MAXIM MAX5322EAI

19-3150; Rev 2; 10/05
±10V, Dual, 12-Bit, Serial, Voltage-Output DAC
Features
The MAX5322 dual, 12-bit, serial-interface, digital-to-analog converter (DAC) provides bipolar ±5V to ±10V outputs from ±12V to ±15V analog power-supply voltages, or
unipolar 5V to 10V outputs from a single 12V to 15V analog power-supply voltage.
The MAX5322 features excellent linearity with both integral nonlinearity (INL) and differential nonlinearity (DNL)
guaranteed to ±1 LSB (max). The device also features a
fast 10µs to 0.5 LSB settling time, and a hardware-shutdown feature that reduces current consumption to 2.8µA.
The output goes to midscale at power-up in bipolar
mode (0V), and to zero scale at power-up in unipolar
mode (0V). A clear input (CLR) asynchronously clears
the DAC register and sets the outputs to 0V. The outputs
can be asynchronously updated with the load DAC
(LDAC) input.
The device features a fast 10MHz SPI™-/QSPI™/MICROWIRE™-compatible serial interface that operates
with 3V or 5V logic. Additional features include a serialdata output (DOUT) for daisy chaining and read-back
functions. The MAX5322 requires external reference voltages of 2V to 5.25V and is available in a 28-pin SSOP
package that operates over the extended (-40°C to
+85°C) temperature range.
♦ Unipolar or Bipolar Output-Voltage Ranges
Unipolar: 0 to +2 x VREF (Single or Dual Supply)
Bipolar: -2 x VREF to +2 x VREF (Dual Supply)
♦ Guaranteed INL ≤ ±1 LSB (max)
♦ Guaranteed Monotonic: DNL ≤ ±1 LSB (max)
♦ 10µs Settling Time to 0.5 LSB
♦ Low 2.8µA Shutdown Current
♦ Fast 10MHz SPI-/QSPI-/MICROWIRE-Compatible
Serial Interface
♦ Power-On Reset Sets DAC Output to 0V
♦ Schmitt Trigger Inputs for Direct
Optocoupler Interface
♦ Serial-Data Output Allows Daisy-Chaining
of Devices
♦ 28-Pin SSOP (8mm x 10mm)
Ordering Information
Applications
Motor Control
Industrial Process
Controls
Automatic Test
Equipment (ATE)
Analog I/O Boards
Industrial Automation
Data-Acquisition Systems
MAX5322
General Description
PART
TEMP RANGE
PIN-PACKAGE
MAX5322EAI
-40°C to +85°C
28 SSOP
Functional Diagram
2R
2R
SW2
REFA
LDAC
CLR
12-BIT
DAC A
SW1
A1
A2
INPUT
REGISTERS
12
DAC
REGISTERS
DGND
2R
SW6
12
12
REFB
DIN
SCLK
CS
UNI/BIPA
UNI/BIPB
SHDN
DOUT
VCC
OUTA
SW3
12
12-BIT
DAC B
SW4
2R
SW5
SGNDA
A3
16-BIT SHIFT REGISTER
A4
2R
DIGITAL
POWER
OUTB
2R
SERIAL INTERFACE
AND CONTROL
2R
2R
MAX5322
ANALOG
POWER
SGNDB
VSS
VDD
AGND
SPI and QSPI are trademarks of Motorola, Inc.
MICROWIRE is a trademark of National Semiconductor Corp.
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
1
MAX5322
±10V, Dual, 12-Bit, Serial, Voltage-Output DAC
ABSOLUTE MAXIMUM RATINGS
VDD to AGND..........................................................-0.3V to +17V
VSS to AGND ..........................................................-17V to +0.3V
VDD to VSS ..........................................................................+34V
VCC to DGND ...........................................................-0.3V to +6V
AGND to DGND.....................................................-0.3V to +0.3V
SGND_ to AGND ...................................................-0.3V to +0.3V
SCLK, DIN, CS, SHDN, UNI/BIP_, CLR,
LDAC, DOUT to DGND ..........................-0.3V to (VCC + 0.3V)
OUT_ to AGND.................................(VSS - 0.3V) to (VDD + 0.3V)
REF_ to AGND..........................................................-0.3V to +6V
Maximum Current into REF_ .............................................±10mA
Maximum Current into Any Pin Excluding REF_...............±50mA
Continuous Power Dissipation (TA = +70°C)
28-Pin SSOP (derate 9.5mW/°C above +70°C) ........761.9mW
Operating Temperature Range ...........................-40°C to +85°C
Junction Temperature ......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS (DUAL SUPPLY)
(VDD = +15V ±5%, VSS = -15V ±5%, VCC = +5V ±10%, AGND = DGND = SGND_ = 0V, VREF_ = 5V, RLOAD = 2kΩ, CLOAD = 250pF,
TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
±1
LSB
±1
LSB
STATIC ACCURACY
Resolution
N
Integral Nonlinearity
INL
Differential Nonlinearity
DNL
Zero-Scale Error
Zero-Scale Temperature
Coefficient
Gain Error
Gain-Error Temperature
Coefficient
12
Bits
Guaranteed monotonic
