TOSHIBA Original CMOS 16-Bit Microcontroller TLCS-900/L Series TMP93CW40/41 Semiconductor Company Preface Thank you very much for making use of Toshiba microcomputer LSIs. Before use this LSI, refer the section, “Points of Note and Restrictions”. Especially, take care below cautions. **CAUTION** How to release the HALT mode Usually, interrupts can release all halts status. However, the interrupts = ( NMI , INT0), which can release the HALT mode may not be able to do so if they are input during the period CPU is shifting to the HALT mode (for about 3 clocks of fFPH) with IDLE1 or STOP mode (IDLE2, RUN is not applicable to this case). (In this case, an interrupt request is kept on hold internally.) If another interrupt is generated after it has shifted to HALT mode completely, halt status can be released without difficultly. The priority of this interrupt is compare with that of the interrupt kept on hold internally, and the interrupt with higher priority is handled first followed by the other interrupt. TMP93CW40/TMP93CW41 Low Voltage/Low Power CMOS 16-Bit Microcontrollers TMP93CW40DF/TMP93CW41DF 1. Outline and Device Characteristics TMP93CW40/W41 are high-speed advanced 16-bit microcontrollers developed for controlling medium to large-scale equipment. The TMP93CW40/CW41 enable low-voltage and low consumption power operation. The TMP93CW40/W41 are housed in 100-pin flat package. The device characteristics are as follows: (1) Original 16-bit CPU (900/L CPU) • TLCS-90 instruction mnemonic upward compatible • 16-Mbyte linear address space • General-purpose registers and resister bank system • 16-bit multiplication/division and bit transfer/arithmetic instructions • High-speed micro DMA: 4 channels (1.6 µs/2 bytes at 20 MHz) (2) Minimum instruction execution time: 200 ns at 20 MHz (3) Internal RAM: 4 Kbytes Internal ROM: TMP93CW40 128-Kbyte ROM TMP93CW41 None (4) External memory expansion • Can be expanded up to 16 Mbytes (for both programs and data). • AM8/ AM16 pin (select the external data bus width) • Can mix 8- and 16-bit external data buses. ... Dynamic data bus sizing (5) 8-bit timer: 2 channels (6) 8-bit PWM timer: 2 channels 030619EBP1 • The information contained herein is subject to change without notice. • The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. • TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability Handbook” etc.. • The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunctionor failure of which may cause loss of human life or bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer’s own risk. • The products described in this document are subject to the foreign exchange and foreign trade laws. • TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations. • For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance/Handling Precautions. 93CW40-1 2004-02-10 TMP93CW40/TMP93CW41 (7) 16-bit timer: 2 channels (8) 4-bit pattern generator: 2 channels (9) Serial interface: 2 channels (10) 10-bit AD converter: 8 channels (11) Watchdog timer (12) Chip select/wait controller: 3 blocks (13) Interrupt functions: 29 • 9 CPU interrupts ... SWI instruction, and Illegal instruction • 14 internal interrupts • 6 external interrupts 7-level priority can be set. (14) I/O ports 79 pins for TMP93CW40 and 61 pins for TMP93CW41 (15) Standby function: 4 HALT modes (RUN, IDLE2, IDLE1, STOP) (16) Clock gear function • Dual clock operation • Clock gear: High-frequency clock can be changed fc to fc/16. (17) Wide operating voltage • VCC = 2.7 to 5.5 V (18) Package Type No. TMP93CW40DF TMP93CW41DF Package P-LQFP100-1414-0.50F 93CW40-2 2004-02-10 TMP93CW40/TMP93CW41 PA0 to PA6 PA7 (SCOUT) Port A P50 to P57 (AN0 to AN7) AVCC AVSS VREFH VREFL 10-bit 8-channel AD converter 900L CPU (TXD0) P90 (RXD0) P91 (SCLK0/ CTS0 ) P92 Serial I/O (Channel 0) (TXD1) P93 (RXD1) P94 (SCLK1) P95 Serial I/O (Channel 1) (PG 00) P60 (PG 01) P61 (PG 02) P62 (PG 03) P63 (PG 10) P64 (PG 11) P65 (PG 12) P66 (PG 13) P67 XWA XBC XDE XHL XIX XIY XIZ XSP W A B C D E H L IX IY IZ SP 32 bits F SR (TI0) P70 8-bit timer (Timer 0) (TO1) P71 8-bit timer (Timer 1) (TO2) P72 8-bit PWM (Timer 2) (TO3) P73 8-bit PWM (Timer 3) 16-bit timer (Timer 4) (INT6/TI6) P84 (INT7/TI7) P85 (TO6) P86 16-bit timer (Timer 5) Can not be used in the TMP93CW41 XT1 XT2 AM8/ AM16 EA RESET ALE TEST1 TEST2 Watchdog timer 4-Kbyte RAM X1 X2 CLK Lowfrequency OSC Interrupt controller 128-Kbyte ROM (INT4/TI4) P80 (INT5/TI5) P81 (TO4) P82 (TO5) P83 Highfrequency OSC P C Pattern generator (Channel 0) Pattern generator (Channel 1) VCC [3] VSS [3] P87 (INT0) NMI WDTOUT Port 0 P00 to P07 (AD0 to AD7) Port 1 P10 to P17 (AD8 to AD15/A8 to A15) Port 2 P20 to P27 (A0 to A7/A16 to A23) Port 3 CS/WAIT controller (3-block) P30 ( RD ) P31 ( WR ) P32 ( HWR ) P33 ( WAIT ) P34 ( BUSRQ ) P35 ( BUSAK ) P36 ( R / W ) P37 ( RAS ) P40 ( CS0 / CAS0 ) P41 ( CS1 / CAS1 ) P42 ( CS2 / CAS2 ) Figure 1.1 TMP93CW40/TMP93CW41 Block Diagram 93CW40-3 2004-02-10 TMP93CW40/TMP93CW41 2. Pin Assignment and Functions The assignment of input/output pins for TMP93CW40/41, their name and outline functions are described below. 2.1 Pin Assignment Figure 2.1.1 shows pin assignment of TMP93CW40DF/W41DF. Timer ADC Clock, Mode SIO ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ Pin no. TMP93CW40 Programmable Pull Pull down up ○ ○ ○ ○ ○ ○ 88 P65/PG11 P66/PG12 89 87 P64/PG10 P67/PG13 90 86 P63/PG03 VSS 91 85 P62/PG02 P50/AN0 92 84 P61/PG01 P51/AN1 93 83 P60/PG00 P52/AN2 94 82 P42/ CS2 / CAS2 P53/AN3 95 81 P41/ CS1 / CAS1 P54/AN4 96 80 P40/ CS0 / CAS0 P55/AN5 97 79 P37/ RAS P56/AN6 98 78 P36/ R / W P57/AN7 99 77 P35/ BUSAK VREFH 100 76 P34/ BUSRQ VREFL AVSS AVCC 1 2 3 75 P33/ WAIT NMI 4 72 P30/ RD P70//TI0 P71/TO1 5 6 71 P27/A7/A23 70 P26/A6/A22 P72/TO2 P73/TO3 P80/INT4/TI4 7 8 9 69 P25/A5/A21 68 P24/A4/A20 P81/INT5/TI5 P82/TO4 10 11 P83/TO5 P84/INT6/TI6 12 13 P85/INT7/TI7 P86/TO6 P87/INT0 P90/TXD0 P91/RXD0 14 15 16 17 18 ○ ○ ○ ○ ○ ○ ○ ○ ○ 74 P32/ HWR 73 P31/ WR Top view LQFP100 67 66 65 64 63 P23/A3/A19 P22/A2/A18 P21/A1/A17 P20/A0/A16 VCC Stepping motor control ○ ○ TMP93CW40 Pin no. Memory interface Programmable Pull Pull up down ○ ○ ○ ○ ○ ○ ○ ○ 62 VSS 61 WDTOUT 60 P17/AD15/A15 59 P16/AD14/A14 58 P15/AD13/A13 P92/ CTS0 /SCLK0 19 P93/TXD1 20 57 P14/AD12/A12 56 P13/AD11/A11 P94/RXD1 P95/SCLK1 21 22 55 P12/AD10/A10 54 P11/AD9/A9 AM8/ AM16 23 CLK 24 53 P10/AD8/A8 52 P07/AD7 VCC 25 51 P06/AD6 VSS 26 50 P05/AD5 X1 27 49 P04/AD4 X2 28 48 P03/AD3 EA 29 47 P02/AD2 RESET 30 46 P01/AD1 P96/XT1 31 45 P00/AD0 P97/XT2 32 44 VCC TEST1 33 43 ALE TEST2 34 42 PA7/SCOUT PA0 35 41 PA6 PA1 36 40 PA5 PA2 37 39 PA4 38 PA3 Note: Because the TMP93CW41 does not have an internal ROM, P00 to P17 pins are fixed to AD0 to AD15 (the case of AM8/ AM16 = 0), or to AD0 to AD7, A8 to A15 (the case of AM8/ AM16 = 1); P30 to RD ; and P31 to WR . Figure 2.1.1 Pin Assignment (100-Pin LQFP) 93CW40-4 2004-02-10 TMP93CW40/TMP93CW41 2.2 Pin Names and Functions The names of input/output pins and their functions are described below. Table 2.2.1 to Table 2.2.4 show pin names and functions. Table 2.2.1 Pin Names and Functions (1/4) Pin Name Number of Pins I/O Functions P00 to P07 AD0 to AD7 8 I/O 3-state Port 0: I/O port that allows I/O to be selected on a bit basis Address/Data (lower) : 0 to 7 for address/data bus P10 to P17 AD8 to AD15 A8 to A15 8 I/O 3-state Output Port 1: I/O port that allows I/O to be selected on a bit basis Address data (upper) : 8 to 15 for address/data bus Address: 8 to 15 for address bus P20 to P27 8 I/O Output Output Port 2: I/O port that