANE −T− B C F T S 4 DIM A B C D F G H J K L N Q R S T U V Z A Q 1 2 3 U H K Z L R V NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED. J G D N INCHES MIN MAX 0.570 0.620 0.380 0.405 0.160 0.190 0.025 0.035 0.142 0.147 0.095 0.105 0.110 0.155 0.018 0.025 0.500 0.562 0.045 0.060 0.190 0.210 0.100 0.120 0.080 0.110 0.045 0.055 0.235 0.255 0.000 0.050 0.045 −−− −−− 0.080 STYLE 1: PIN 1. 2. 3. 4. MILLIMETERS MIN MAX 14.48 15.75 9.66 10.28 4.07 4.82 0.64 0.88 3.61 3.73 2.42 2.66 2.80 3.93 0.46 0.64 12.70 14.27 1.15 1.52 4.83 5.33 2.54 3.04 2.04 2.79 1.15 1.39 5.97 6.47 0.00 1.27 1.15 −−− −−− 2.04 BASE COLLECTOR EMITTER COLLECTOR SWITCHMODE is a trademark of Semiconductor Components Industries, LLC. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: N. American Technical Support: 800−282−9855 Toll Free Literature Distribution Center for ON Semiconductor USA/Canada P.O. Box 61312, Phoenix, Arizona 85082−1312 USA Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center 2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051 Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada Phone: 81−3−5773−3850 Email: [email protected] http://onsemi.com 7 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative. MJE13005/D