Bipolar, code = 800hex
±2
Unipolar, code = 000hex
±2
Bipolar
0.9
Unipolar
0.09
ppm
FSR/°C
Bipolar (output unloaded)
±2
Unipolar (output unloaded)
±2
Bipolar (output unloaded)
2
Unipolar (output unloaded)
2
LSB
LSB
ppm
FSR/°C
ANALOG OUTPUTS (OUTA, OUTB)
Output Voltage Range
(VSS + 1.5V) < VOUT < (VDD - 1.5V)
Resistive Load to GND
RLOAD
Capacitive Load to GND
CLOAD
-2 x
VREF
+2 x
VREF
2
kΩ
250
DC Output Resistance
V
pF
0.5
Ω
92
kΩ
SGND INPUTS (SGNDA, SGNDB)
Input Impedance
REFERENCE INPUTS (REFA, REFB)
Reference Voltage Input Range
Input Resistance
Reference Bandwidth
2
2.00
RREF
Code = 555hex, worst-case code
VREF = 200mVP-P + 5VDC
15
5.25
V
22
kΩ
200
kHz
_______________________________________________________________________________________
±10V, Dual, 12-Bit, Serial, Voltage-Output DAC
(VDD = +15V ±5%, VSS = -15V ±5%, VCC = +5V ±10%, AGND = DGND = SGND_ = 0V, VREF_ = 5V, RLOAD = 2kΩ, CLOAD = 250pF,
TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
DIGITAL INPUTS (SCLK, DIN, CS, SHDN, UNI/BIPA, UNI/BIPB, CLR, LDAC)
Input Voltage High
VIH
Input Voltage Low
VIL
Input Capacitance
C
Input Current (Note 1)
+2.7V ≤ VCC ≤ +3.6V
+4.5V ≤ VCC ≤ +5.5V
0.7 x VCC
V
2.4
+2.7V ≤ VCC ≤ +3.6V
0.8
+4.5V ≤ VCC ≤ +5.5V
0.8
+2.7V ≤ VCC ≤ +3.6V
10
+4.5V ≤ VCC ≤ +5.5V
10
V
pF
0 ≤ all digital inputs ≤ VCC,
+2.7V ≤ VCC ≤ +3.6V
±1
0 ≤ all digital inputs ≤ VCC,
+4.5V ≤ VCC ≤ +5.5V
±1
µA
DIGITAL OUTPUT (DOUT)
Output Voltage High
VOH
ISOURCE = 2mA
Output Voltage Low
VOL
ISINK = 2mA
VCC 0.5
V
0.4
V
Tri-State Leakage Current
0.1
µA
Tri-State Capacitance
10
pF
2.5
V/µs
10
µs
DYNAMIC PERFORMANCE
Voltage Output Slew Rate
Output Settling Time
To ±0.5 LSB of full scale, code 000 to
code FFF
Digital Feedthrough
CS = high, fSCLK = 10MHz, VOUT = 0V
10
nV-s
DAC-to-DAC Crosstalk
2.5
nV-s
Output-Noise Spectral Density at
10kHz
130
nV/√Hz
POWER SUPPLIES
Positive Analog-Supply Voltage
VDD
10.80
15.75
V
Negative Analog-Supply Voltage
VSS
-10.80
-15.75
V
Positive Digital-Supply Voltage
VCC
2.7
5.5
V
Positive Analog-Supply Current
IDD
Output unloaded, VOUT = 0
2.8
8
mA
Negative Analog-Supply Current
ISS
Output unloaded, VOUT = 0
-1.5
-8
mA
Digital-Supply Current
ICC
All digital inputs = 0 or VCC
200
µA
Power-Supply Rejection Ratio
(Note 2)
Shutdown Current
PSRR
Positive analog supply
0.0006
Negative analog supply
0.03
Positive analog supply
2.8
50
Negative analog supply
4
50
Digital supply
4
10
LSB/V
µA
_______________________________________________________________________________________
3
MAX5322
ELECTRICAL CHARACTERISTICS (DUAL SUPPLY) (continued)
MAX5322
±10V, Dual, 12-Bit, Serial, Voltage-Output DAC
ELECTRICAL CHARACTERISTICS (SINGLE SUPPLY)
(VDD = +15V ±5%, VSS = 0V, VCC = +5V ±10%, AGND = DGND = SGND_ = 0V, VREF_ = 5V, RLOAD = 10kΩ, CLOAD = 250pF,
TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
STATIC ACCURACY
Resolution
N
12
Bits
Integral Nonlinearity
INL
(Note 3)
±1
LSB
Differential Nonlinearity
DNL
Guaranteed monotonic
±1
LSB
±2
Unipolar Zero-Scale Error
Unipolar Zero-Scale Temperature
Coefficient
0.09
Gain Error
±2
No load
Gain-Error Temperature
Coefficient
No load
LSB
ppm
FSR/°C
LSB
ppm
FSR/°C
2
ANALOG OUTPUTS (OUTA, OUTB)
Output Voltage Range
+2 x
VREF
0
Resistive Load to GND
RLOAD
Capacitive Load to GND
CLOAD
10
kΩ
250
DC Output Resistance
V
pF
0.5
Ω
92
kΩ
SGND INPUTS (SGNDA, SGNDB)
Input Impedance
REFERENCE INPUTS (REFA, REFB)
Reference Voltage Input Range
2.00
Input Resistance
Code = 555hex, worst-case code
Reference Input Bandwidth
VREF = 200mVP-P + 5VDC
15
5.25
V
22
kΩ
150
kHz
DIGITAL INPUTS (SCLK, DIN, CS, SHDN, UNI/BIPA, UNI/BIPB, CLR, LDAC)
Input Voltage High
VIH
Input Voltage Low
VIL
Input Capacitance
CIN
Input Current
IIN
+2.7V ≤ VCC ≤ +3.6V
0.7 x
VCC
+4.5V ≤ VCC ≤ +5.5V
2.4
V
+2.7V ≤ VCC ≤ +3.6V
0.8
+4.5V ≤ VCC ≤ +5.5V
0.8
+2.7V ≤ VCC ≤ +3.6V
10
+4.5V ≤ VCC ≤ +5.5V
10
V
pF
0 ≤ VIN ≤ VCC, +2.7V ≤ VCC ≤ +3.6V
±1
0 ≤ VIN ≤ VCC, +4.5V ≤ VCC ≤ +5.5V
±1
µA
DIGITAL OUTPUT (DOUT)
Output Voltage High
VOH
ISOURCE = 2mA
Output Voltage Low
VOL
ISINK = 2mA
Tri-State Leakage Current
4
VCC 0.5
V
0.4
0.1
_______________________________________________________________________________________
V
µA
±10V, Dual, 12-Bit, Serial, Voltage-Output DAC