allows selection of I/O on a bit basis (with pull-down resistor) Address: 0 to 7 for address bus Address: 16 to 23 for address bus 1 Output Output Port 30: Output port Read: Strobe signal for reading external memory 1 Output Output Port 31: Output port Write: Strobe signal for writing data on pins AD0 to AD7 1 I/O Output Port 32: I/O port (with pull-up resistor) High write: Strobe signal for writing data on pins AD8 to AD15 1 I/O Input Port 33: I/O port (with pull-up resistor) Wait: Pin used to request CPU bus wait 1 I/O Input Port 34: I/O port (with pull-up resistor) Bus request: Signal used to request high impedance for AD0 to AD15, A0 to A23, RD , WR , HWR , R / W , RAS , CS0 , CS1 , and CS2 pins. 1 I/O Output Port 35: I/O port (with pull-up resistor) Bus acknowledge: Signal indicating that AD0 to AD15, A0 to A23, RD , WR , HWR , R / W , RAS , CS0 , CS1 , and CS2 pins are at high impedance after receiving BUSRQ. (For external DMAC) P36 R/ W 1 I/O Output Port 36: I/O port (with pull-up resistor) Read/Write: 1 represents read or dummy cycle; 0, write cycle. P37 1 I/O Output Port 37: I/O port (with pull-up resistor) Row address strobe: Outputs RAS strobe for DRAM. 1 I/O Output Output Port 40: I/O port (with pull-up resistor) Chip select 0: Outputs 0 when address is within specified address area. Column address strobe 0: Outputs CAS strobe for DRAM when address is within specified address area. A0 to A7 A16 to A23 P30 RD P31 WR P32 HWR P33 WAIT P34 BUSRQ (For external DMAC) P35 BUSAK RAS P40 CS0 CAS0 Note: With the external DMA controller, this device’s built-in memory or built-in I/O cannot be accessed using the BUSRQ and BUSAK pins. 93CW40-5 2004-02-10 TMP93CW40/TMP93CW41 Table 2.2.2 Pin Names and Functions (2/4) Pin Name Number of Pins I/O Functions 1 I/O Output Output Port 41: I/O port (with pull-up resistor) Chip select 1: Outputs 0 if address is within specified address area. Column address strobe 1: Outputs CAS strobe for DRAM if address is within specified address area. 1 I/O Output Output Port 42: I/O port (with pull-down resistor) Chip select 2: Outputs 0 if address is within specified address area. Column address strobe 2: Outputs CAS strobe for DRAM if address is within specified address area. P50 to P57 AN0 to AN7 8 Input Input Port 5: Input port Analog input: Input to AD converter VREFH 1 Input Pin for reference voltage input to AD converter (H) VREFL 1 Input P60 to P63 4 I/O P41 CS1 CAS1 P42 CS2 CAS2 PG00 to PG03 P64 to P67 Output 4 PG10 to PG13 I/O Output Pin for reference voltage input to AD converter (L) Ports 60 to 63: I/O ports that allow selection of I/O on a bit basis (with pull-up resistor) Pattern generator ports: 00 to 03 Ports 64 to 67: I/O ports that allow selection of I/O on a bit basis (with pull-up resistor) Pattern generator ports: 10 to 13 P70 TI0 1 I/O Input Port 70: I/O port (with pull-up resistor) Timer input 0: Timer 0 input P71 TO1 1 I/O Output Port 71: I/O port (with pull-up resistor) Timer output 1: Timer 0 or 1 output P72 TO2 1 I/O Output Port 72: I/O port (with pull-up resistor) PWM output 2: 8-bit PWM timer 2 output P73 TO3 1 I/O Output Port 73: I/O port (with pull-up resistor) PWM output 3: 8-bit PWM timer 3 output P80 TI4 INT4 1 I/O Input Input Port 80: I/O port (with pull-up resistor) Timer input 4: Timer 4 count/capture trigger signal input Interrupt request pin 4: Interrupt request pin with programmable rising/falling edge P81 TI5 INT5 1 I/O Input Input Port 81: I/O port (with pull-up resistor) Timer input 5: Timer 4 count/capture trigger signal input Interrupt request pin 5: Interrupt request pin with rising edge P82 TO4 1 I/O Output Port 82: I/O port (with pull-up resistor) Timer output 4: Timer 4 output pin P83 TO5 1 I/O Output Port 83: I/O port (with pull-up