(VDD = +15V ±5%, VSS = 0V, VCC = +5V ±10%, AGND = DGND = SGND_ = 0V, VREF_ = 5V, RLOAD = 10kΩ, CLOAD = 250pF,
TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)
PARAMETER
SYMBOL
CONDITIONS
MIN
Tri-State Capacitance
TYP
MAX
UNITS
10
pF
2.5
V/µs
10
µs
DYNAMIC PERFORMANCE
Voltage Output Slew Rate
Output Settling Time
To ±0.5 LSB of full scale
Digital Feedthrough
CS = high, fSCLK = 10MHz, VOUT = 0V
10
nV-s
DAC-to-DAC Crosstalk
2.5
nV-s
Output-Noise Spectral Density at
10kHz
130
nV/√Hz
POWER SUPPLIES
Positive Analog Supply Voltage
VDD
Negative Analog Supply Voltage
VSS
Positive Digital Supply Voltage
VCC
Positive Analog Supply Current
IDD
Output unloaded, VOUT = 0
Negative Analog Supply Current
ISS
Output unloaded, VOUT = 0
Digital Supply Current
ICC
All digital inputs = 0 or VCC
9
Power-Supply Rejection Ratio
Shutdown Current
10.80
15.75
0
2.7
PSRR
V
V
5.5
V
2.5
8
mA
-0.5
-8
mA
200
µA
0.001
LSB/V
Analog supply
2.8
5
Digital supply
2.8
5
µA
_______________________________________________________________________________________
5
MAX5322
ELECTRICAL CHARACTERISTICS (SINGLE SUPPLY) (continued)
MAX5322
±10V, Dual, 12-Bit, Serial, Voltage-Output DAC
TIMING CHARACTERISTICS
(VDD = +15V, VSS = -15V or 0V, VCC = +2.7V to +5.5V, AGND = DGND = SGND_ = 0, VREF_ = 5V, RLOAD = 2kΩ, ,CLOAD = 250pF,
TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
SCLK Frequency
SCLK Clock Period
tCP
SCLK Pulse-Width High
tCH
SCLK Pulse-Width Low
tCL
CS Fall to SCLK Rise Setup Time
tCSS
SCLK Rise to CS Rise Hold Time
tCSH
MAX
UNITS
10
MHz
100
ns
For nondaisy-chain use
45
ns
For nondaisy-chain use
45
For daisy-chain use
ns
98
40
+2.7V ≤ VCC ≤ +3.6V
15
+4.5V ≤ VCC ≤ +5.5V
10
ns
ns
DIN Setup Time
tDS
20
ns
DIN Hold Time
tDH
10
ns
LDAC Pulse Width
tLD
50
ns
CS Rise to LDAC Low Setup Time
tLDS
SCLK Fall to DOUT Valid
Propagation Delay
tDO1
SCLK Rise to CS Fall Delay
tCS0
CS Low to DOUT Valid Time
tCSE
CS High to DOUT Disabled Time
tCSD
CS Rise to SCLK Rise Hold Time
tCS1
CS Pulse-Width High
tCSW
CLR Pulse-Width Low
tCLR
+2.7V ≤ VCC ≤ +3.6V
100
+4.5V ≤ VCC ≤ +5.5V
50
CLOAD = 20pF, +2.7V ≤ VCC ≤ +3.6V
100
CLOAD = 20pF, +4.5V ≤ VCC ≤ +5.5V
80
10
CLOAD = 20pF
120
50
+2.7V ≤ VCC ≤ +3.6V
200
+4.5V ≤ VCC ≤ +5.5V
100
50
_______________________________________________________________________________________
ns
ns
120
Note 1: Output unloaded, digital inputs = VCC or DGND.
Note 2: ∆VDD = 15.5V to 14.5V, ∆VSS = -15.5V to -14.5V, input code = 14hex to FFFhex
Note 3: Accuracy is guaranteed from code 14hex to FFFhex
6
ns
ns
ns
ns
ns
ns
±10V, Dual, 12-Bit, Serial, Voltage-Output DAC
0.4
0.3
0.4
0.3
0.2
0.1
0.1
0.1
-0.1
DNL (LSB)
0.2
INL (LSB)
0.2
0
0
-0.1
0
-0.1
-0.2
-0.2
-0.2
-0.3
-0.3
-0.3
-0.4
-0.4
-0.4
-0.5
-0.5
-0.5
1024
2048
4096
3072
2.0
2.5
INPUT CODE (DECIMAL)
3.0
3.5
4.0
4.5
5.0
DIFFERENTIAL NONLINEARITY
vs. REFERENCE VOLTAGE
1024
0.3
4096
3072
BIPOLAR DNL vs. TEMPERATURE
0.5
MAX5322 toc04
0.4
2048
INPUT CODE (DECIMAL)
BIPOLAR INL vs. TEMPERATURE
0.5
WORST CASE
0.4
0.5
WORST CASE
0.4
INL (LSB)
0.1
0
-0.1
-0.2
DNL (LSB)
0.3
0.2
0.2
0.1
0.3
0.2
0
-0.3
0.1
-0.1
-0.4
-0.5
0
-0.2
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
-40
-15
10
35
60
REFERENCE VOLTAGE (V)
TEMPERATURE (°C)
UNIPOLAR SETTLING TIME
(CLOAD = 250pF, RLOAD = 10kΩ)
BIPOLAR SETTLING TIME
(CLOAD = 250pF, RLOAD = 2kΩ)
A
5V/div
CS
CS
2V/div
10
35
60
85
BIPOLAR MAJOR CARRY GLITCH
ENERGY, CLOAD = 250pF
MAX5322 toc09
CS
VOUT
100mV/div
VOUT
VOUT
0
0
t = 10.0µs/div
t = 10.0µs/div
A: CS, 5.0V/div
B: OUT, 2.0V/div
-15
TEMPERATURE (°C)
5V/div
B
5V/div
B
-40
85
MAX5322 toc08
MAX5322 toc07
A
5V/div
0
5.5
REFERENCE VOLTAGE (V)
MAX5322 toc05
0
MAX5322 toc03
0.3
0.5
MAX5322 toc02
0.4
INL (LSB)
0.5
MAX5322 toc01
0.5
DNL (LSB)
DIFFERENTIAL NONLINEARITY
vs. INPUT CODE
INTEGRAL NONLINEARITY
vs. REFERENCE VOLTAGE
MAX5322 toc06
INTERGRAL NONLINEARITY
vs. INPUT CODE
t = 4.00µs/div
A: CS, 5.0V/div
B: OUT, 5.0V/div
_______________________________________________________________________________________
7
MAX5322
Typical Operating Characteristics
(VDD = +15V, VSS = -15V for bipolar graphs, VSS = 0 for unipolar graphs, VCC = +5V, AGND = DGND = SGND_ = 0, VREF_ = +5.0V,
output unloaded, TA = +25°C, all graphs apply to both unipolar and bipolar, unless otherwise noted.)