resistor) Timer output 5: Timer 4 output pin 93CW40-6 2004-02-10 TMP93CW40/TMP93CW41 Table 2.2.3 Pin Names and Functions (3/4) Pin Name Number of Pins I/O Functions P84 TI6 INT6 1 I/O Input Input Port 84: I/O port (with pull-up resistor) Timer input 6: Timer 5 count/capture trigger signal input Interrupt request pin 6: Interrupt request pin with programmable rising/falling edge P85 TI7 INT7 1 I/O Input Input Port 85: I/O port (with pull-up resistor) Timer input 7: Timer 5 count/capture trigger signal input Interrupt request pin 7: Interrupt request pin with rising edge P86 TO6 1 I/O Output P87 INT0 1 I/O Input P90 TXD0 1 I/O Output Port 90: I/O port (with pull-up resistor) Serial send data 0 P91 RXD0 1 I/O Input Port 91: I/O port (with pull-up resistor) Serial receive data 0 P92 1 I/O Input I/O Port 92: I/O port (with pull-up resistor) Serial data send enable 0 (Clear to Send) Serial Clock I/O 0 P93 TXD1 1 I/O Output Port 93: I/O port (with pull-up resistor) Serial send data 1 P94 RXD1 1 I/O Input Port 94: I/O port (with pull-up resistor) Serial receive data 1 P95 SCLK1 1 I/O I/O Port 95: I/O port (with pull-up resistor) Serial clock I/O 1 CTS0 SCLK0 Port 86: I/O port (with pull-up resistor) Timer output 6: Timer 5 output pin Port 87: I/O port (with pull-up resistor) Interrupt request pin 0: Interrupt request pin with programmable level/rising edge PA0 to PA6 7 I/O PA7 SCOUT 1 I/O Output Port A7: I/O port System Clock Output: Outputs system clock or 1/2 oscillation clock for synchronizing to external circuit. Watchdog timer output pin WDTOUT 1 Output NMI 1 Input CLK 1 Output Port A: I/O ports Non-maskable interrupt request pin: Interrupt request pin with falling edge. Can also be operated at rising edge by program. Clock output: Outputs [System Clock ÷ 2] Clock. Pulled-up during reset. Can be set to Output Disable for reducing noise. EA 1 Input External access: “0” should be inputted with TMP93CW41. “1” should be inputted with TMP93CW40. 93CW40-7 2004-02-10 TMP93CW40/TMP93CW41 Table 2.2.4 Pin Names and Functions (4/4) Pin Name Number of Pins I/O Functions AM8/ AM16 1 Input ALE 1 Output Address Mode: Selects external data bus width. (The case of TMP93CW40) “1” should be inputted. The data bus width for external access is set by chip select/wait control register, Port 1 control register. (The case of TMP93CW41) “0” should be inputted with fixed 16-bit bus width or 16-bit bus interlarded with 8-bit bus. “1” should be inputted with fixed 8-bit bus width. Address latch enable Can be set to output disable for reducing noise. RESET 1 Input X1/X2 2 Input/Output High-frequency oscillator connecting pin XT1 P96 1 Input I/O Low-frequency oscillator connecting pin Port 96: I/O port (open-drain output) XT2 P97 1 Output I/O Low-frequency oscillator connecting pin Port 97: I/O port (open-drain output) TEST1/TEST2 2 Output/Input VCC 3 VSS 3 GND pin (0 V) AVCC 1 Power supply pin for AD converter AVSS 1 GND pin for AD converter (0 V) Note: Reset: initializes LSI. (with pull-up resistor) TEST1 Should be connected with TEST2 pin. Do not connect to any other pins Power supply pin Pull-up/pull-down resistor can be released from the pin by software. 93CW40-8 2004-02-10 TMP93CW40/TMP93CW41 3. Operation This section describes in blocks the functions and basic operations of the TMP93CW40/W41 devices. 3.1 CPU The TMP93CW40/W41 devices have a built-in high-performance 16-bit CPU (900/L_CPU). (For CPU operation, see TLCS-900/L CPU in the previous section). 3.2 Memory Map Figure 3.2.1 is a memory map of the TMP93CW40/W41. 000000H 000080H 000100H 001080H Internal I/O (128 bytes) 256-byte area (n) Internal RAM (4 Kbytes) External memory 64-Kbyte area (nn) 008000H 008100H Interrupt vector table area (64 entries × 4 bytes) External area 128-Kbyte internal ROM (TMP93CW40) External memory (TMP93CW41) 010000H 028000H 16-Mbyte area (R) (−R) (R+) (R + R8/16) (R + d8/16) (nnn) External memory FFFF00H Reserved (256 bytes) FFFFFFH ( Note: = Internal area) Resetting sets the stack pointer (XSP) to 100H. The 256-byte area from FFFF00H to FFFFFFH can not be used. Figure 3.2.1 Memory Map 93CW40-9 2004-02-10 TMP93CW40/TMP93CW41 4. Electrical Characteristics 4.1 “X” used in an expression shows a frequency of clock fFPH selected by SYSCR1<SYSCK>. If a clock gear or a low speed oscillator is selected, a value of “X” is different. The value in an example is calculated at fc, gear = 1/fc (SYSCR1 < SYSCK, GEAR2:0 > = “0000”). Maximum Ratings (TMP93CW40F, TMP93CW41DF) Rating Unit Power supply voltage Parameter VCC Symbol −0.5 to 6.5 V Input voltage VIN −0.5 to VCC + 0.5 V Output current (total) ΣIOL 120 mA Output current (total) ΣIOH −80 mA Power dissipation (Ta = 85°C) PD 600 mW Soldering temperature (10 s) TSOLDER 260 °C Storage temperature TSTG −65 to 150 °C Operating temperature TOPR −40 to 85 °C Note: The maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no maximum rating value will ever be exceeded. 4.2 DC Characteristics (1/2) Ta = −40 to 85°C Parameter Power supply voltage AVCC = VCC Symbol fc = 4 to 20 MHz VCC AVCC = VSS = 0 V AD0 to AD15 Input low voltage Input high voltage Port 2 to port A (except P87) RESET , NMI , INT0 VIL fc = 4 to 12.5 MHz fs = 30 to 34 kHz Typ. (Note) Max Unit 5.5 V 4.5 2.7 VCC ≥ 4.5 V 0.8 VCC < 4.5 V 0.6 VIL1 VIL2 Min −0.3 VCC = 2.7 to 5.5 V 0.3 VCC 0.25 VCC EA , AM8/ AM16 VIL3 0.3 X1 VIL4 0.2 VCC AD0 to AD15 VIH Port 2 to port A (except P87) RESET , NMI , INT0 VCC ≥ 4.5 V 2.2 VCC < 4.5 V 2.0 0.7 VCC VIH1 VIH2 EA , AM8/ AM16 VIH3 X1 VIH4 Output low voltage VOL VOH1 Output high voltage VOH2 Note: Condition VCC = 2.7 to 5.5 V V VCC + 0.3 0.75 VCC VCC − 0.3 0.8 VCC IOL = 1.6 mA 0.45 (VCC = 2.7 to 5.5 V) IOH = −400 µA (VCC = 3 V ± 10%) IOH = −400 µA (VCC = 5 V ± 10%) 2.4 V 4.2 Typical values are for Ta = 25°C and VCC = 5 V unless otherwise noted. 93CW40-10 2004-02-10 TMP93CW40/TMP93CW41 DC Characteristics (2/2) Parameter Darlington drive current (8 output pins max) Symbol IDAR (Note 2) Condition Min Typ. (Note1) Max Unit −3.5 mA VEXT = 1.5 V REXT = 1.1 kΩ −1.0 (when VCC = 5 V ± 10%) Input leakage current ILI 0.0 ≤ VIN ≤ VCC 0.02 ±5 Output leakage current ILO 0.05 ±10 Powerdown voltage (at Stop, RAM Back-up) VSTOP 0.2 ≤ VIN ≤ VCC − 0.2 VIL2 = 0.2 VCC, RESET pull-up resistor RRST Pin capacitance CIO Schmitt width RESET , NMI , INT0 VTH Programmable pull-down resistor RKL Programmable pull-up resistor RKH VIH2 = 0.8 VCC 2.0 6.0 VCC = 5 V ± 10% 50 150 VCC = 3 V ± 10% 80 200 fc = 1 MHz 10 0.4 1.0 10 80 30 150 VCC = 5 V ± 10% 50 150 VCC = 3 V ± 10% 100 VCC = 5 V ± 10% 19 25 NORMAL2 (Note 4) fc = 20 MHz 24 30 RUN 17 25 IDLE2 10 15 3.5 5 NORMAL (Note 3) VCC = 3 V ± 10% 6.5 10 NORMAL2 (Note 4) fc = 12.5 MHz 9.5 13 5.0 9 3.0 5 IDLE2 ICC mA mA 0.8 1.5 SLOW (Note 3) VCC = 3 V ± 10% 20 45 RUN fs = 32.768 kHz 16 40 10 30 IDLE1 (Typ: VCC = 3.0 V) IDLE2 5 IDLE1 Ta ≤ 50°C STOP Ta ≤ 70°C kΩ 300 NORMAL (Note 3) (Typ: VCC = 3.0 V) kΩ V VCC = 5 V ± 10% RUN V pF VCC = 3 V ± 10% IDLE1 µA µA 25 10 0.2 Ta ≤ 85°C 20 µA 50 Note 1: Typical values are for Ta = 25°C and VCC = 5 V unless otherwise Noted. Note 2: IDAR is guranteed for total of up to 8 ports. Note 3: The condition of measurement of ICC (NORMAL/SLOW). Only CPU operates. Output ports are open and Input ports fixed. Note 4: The condition of measurement of ICC (NORMAL2). CPU and all peripherals operate. Output ports are open and input ports fixed. 