Typical Operating Characteristics (continued)
(VDD = +15V, VSS = -15V for bipolar graphs, VSS = 0 for unipolar graphs, VCC = +5V, AGND = DGND = SGND_ = 0, VREF_ = +5.0V,
output unloaded, TA = +25°C, all graphs apply to both unipolar and bipolar, unless otherwise noted.)
2.5
MAX5322 toc11
50
CS
5V/div
BIPOLAR ZERO-SCALE VOLTAGE
vs. TEMPERATURE
UNIPOLAR ZERO-SCALE VOLTAGE
vs. TEMPERATURE
MAX5322 toc10
CODE = 0X014hex
49
VOUT (mV)
VOUT (mV)
VOUT
100mV/div
46
CODE = 0X800hex
2.0
48
47
MAX5322 toc12
BIPOLAR MAJOR CARRY GLITCH
CLOAD = 10pF
45
44
1.5
1.0
0.5
43
42
9.998
MAX5322 toc13
CODE = 0XFFFhex
9.999
35
60
85
-40
CODE = 0XFFFhex
CODE = 0X000hex
-9.993
-9.994
9.995
-9.995
9.995
9.993
-9.997
9.992
10
35
60
-9.998
-40
85
-15
10
35
60
85
-40
-15
10
35
60
85
TEMPERATURE (°C)
TEMPERATURE (°C)
TEMPERATURE (°C)
UNIPOLAR SUPPLY CURRENT
vs. SUPPLY VOLTAGE
BIPOLAR POSITIVE SUPPLY CURRENT
vs. SUPPLY VOLTAGE
BIPOLAR NEGATIVE SUPPLY CURRENT
vs. SUPPLY VOLTAGE
4
IDD (mA)
3
0
3
VDD = 15V
-1
-2
2
2
-3
1
1
-4
0
0
11.8
12.8
13.8
VDD (V)
14.8
15.8
MAX5322 toc17b
4
VSS = -15V
ISS (mA)
VSS = 0V
MAX5322 toc17a
5
MAX5322 toc16
5
10.8
85
-9.992
-9.996
-15
60
NEGATIVE BIPOLAR FULL-SCALE VOLTAGE
vs. TEMPERATURE
9.994
-40
35
POSITIVE BIPOLAR FULL-SCALE VOLTAGE
vs. TEMPERATURE
9.996
9.994
10
TEMPERATURE (°C)
VOUT (V)
9.997
-15
TEMPERATURE (°C)
9.996
VOUT (V)
VOUT (V)
10
9.997
9.998
8
-15
MAX5322 toc15
UNIPOLAR FULL-SCALE VOLTAGE
vs. TEMPERATURE
10.000
0
-40
MAX5322 toc14
t = 4.00µs/div
IDD (mA)
MAX5322
±10V, Dual, 12-Bit, Serial, Voltage-Output DAC
-5
10.8
11.8
12.8
13.8
VDD (V)
14.8
15.8
-15.8
-14.8
-13.8
-12.8
VSS (V)
_______________________________________________________________________________________
-11.8
-10.8
±10V, Dual, 12-Bit, Serial, Voltage-Output DAC
4.0
-1.0
-1.5
3.0
3.0
-2.0
2.5
ISS (mA)
3.5
2.5
-2.5
2.0
2.0
-3.0
1.5
1.5
-3.5
1.0
1.0
-4.0
0.5
0.5
-4.5
0
0
-5.0
-15
10
35
60
85
-40
-15
10
35
60
85
-40
-15
10
35
60
TEMPERATURE (°C)
TEMPERATURE (°C)
TEMPERATURE (°C)
BIPOLAR SHUTDOWN CURRENT
vs. TEMPERATURE
UNIPOLAR SHUTDOWN CURRENT
vs. TEMPERATURE
UNIPOLAR OUTPUT VOLTAGE
vs. OUTPUT CURRENT
IDD
2
1
0
ISS
CODE = FFFhex
10.000
9.995
3
9.990
IDD
2
1
9.985
9.980
9.975
9.970
0
-2
85
MAX5322 toc22A
MAX5322 toc21
ICC
10.005
VOUT (V)
3
-1
4
SHUTDOWN CURRENT (µA)
ICC
4
5
MAX5322 toc20
5
9.965
-1
-3
10
35
60
-40
85
-15
10
35
60
9.960
85
0
8
12
16
TEMPERATURE (°C)
IOUT (mA)
UNIPOLAR OUTPUT VOLTAGE
vs. OUTPUT CURRENT
BIPOLAR OUTPUT VOLTAGE
vs. OUTPUT CURRENT
BIPOLAR OUTPUT VOLTAGE
vs. OUTPUT CURRENT
-9.965
0.115
CODE = 000hex
-9.970
10.005
9.995
-9.975
0.095
0.085
9.990
-9.980
VOUT (V)
VOUT (V)
0.105
-9.985
-9.990
0.075
9.985
9.980
9.975
0.065
-9.995
9.970
0.055
-10.000
9.965
0.045
-10.005
0.2
0.4
0.6
IOUT (mA)
0.8
1.0
1.2
CODE = FFFhex
10.000
20
MAX5322 toc23B
CODE = 014hex
0.125
0
4
TEMPERATURE (°C)
MAX5322 toc23A
0.135
-15
MAX5322 toc22B
-40
VOUT (V)
0
-0.5
3.5
-40
SHUTDOWN CURRENT (µA)
4.5
IDD (mA)
IDD (mA)
4.0
BIPOLAR NEGATIVE SUPPLY CURRENT
vs. TEMPERATURE
MAX5322 toc19A
VSS = 0V
4.5
5.0
MAX5322 toc18
5.0
BIPOLAR POSITIVE SUPPLY CURRENT
vs. TEMPERATURE
MAX5322 toc19B
UNIPOLAR SUPPLY CURRENT
vs. TEMPERATURE
9.960
-20
-16
-12
-8
IOUT (mA)
-4
0
0
4
8
12
16
20
IOUT (mA)
_______________________________________________________________________________________
9
MAX5322
Typical Operating Characteristics (continued)
(VDD = +15V, VSS = -15V for bipolar graphs, VSS = 0 for unipolar graphs, VCC = +5V, AGND = DGND = SGND_ = 0, VREF_ = +5.0V,
output unloaded, TA = +25°C, all graphs apply to both unipolar and bipolar, unless otherwise noted.)
Typical Operating Characteristics (continued)
(VDD = +15V, VSS = -15V for bipolar graphs, VSS = 0 for unipolar graphs, VCC = +5V, AGND = DGND = SGND_ = 0, VREF_ = +5.0V,
output unloaded, TA = +25°C, all graphs apply to both unipolar and bipolar, unless otherwise noted.)
BIPOLAR REFERENCE INPUT RESISTANCE
vs. INPUT CODE
70
60
50
40
30
90
80
70
60
50
40
20
10
10
0
0
1024
2048
3072
-5
-10
30
20
0
0
RESPONSE (dB)
80
5
MAX5322 toc25
REF INPUT RESISTANCE (kΩ)
90
100
REF INPUT RESISTANCE (kΩ)
MAX5322 toc24
100
UNIPOLAR REFERENCE
INPUT BANDWIDTH
MAX5322 toc26
UNIPOLAR REFERENCE INPUT RESISTANCE
vs. INPUT CODE
-15
200mVP-P INTO REF_
-20
0
4096
1024
2048
4096
3072
INPUT CODE (DECIMAL)
INPUT CODE (DECIMAL)
BIPOLAR REFERENCE
INPUT BANDWIDTH
UNIPOLAR STARTUP RESPONSE,
CLOAD = 10pF
0.01
MAX5322 toc27
0
0.1
1
10
MAX5322 toc28B
20V/div
VDD
VCC
5V/div
VCC
5V/div
VREF
5V/div
VREF
2V/div
VOUT
1V/div
VOUT
5V/div
-5
-10
-15
200mVP-P INTO REF_
-20
0.01
0.1
1
10
100
t = 10.0µs/div
1000
t = 10.0µs/div
FREQUENCY (kHz)
BIPOLAR STARTUP RESPONSE,
CLOAD = 10pF
BIPOLAR STARTUP RESPONSE,
CLOAD = 230pF
MAX5322 toc29A
20V/div
5V/div
VDD
VCC
5V/div
VDD
VCC
10V/div
VSS
10V/div
VSS
2V/div
VOUT
1V/div
VOUT
t = 10.0µs/div
10
MAX5322 toc29B
20V/div
1000
UNIPOLAR STARTUP RESPONSE,
CLOAD = 230pF
VDD
20V/div
100
FREQUENCY (kHz)
MAX5322 toc28A
5
RESPONSE (dB)
MAX5322
±10V, Dual, 12-Bit, Serial, Voltage-Output DAC
t = 10.0µs/div
______________________________________________________________________________________
±10V, Dual, 12-Bit, Serial, Voltage-Output DAC
UNIPOLAR RELEASE FROM
HARDWARE SHUTDOWN RESPONSE
BIPOLAR RELEASE FROM
HARDWARE SHUTDOWN RESPONSE
MAX5322 toc30
UNIPOLAR
SOFTWARE-SHUTDOWN RESPONSE
MAX5322 toc31
VOUT
MAX5322 toc32A
5V/div
CS
VOUT
5V/div
5V/div
VSHDN
VSHDN
5V/div
VOUT
2V/div
2V/div
t = 100µs/div
t = 100µs/div
BIPOLAR
SOFTWARE-SHUTDOWN RESPONSE
t = 40.0µs/div
DAC-TO-DAC CROSSTALK
MAX5322 toc33
MAX5322 toc32B
5V/div
1mV/div
CS
OUTB
0V
5V/div
10V/div
VOUT
OUTA
t = 40.0µs/div
0V
t = 100µs/div
______________________________________________________________________________________
11
MAX5322
Typical Operating Characteristics (continued)
(VDD = +15V, VSS = -15V for bipolar graphs, VSS = 0 for unipolar graphs, VCC = +5V, AGND = DGND = SGND_ = 0, VREF_ = +5.0V,
output unloaded, TA = +25°C, all graphs apply to both unipolar and bipolar, unless otherwise noted.)