93CW40-11 2004-02-10 TMP93CW40/TMP93CW41 4.3 AC Characteristics (1) VCC = 5 V ± 10% No. Parameter Variable Symbol 16 MHz Max 20 MHz Min Unit Min Max Min Max 50 31250 62.5 50 ns 1 Osc. period ( = x) tOSC 2 CLK pulse width tCLK 2x − 40 85 60 ns 3 A0 to A23 valid → CLK hold tAK 0.5x − 20 11 5 ns 4 CLK valid → A0 to A23 hold tKA 1.5x − 70 24 5 ns 5 A0 to A15 valid → ALE fall tAL 0.5x − 15 16 10 ns 6 ALE fall → A0 to A15 hold tLA 0.5x − 20 11 5 ns 7 ALE high pulse width tLL x − 40 23 10 ns 8 ALE fall → RD / WR fall tLC 0.5x − 25 6 0 ns 9 RD / WR rise → ALE rise tCL 0.5x − 20 11 5 ns 10 A0 to A15 valid → RD / WR fall tACL x − 25 38 25 ns 11 A0 to A23 valid → RD / WR fall tACH 1.5x − 50 44 25 ns 12 RD / WR rise → A0 to A23 hold tCA 0.5x − 25 6 0 13 A0 to A15 valid → D0 to D15 input tADL 3.0x − 55 133 95 ns 14 A0 to A23 valid → D0 to D15 input tADH 3.5x − 65 154 110 ns 15 RD fall → D0 to D15 input tRD 40 ns 16 RD low pulse width tRR 2.0x − 40 85 60 17 RD rise → D0 to D15 hold tHR 0 0 0 ns 18 RD rise → A0 to A15 output tRAE x − 15 48 35 ns 19 WR low pulse width tWW 2.0x − 40 85 60 ns 20 D0 to D15 valid → WR rise tDW 2.0x − 55 70 45 ns 21 WR rise → D0 to D15 hold tWD 0.5x − 15 16 10 ns 22 A0 to A23 valid → WAIT input 23 A0 to A15 valid → WAIT input (1 + N) WAIT mode (1 + N) WAIT mode (1 + N) WAIT mode 2.0x − 60 65 ns ns tAWH 3.5x − 90 129 85 ns tAWL 3.0x − 80 108 70 ns 24 RD / WR fall → WAIT hold 25 A0 to A23 valid → Port input tAPH 26 A0 to A23 valid → Port hold tAPH2 27 WR rise → Port valid tCP 28 A0 to A23 valid → RAS fall tASRH 1.0x − 40 29 A0 to A15 valid → RAS fall tASRL 0.5x − 15 30 RAS fall → D0 to D15 input tRAC 31 RAS fall → A0 to A15 hold tRAH 0.5x − 15 16 10 ns 32 RAS low pulse width tRAS 2.0x − 40 85 60 ns 33 RAS high pulse width tRP 2.0x − 40 85 60 ns 34 CAS fall → RAS rise tRSH 1.0x − 40 23 10 ns 35 RAS rise → CAS rise tRSC 0.5x − 25 6 0 ns 36 RAS fall → CAS fall tRCD 1.0x − 40 37 CAS fall → D0 to D15 input tCAC 38 CAS low pulse width tCAS tCW 2.0x + 0 125 2.5x − 120 2.5x + 50 100 36 206 200 175 200 23 ns 55 10 29 64 ns ns 10 40 ns ns 10 23 1.5x − 65 1.5x − 30 200 86 ns ns 10 16 2.5x − 70 ns 5 ns ns AC measuring conditions • Output level: High 2.2 V/Low 0.8 V, CL = 50 pF (However CL = 100 pF for AD0 to AD15, A0 to A23, ALE, RD , WR , HWR , R/ W , CLK, RAS , CAS0 to CAS2 ) • Input level: High 2.4 V/Low 0.45 V (AD0 to AD15) High 0.8 × VCC/Low 0.2 × VCC (Except for AD0 to AD15) 93CW40-12 2004-02-10 TMP93CW40/TMP93CW41 (2) VCC = 3 V ± 10% No. Parameter Symbol Variable Min Max 31250 12.5 MHz Min Max Unit 1 Osc. period ( = x) tOSC 80 80 ns 2 CLK pulse width tCLK 2x − 40 120 ns 3 A0 to A23 valid → CLK hold tAK 0.5x − 30 10 ns 4 CLK valid → A0 to A23 hold tKA 1.5x − 80 40 ns 5 A0 to A15 valid → ALE fall tAL 0.5x − 35 5 ns 6 ALE fall → A0 to A15 hold tLA 0.5x − 35 5 ns 7 ALE high pulse width tLL x − 60 20 ns 8 ALE fall → RD / WR fall tLC 0.5x − 35 5 ns 9 RD / WR rise → ALE rise tCL 0.5x − 40 0 ns 10 A0 to A15 valid → RD / WR fall tACL x − 50 30 ns 11 A0 to A23 valid → RD / WR fall tACH 1.5x − 50 70 ns 12 RD / WR rise → A0 to A23 hold tCA 0.5x − 40 0 13 A0 to A15 valid → D0 to D15 input tADL 14 A0 to A23 valid → D0 to D15 input 15 RD fall → D0 to D15 input 16 RD low pulse width tRR 17 RD rise → D0 to D15 hold tHR 18 RD rise → A0 to A15 output tRAE 19 WR low pulse width 20 D0 to D15 valid → WR rise 21 WR rise → D0 to D15 hold 22 A0 to A23 valid → WAIT input 23 A0 to A15 valid → WAIT input 24 RD / WR fall → WAIT hold 25 A0 to A23 valid → Port input tAPH 26 A0 to A23 valid → Port hold tAPH2 27 WR rise → Port valid tCP 28 A0 to A23 valid → RAS fall tASRH 1.0x − 60 20 ns 29 A0 to A15 valid → RAS fall tASRL 0.5x − 40 0 ns 30 RAS fall → D0 to D15 input tRAC 31 RAS fall → A0 to A15 hold tRAH 0.5x − 25 15 ns 32 RAS low pulse width tRAS 2.0x − 40 120 ns 33 RAS high pulse width tRP 2.0x − 40 120 ns 34 CAS fall → RAS rise tRSH 1.0x − 55 25 ns 35 RAS rise → CAS rise tRSC 0.5x − 25 15 ns 36 RAS fall → CAS fall tRCD 1.0x − 40 40 ns 37 CAS fall → D0 to D15 input tCAC 38 CAS low pulse width tCAS (1 + N) WAIT mode (1 + N) WAIT mode (1 + N) WAIT mode ns 3.0x − 110 130 ns tADH 3.5x − 125 155 ns tRD 2.0x − 115 45 ns 2.0x − 40 120 0 ns 0 ns x − 25 55 ns tWW 2.0x − 40 120 ns tDW 2.0x − 120 40 ns tWD 0.5x − 40 0 ns tAWH 3.5x − 130 150 ns tAWL 3.0x − 100 140 ns tCW 2.0x + 0 160 2.5x − 195 2.5x + 50 ns 5 250 200 200 2.5x − 90 110 1.5x − 120 1.5x − 40 0 80 ns ns ns ns ns ns AC measuring conditions • Output level: High 0.7 × VCC/Low 0.3 × VCC, CL = 50 pF • Input level: High 0.9 × VCC/Low 0.1 × VCC 93CW40-13 2004-02-10 TMP93CW40/TMP93CW41 (1) Read cycle tOSC X1 tCLK CLK tKA tAK A0 to A23 CS0 to CS2 R/W tAWH tCW tAWL WAIT tAPH tAPH2 Port input (Note) tASRH tRP tRSH RAS tRAS tASRL tRAH tRCD CAS0 to CAS2 tRAC tCAS tCAC tCA tADH RD tACH tRR tACL tLC A0 to A15 AD0 to AD15 tAL ALE Note: tRSC tRD tADL tRAE tHR D0 to D15 tLA tCL tLL Since the CPU accesses the internal area to read data from a port, the control signals of external pins such as RD and CS are not enabled. Therefore, the above waveform diagram should be regarded as depicting internal operation. Please also note that the timing and AC characteristics of port input/output shown above are typical representation. For details, contact your local Toshiba sales representative. 93CW40-14 2004-02-10 TMP93CW40/TMP93CW41 (2) Write cycle X1 CLK A0 to A23 CS0 to CS2 R/W WAIT Port output (Note) tCP RAS CAS0 to CAS2 WR , HWR tWW tDW AD0 to AD15 A0 to A15 tWD D0 to D15 ALE Note: Since the CPU accesses the internal area to write data to a port, the control signals of external pins such as WR and CS are not enabled. Therefore, the above waveform diagram should be regarded as depicting internal operation. Please also note that the timing and AC characteristics of port input/output shown above are typical representation. For details, contact your local Toshiba sales representative. 93CW40-15 2004-02-10 TMP93CW40/TMP93CW41 4.4 AD Conversion Characteristics AVCC = VCC, AVSS = VSS Parameter Analog reference voltage (+) Symbol VREFH Analog reference voltage (−) VREFL Analog input voltage range VAIN Analog current for analog reference voltage <VREFON> = 1 <VREFON> = 0 Error (excluding quantizing error) Power Supply Min Typ. Max VCC = 5 V ± 10% VCC − 1.5 V VCC VCC VCC = 3 V ± 10% VCC − 0.2 V VCC VCC VCC = 5 V ± 10% VSS VSS VSS + 0.2 V VCC = 3 V ± 10% VSS VSS VSS + 0.2 V VREFL IREF (VREFL = 0 V) – Unit V VREFH VCC = 5 V ± 10% 0.5 1.5 VCC = 3 V ± 10% 0.3 0.9 VCC = 2.7 to 5.5 V 0.02 5.0 VCC = 5 V ± 10% ±1.0 ±3.0 VCC = 3 V ± 10% ±1.0 ±3.0 mA µA LSB Note 1: 1LSB = (VREFH − VREFL) /2 [V] 10 Note 2: Minimum operation frequency The operation of the AD converter is guaranteed only when fc (high-frequency oscillator) is used. (It is not guaranteed when fs is used.) Additionally, it is guaranteed when the clock frequency which is selected by the clock gear is 4 MHz or more. Note 3: The value ICC includes the current which flows through the AVCC pin. 93CW40-16 2004-02-10 TMP93CW40/TMP93CW41 4.5 Serial Channel Timing (1) I/O interface mode a. SCLK input mode Parameter Variable Symbol Min → Output data hold SCLK rising edge or falling edge (Note 2) → Input data hold SCLK rising edge or falling edge (Note 2) → Effective data input Min tSCY/2 − 5X − 91.5 50 µs tOHS 5x − 100 tHSR 0 tOSS of SCLK SCLK rising edge or falling edge (Note 2) Min 488 µs Output data → Rising edge or falling edge (Note 2) 12.5 MHz 16X tSCY SCLK cycle Max 32.768 kHz (Note) Max Min Unit Max 1280 800 ns 190 100 ns 152 µs 300 150 ns 0 0 0 ns tSCY − 5X − 100 tSRD Max 20 MHz 336 µs 780 450 ns Note 1: When fs is used as system clock (fSYS) or fs is used as input clock to prescaler. Note 2: SCLK rising/falling timing ... SCLK rising in the