MAX5322
±10V, Dual, 12-Bit, Serial, Voltage-Output DAC
Pin Description
PIN
NAME
1, 2, 13–16,
27, 28
N.C.
3
UNI/BIPB
4
SHDN
Active-Low Shutdown Input. Pulling SHDN low forces the DAC buffers into high impedance. Drive
SHDN high for normal operation.
5
LDAC
Active-Low Load DAC Input. DAC A and DAC B are updated with information in the input register on
the LDAC falling edge.
6
CLR
Active-Low Asynchronous Clear DAC Input. Pulling CLR low clears all DACs and input registers; resets
all outputs to zero.
7
DGND
8
VCC
9
DOUT
10
SCLK
11
DIN
Serial-Data Input. Data is clocked in on the rising edge of SCLK.
12
CS
Active-Low Chip-Select Input. Data is not clocked into DIN unless CS is low.
17
UNI/BIPA
12
18
OUTA
19
SGNDA
20
REFA
21
VDD
22
REFB
23
AGND
24
SGNDB
25
OUTB
26
VSS
FUNCTION
No Connection. Not internally connected.
DAC B Output-Mode Selection Input. Selects unipolar or bipolar output. Logic high = unipolar, logic
low = bipolar. In unipolar mode, the analog output range is 0 to 2 x VREF. In bipolar mode, the analog
output range is (-2 x VREF) to (+2 x VREF).
Digital Ground
Digital Power Input. Connect VCC to a +2.7V to +5.5V power supply. Bypass VCC to DGND with a 10µF
and 0.1µF capacitor in parallel as close to the device as possible.
Serial-Data Output. Data is clocked out on SCLK’s falling edge. DOUT is high impedance when CS is
high. Data shifted into DIN appears at DOUT 16.5 clock cycles later.
Serial-Clock Input. SCLK clocks data in and out of the serial interface.
DAC A Output-Mode Selection. Selects unipolar or bipolar output. Logic high = unipolar, logic low =
bipolar. In unipolar mode, the analog output range is 0 to 2 x VREF. In bipolar mode, the analog output
range is (-2 x VREF) to (+2 x VREF).
DAC A Output
DAC A Sense Ground. Connect to AGND.
Reference Input for DAC A
Positive Analog-Power Input. Connect VDD to a +10.8V to +15.75V power supply. Bypass VDD to
AGND with a 10µF and 0.1µF capacitor in parallel as close to the device as possible.
DAC B Reference Input
Analog Ground
DAC B Sense Ground. Connect to AGND.
DAC B Output
Negative Analog-Power Input. For single-supply operation, connect VSS to AGND. For dual-supply
operation, connect VSS to a -10.8V to -15.75V power supply and bypass VSS to AGND with a 10µF and
0.1µF capacitor in parallel, as close to the device as possible.
______________________________________________________________________________________
±10V, Dual, 12-Bit, Serial, Voltage-Output DAC
The MAX5322 dual, 12-bit DAC operates from either
single or dual analog supplies. Dual ±12V to ±15V
power supplies provide bipolar ±5V to ±10V outputs, or
unipolar 0V to 10V outputs. Single 12V to 15V analog
power supplies only provide unipolar 0 to 10V outputs.
The reference inputs accept voltages from 2V to 5.25V.
The DAC features INL and DNL less than ±1 LSB (max),
a fast 10µs settling time, and a hardware shutdown
mode that reduces current consumption to 2.8µA. The
device features a 10MHz SPI-/QSPI-/MICROWIRE-compatible serial interface that operates with 3V or 5V logic,
an asynchronous load input, and a serial-data output.
The device offers a CLR that sets the DAC outputs to 0V.
Figure 1 shows the functional diagram of the MAX5322.
Serial Interface
An SPI-/QSPI-/MICROWIRE-compatible serial interface
allows complete control of the DAC through a 16-bit
control word. The first 4 bits form the control bits that
determine register loading and software shutdown
functions. The last 12 bits form the DAC data. The 16bit word is entered MSB first.
Table 1 shows the serial-data control-word format.
Table 2 shows the interface commands. The MAX5322
can be programmed while in shutdown.
The serial interface contains five registers: a 16-bit shift
register, two 12-bit input registers, and two 12-bit DAC
registers (Figure 1). The shift register accepts data
from the serial interface. The input registers act as
holding registers for data going to the DAC registers
Table 1. Control-Word Format
CONTROL BITS
DATA BITS
MSB
LSB
C3
C2
C1
C0
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
Table 2. Serial-Interface Programming Commands
16-BIT SERIAL WORD
CONTROL BITS
FUNCTION
DATA BITS
C3
C2
C1
C0
D11–D0
0
0
0
0
XXXXXXXXXXXX
No operation (NOP).
1
12-bit DAC data
Load both DAC registers and both input registers from the shift register.
(Start both DACs with new data.)
0
0
0
0
0
1
0
12-bit DAC data
Load input register A from the shift register; DAC registers are unchanged.
0
0
1
1
12-bit DAC data
Load input register B from the shift register; DAC registers are unchanged.
0
1
0
0
12-bit DAC data
Load DAC register A and input register A from the shift register.
0
1
0
1
12-bit DAC data
Load DAC register B and input register B from the shift register.
0
1
1
0
XXXXXXXXXXXX
Update DAC register A from input register A (no data sent).
0
1
1
1
XXXXXXXXXXXX
Update DAC register B from input register B (no data sent).
1
0
0
0
XXXXXXXXXXXX
Shut down DAC A (provided SHDN = 1).
1
0
0
1
XXXXXXXXXXXX
Shut down DAC B (provided SHDN = 1).
1
0
1
0
XXXXXXXXXXXX
Update both DAC registers from their respective input registers.