rising mode of SCLK, SCLK falling in the falling mode of SCLK. b. SCLK output mode Parameter Variable Symbol Min Max 8192x 32.768 kHz (Note) 12.5 MHz Min Max Min Max 488 250 ms 1.28 655.36 20 MHz Min Max 0.8 409.6 Unit µs SCLK cycle (programmable) tSCY 16x Output data → SCLK rising edge tOSS tSCY − 2x − 150 427 µs 970 550 ns SCLK rising edge → Output data hold tOHS 2x − 80 60 µs 80 20 ns SCLK rising edge → Input data hold tHSR 0 0 0 0 SCLK rising edge → Effective data input tSRD Note: tSCY − 2x − 150 428 µs ns 970 550 ns When fs is used as system clock (fSYS) or fs is used as input clock to prescaler. tSCY SCLK Output mode/ Input rising mode SCLK (Input falling mode) Output data TxD tOSS tOHS 0 1 2 tSRD Input data RxD 3 tHSR 0 1 2 3 Valid Valid Valid Valid 93CW40-17 2004-02-10 TMP93CW40/TMP93CW41 4.6 Timer/Counter Input Clock (TI0, TI4, TI5, TI6 and TI7) Parameter Variable 12.5 MHz 20 MHz Unit Symbol Min Max Min Max Min Max Clock cycle tVCK 8X + 100 740 500 Low level clock pulse width tVCKL 4X + 40 360 240 ns High level clock pulse width tVCKH 4X + 40 360 240 ns 4.7 ns Interrupt and Capture (1) NMI , INT0 interrupts Parameter Variable 12.5 MHz 20 MHz Unit Symbol Min Max Min Max Min Max NMI , INT0 low level pulse width tINTAL 4X 320 200 ns NMI , INT0 high level pulse width tINTAH 4X 320 200 ns (2) INT4 to 7 interrupts, capture Input pulse width of INT4 to 7 depends on the operation clock of CPU and Timer (9-bit prescaler). The following shows the pulse width in each clock. System Clock Prescaler Clock tINTBL (INT4 to 7 low level pulse width) tINTBH (INT4 to 7 high level pulse width) Selected Selected Variable 20 MHz Variable 20 MHz <SYSCK> <PRCK1:0> Min Min Min Min 0 (fc) 1 (fs) (Note 2) 00 (fFPH) 8X + 100 500 8X + 100 500 01 (fs) 8XT + 0.1 244.3 8XT + 0.1 244.3 10 (fc/16) 128X + 0.1 6.5 128X + 0.1 6.5 00 (fFPH) 8XT + 0.1 244.3 8XT + 0.1 244.3 01 (fs) Unit ns µs Note 1: XT represents the cycle of the low frequency clock fs. Calculated at fs = 32.768 kHz. Note 2: When fs is used as the system clock, fc/16 can not be selected for the prescaler clock. 4.8 SCOUT pin AC characteristics Parameter Variable Min VCC = 5 V ± 10% High-level pulse width VCC = 3 V ± 10% Low-level pulse width VCC = 3 V ± 10% VCC = 5 V ± 10% 12.5 MHz 20 MHz Symbol tSCH tSCL Max Min Max Min 0.5X − 10 30 15 0.5X − 20 20 − 0.5X − 10 30 15 0.5X − 20 20 − Unit Max − − ns ns Measurement condition • Output level: High 2.2 V/Low 0.8 V, CL = 10 pF tSCH tSCL SCOUT 93CW40-18 2004-02-10 TMP93CW40/TMP93CW41 4.9 Timing Chart for Bus Request ( BUSRQ )/Bus Acknowledge ( BUSAK ) (Note 1) CLK tBRC tBRC tCBAL BUSRQ tCBAH BUSAK tBAA tABA AD0 to AD15, A0 to A23, CS0 to CS2 , R/ W , RAS , CAS0 to CAS2 (Note 2) (Note 2) RD , WR , HWR ALE Parameter BUSRQ set-up time to CLK Variable Symbol tBRC Min Max 120 12.5 MHz Min Max 120 20 MHz Min Max 120 Unit ns CLK → BUSAK falling edge tCBAL 1.5x + 120 240 195 CLK → BUSAK rising edge tCBAH 0.5x + 40 80 65 ns Output buffer off to BUSAK tABA 0 80 0 80 0 80 ns tBAA 0 80 0 80 0 80 ns BUSAK to output buffer on ns Note 1: The Bus will be released after the WAIT request is inactive, when the BUSRQ is set to “0” during “Wait” cycle. Note 2: This line only shows the output buffer is off-state. It doesn’t indicate the signal level is fixed. Just after the bus is released, the signal level which is set before the bus is released is kept dynamically by the external capacitance. Therefore, to fix the signal level by an external resistor during bus releasing, designing is executed carefully because the level-fix will be delayed. The internal programmable pull-up/pull-down resistor is switched active/non-active by an internal signal. 93CW40-19 2004-02-10 TMP93CW40/TMP93CW41 5. Package Dimensions P-LQFP100-1414-0.50F Unit: mm 93CW40-20 2004-02-10