(Start both DACs with data previously stored in the input register.)
1
0
1
1
XXXXXXXXXXXX
Shut down both DACs (provided SHDN = 1).
1
1
0
0
XXXXXXXXXXXX
Power up DAC A (no change to any registers).
1
1
0
1
XXXXXXXXXXXX
Power up DAC B (no change to any registers).
1
1
1
0
XXXXXXXXXXXX
Power up both DACs (no change to any registers).
1
1
1
1
XXXXXXXXXXXX
Not used.
X = Don’t care.
Note: The DACs can be programmed in shutdown mode.
______________________________________________________________________________________
13
MAX5322
Detailed Description
MAX5322
±10V, Dual, 12-Bit, Serial, Voltage-Output DAC
DAC Architecture
and isolate the shift register from the DAC registers.
The DAC registers control the DAC ladder and thus the
output voltage. Any update to a DAC register updates
the respective output voltage.
Data in the shift register is transferred to the input registers during the appropriate software command only.
Data in the input registers is transferred to the DAC
registers in two ways: using the software command, or
through external logic control using the asynchronous
load input (LDAC). Table 2 shows the software commands that transfer the data from the shift register to
the input and/or DAC registers. The CLR, an external
logic control, asynchronously forces all outputs to 0V, in
both unipolar and bipolar modes. Interface timing is
shown in Figures 2 and 3.
The MAX5322 uses an inverted DAC ladder architecture to convert the digital input into an analog output
voltage. The digital input controls weighted switches
that connect the DAC-ladder nodes to either REFA
(REFB) or GND (Figure 4). The sum of the weights produces the analog equivalent of the digital-input word
and is then buffered at the output.
External Reference and Transfer
Functions
Connect an external reference of 2V to 5.25V to REFA
and REFB. Set the output voltage range with the reference and the input code by using the equations below.
Unipolar output voltage:
Wait a minimum of 100ns after CS goes high before
implementing LDAC or CLR. If either of these logic
inputs activates during a data transfer, the incoming
data is corrupted and needs to be reloaded. For software control only, tie LDAC and CLR high.
VOUT _ UNI = LSBUNI × CODE
COMMAND EXECUTED
CS
SCLK
1
DIN
C3
8
C2
C1
C0
D11
D10
D9
D8
9
D7
16
D6
D5
D4
D3
D2
D1
(1)
D0
Figure 2. Serial-Interface Signals
tCSW
CS
tCSS
tCS0
tCP
tCSH
tCS1
SCLK
tCH
tDS
DIN
tCL
tDH
LSB
MSB
tCSE
tDO1
tCSD
DOUT
tLDS
tLD
LDAC
Figure 3. Serial-Interface Timing Diagram
14
______________________________________________________________________________________
±10V, Dual, 12-Bit, Serial, Voltage-Output DAC
LSBUNI =
This configuration channels the DAC output through two
output stages to generate the ±2 x VREF output swing.
The first amplifier generates the ±VREF voltage range and
the second amplifier gains it up by two. When configured
for bipolar operation, the MAX5322 must be driven with
dual ±12V to ±15V power supplies.
With UNI/BIPA (UNI/BIPB) forced high, switches SW1
(SW4) and SW2 (SW5) are open and SW3 (SW6) is
closed. This configuration channels the DAC output
through only a single gain stage to generate a 0 to 2 x
VREF output swing.
2 × VREF
212
Bipolar output voltage:
VOUT _ BIP = (LSBBIP × CODE) − (2 × VREF )
where:
LSBBIP =
4 × VREF
212
where VOUT_UNI is the unipolar output voltage, VOUT_BIP
is the bipolar output voltage, LSBUNI is the unipolar LSB
step size, LSBBIP is the bipolar LSB step size, VREF is
the reference voltage, and CODE is the decimal equivalent of the binary, 12-bit, DAC input code.
In either case, a 000hex input code produces the minimum output (-2 x VREF for bipolar and zero for unipolar), an 800hex input code produces the midscale
output (zero for bipolar and VREF for unipolar), and a
FFFhex input code produces the full-scale output (2 x
VREF for bipolar and unipolar).
Output Amplifiers
The output-amplifier section can be configured as either
unipolar or bipolar by the UNI/BIP logic input. With
UNI/BIPA (UNI/BIPB) forced low, SW1 (SW4) and SW2
(SW5) in Figure 1 are closed, and SW3 (SW6) is open.
Daisy-Chaining
SPI-/QSPI-/MICROWIRE-compatible devices can be
daisy-chained to reduce I/O lines from the host controller
(Figure 7). Daisy-chain devices by connecting the DOUT
of one device to the DIN of the next, and connect the
SCLK of all devices to a common clock. Data is shifted
out of DOUT 16.5 clock cycles after it is shifted into DIN,
and is available on the rising edge of the 17th clock
cycle. The SPI-/QSPI-/MICROWIRE-compatible serial
interface normally works at up to 10MHz, but must be
slowed to 6MHz if daisy-chaining. DOUT is high impedance when CS is high.
Shutdown
Shutdown is controlled by software commands or by the
SHDN logic input. The SHDN logic input may be implemented at any time. The SPI-/QSPI-/MICROWIRE-compatible serial interface remains fully functional, and the
device is programmable while shutdown. When shut
down, the MAX5322 supply current reduces to 2.8µA
2R
R
2R
R
MAX5322
R
SW2
2R
2R
2R
2R
2R
SW1
OUTA
D0
1
0
D1
1
0
D10
1
0
D11
1
SW3
2R
0
REFA
2R
AGND
SGNDA
DAC REGISTER A
UNI/BIPA
CONTROL LOGIC
Figure 4. Basic Inverted DAC Ladder
______________________________________________________________________________________
15
MAX5322
where:
(max), DOUT is high impedance, and OUTA and OUTB
are pulled to SGNDA and SGNDB, respectively, through
the internal feedback resistors of the output amplifier
(Figure 1). When coming out of shutdown, or during
device power-up, allow 350µs for the output to stabilize.
Applications Information
Power Supplies
A single supply of +12V to +15V is required to realize an
output swing of 0 to 10V. A dual supply of ±12V to ±15V
is required to realize an output swing of ±10V, and allows
unipolar, 0 to +10V output if UNI/BIP_ is forced high. A
+3V to +5V digital power supply and two +2.000V to
+5.250V external reference voltages are also required.
Always bring up the reference voltages last; the other
power supplies do not require sequencing.
Power-Supply Bypassing and
Ground Management
Bypass VDD and VSS with 1.0µF and 0.1µF capacitors to
AGND, and bypass VCC with a 1.0µF and 0.1µF capacitors to DGND. Minimize trace lengths to reduce inductance. Digital and AC transient signals on AGND or
DGND can create noise at the output. Connect AGND
and DGND to the highest quality ground available. Use
proper grounding techniques, such as a multilayer board
with a low-inductance ground plane or star connect all
ground return paths back to AGND. Carefully lay out the
traces between channels to reduce AC cross coupling
and crosstalk. Wire-wrapped boards, sockets, and
breadboards are not recommended.
Table 3. Output Voltage as Input Code Examples
BINARY DAC CODE
ANALOG OUTPUT
LSB
UNIPOLAR (UNI/BIP_ = HIGH)
BIPOLAR (UNI/BIP_ = LOW)
+2 x VREF (4095 / 4096)
+2 x VREF (2047 / 2048)
1000 0000 0001
+2 x VREF (2049 / 4096)
+2 x VREF (1 / 2048)
1000 0000 0000
+2 x VREF (2048 / 4096) = VREF
0
0111 1111 1111
+2 x VREF (2047 / 4096)
-2 x VREF (1 / 2048)
0000 0000 0001
+2 x VREF (1 / 4096)
-2 x VREF (2047 / 2048)
0000 0000 0000
0
-2 x VREF (2048 / 2048) = -2 x VREF
1111 1111 1111
2 x VREF
4096
1 LSB =
4095
4094
4093
4092
2 x VREF
2049
2048
2047
+2047
+2046
+2045
+2044
+1
0
-1
3
2
1
-2045
0
-2048
-2046
Figure 5. Unipolar Transfer Function
FFC
FFD
FFE
FFF
801
800
7FF
000
001
002
003
FFC
FFD
FFE
FFF
801
800
7FF
000
001
002
003
-2047
hex DIGITAL INPUT CODE (LSB)
16
4 x VREF
4096
4 x VREF
1 LSB =
ANALOG OUTPUT VOLTAGE (LSB)
MSB
ANALOG OUTPUT VOLTAGE (LSB)
MAX5322
±10V, Dual, 12-Bit, Serial, Voltage-Output DAC
hex DIGITAL INPUT CODE (LSB)
Figure 6. Bipolar Transfer Function
______________________________________________________________________________________
±10V, Dual, 12-Bit, Serial, Voltage-Output DAC
MAX5322
SCLK
CS
CS
CS
CS
TO OTHER
SERIAL DEVICES
MAX5322
MAX5322
SCLK
DIN
MAX5322
SCLK
DOUT
DIN
DIN
SCLK
DOUT
DIN
DOUT
Figure 7. Daisy-Chaining Devices
Pin Configuration
Chip Information
TRANSISTOR COUNT: 5914
PROCESS: BiCMOS
TOP VIEW
N.C. 1
28 N.C.
N.C. 2
27 N.C.
UNI/BIPB 3
26 VSS
SHDN 4
25 OUTB
LDAC 5
CLR 6
24 SGNDB
MAX5322
DGND 7
23 AGND
22 REFB
VCC 8
21 VDD
DOUT 9
20 REFA
SCLK 10
19 SGNDA
DIN 11
18 OUTA
CS 12
17 UNI/BIPA
N.C. 13
16 N.C.
N.C. 14
15 N.C.
SSOP
______________________________________________________________________________________
17
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)
2
SSOP.EPS
MAX5322
±10V, Dual, 12-Bit, Serial, Voltage-Output DAC
1
INCHES
E
H
MILLIMETERS
DIM
MIN
MAX
MIN
MAX
A
0.068
0.078
1.73
1.99
A1
0.002
0.008
0.05
0.21
B
0.010
0.015
0.25
0.38
C
0.20
0.09
0.004 0.008
SEE VARIATIONS
D
E
e
0.205
0.212
0.0256 BSC
5.20
MILLIMETERS
INCHES
D
D
D
D
D
5.38
MIN
MAX
MIN
MAX
0.239
0.239
0.278
0.249
0.249
0.289
6.07
6.07
7.07
6.33
6.33
7.33
0.317
0.397
0.328
0.407
8.07
10.07
8.33
10.33
N
14L
16L
20L
24L
28L
0.65 BSC
H
0.301
0.311
7.65
7.90
L
0.025
0∞
0.037
8∞
0.63
0∞
0.95
8∞
N
A
C
B
e
L
A1
D
NOTES:
1. D&E DO NOT INCLUDE MOLD FLASH.
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED .15 MM (.006").
3. CONTROLLING DIMENSION: MILLIMETERS.
4. MEETS JEDEC MO150.
5. LEADS TO BE COPLANAR WITHIN 0.10 MM.
PROPRIETARY INFORMATION
TITLE:
PACKAGE OUTLINE, SSOP, 5.3 MM
APPROVAL
DOCUMENT CONTROL NO.
21-0056
REV.
C
1
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
18 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2005 Maxim Integrated Products
Printed USA
is a registered trademark of Maxim Integrated Products, Inc.