PD - 95662 IRFP17N50LPbF SMPS MOSFET HEXFET® Power MOSFET Applications • Zero Voltage Switching SMPS VDSS RDS(on) typ. Trr typ. ID • Telecom and Server Power Supplies • Uninterruptible Power Supplies 0.28Ω 500V 170ns 16A • Motor Control applications • Lead-Free Features and Benefits • SuperFast body diode eliminates the need for external diodes in ZVS applications. • Lower Gate charge results in simpler drive requirements. • Enhanced dv/dt capabilities offer improved ruggedness. • Higher Gate voltage threshold offers improved noise TO-247AC immunity. Absolute Maximum Ratings Parameter ID @ TC = 25°C Continuous Drain Current, VGS @ 10V Max. ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 11 IDM 64 Pulsed Drain Current c PD @TC = 25°C Power Dissipation VGS Linear Derating Factor Gate-to-Source Voltage dv/dt TJ Peak Diode Recovery dv/dt Operating Junction and TSTG Storage Temperature Range Units 16 e A 220 W 1.8 ± 30 W/°C V 13 -55 to + 150 V/ns °C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) 10lb in (1.1N m) x Mounting torque, 6-32 or M3 screw x Diode Characteristics Symbol Parameter Min. Typ. Max. Units Conditions IS Continuous Source Current ––– ––– 16 ISM (Body Diode) Pulsed Source Current ––– ––– 64 VSD (Body Diode) Diode Forward Voltage ––– ––– 1.5 V p-n junction diode. TJ = 25°C, IS = 16A, VGS = 0V trr Reverse Recovery Time ––– 170 250 ns TJ = 25°C, IF = 16A ––– 220 330 710 Qrr c Reverse Recovery Charge IRRM Reverse Recovery Current ton Forward Turn-On Time www.irf.com MOSFET symbol A ––– 470 ––– 810 1210 ––– 7.3 11 showing the integral reverse TJ = 125°C, di/dt = 100A/µs nC TJ = 25°C, IS = 16A, VGS = 0V TJ = 125°C, di/dt = 100A/µs A f f f f TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) 1 07/30/04 IRFP17N50LPbF Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units V(BR)DSS Drain-to-Source Breakdown Voltage 500 ––– ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.60 ––– RDS(on) Static Drain-to-Source On-Resistance ––– 0.28 0.32 VGS(th) Gate Threshold Voltage 3.0 ––– 5.0 IDSS Drain-to-Source Leakage Current IGSS RG ––– V Conditions VGS = 0V, ID = 250µA V/°C Reference to 25°C, I D = 1mA Ω V VGS = 10V, ID = 9.9A f VDS = VGS, ID = 250µA ––– ––– 50 µA VDS = 500V, VGS = 0V ––– ––– 2.0 mA VDS = 400V, VGS = 0V, TJ = 125°C nA Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 Internal Gate Resistance ––– 1.4 ––– VGS = 30V VGS = -30V Ω f = 1MHz, open drain Dynamic @ TJ = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units gfs Qg Forward Transconductance 11 Total Gate Charge Qgs Gate-to-Source Charge Qgd Gate-to-Drain ("Miller") Charge td(on) S Conditions ––– ––– VDS = 50V, ID = 9.9A ––– ––– 130 ––– ––– 33 ––– ––– 59 VGS = 10V, See Fig. 7 & 15 Turn-On Delay Time ––– 21 ––– VDD = 250V tr Rise Time ––– 51 ––– td(off) Turn-Off Delay Time ––– 50 ––– RG = 7.5Ω tf Fall Time ––– 28 ––– VGS = 10V, See Fig. 14a & 14b Ciss Input Capacitance ––– 2760 ––– VGS = 0V Coss Output Capacitance ––– 325 ––– VDS = 25V Crss Reverse Transfer Capacitance ––– 37 ––– Coss Output Capacitance ––– 3690 ––– ƒ = 1.0MHz, See Fig. 5 VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Coss Output Capacitance ––– 84 ––– VGS = 0V, VDS = 400V, ƒ = 1.0MHz Coss eff. Effective Output Capacitance ––– 159 ––– VGS = 0V,VDS = 0V to 400V Coss eff. (ER) Effective Output Capacitance ––– 120 ––– ID = 16A nC ns pF VDS = 400V f ID = 16A f g (Energy Related) Avalanche Characteristics Symbol EAS Parameter Single Pulse Avalanche Energy Typ. ––– Max. 390 IAR Avalanche Current ––– 16 A EAR Repetitive Avalanche Energy ––– 22 mJ Units c d c Units mJ Thermal Resistance Typ. Max. RθJC Symbol Junction-to-Case Parameter ––– 0.56 RθCS Case-to-Sink, Flat, Greased Surface 0.50 ––– RθJA Junction-to-Ambient ––– 62 °C/W Notes: Repetitive rating; pulse width limited by max. junction temperature. (See Fig. 11) Starting TJ = 25°C, L = 3.0mH, RG = 25Ω, IAS = 16A. (See Figure 12). ISD = 16A, di/dt ≤ 347A/µs, VDD ≤ V(BR)DSS, TJ ≤ 150°C. 2 Pulse width ≤ 300µs; duty cycle ≤ 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . Coss eff.(ER) is a fixed capacitance that stores the same energy as Coss while VDS is rising from 0 to 80% VDSS. www.irf.com IRFP17N50LPbF 10 100 VGS TOP 15V 12V 10V 8.0V 7.0V 6.0V 5.5V BOTTOM 5.0V VGS 15V 12V 10V 8.0V 7.0V 6.0V 5.5V BOTTOM 5.0V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) 100 1 5.0V 0.1 10 5.0V 1 20µs PULSE WIDTH Tj = 150°C 20µs PULSE WIDTH Tj = 25°C 0.01 0.1 0.1 1 10 100 0.1 VDS, Drain-to-Source Voltage (V) I D , Drain-to-Source Current (A) 100 TJ = 150 ° C 10 TJ = 25 ° C 1 V DS = 50V 20µs PULSE WIDTH 5.0 6.0 7.0 8.0 9.0 10.0 VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 10 100 Fig 2. Typical Output Characteristics RDS(on) , Drain-to-Source On Resistance (Normalized) Fig 1. Typical Output Characteristics 0.1 4.0 1 VDS, Drain-to-Source Voltage (V) 3.0 ID = 16A 2.5 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = 10V 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( ° C) Fig 4. Normalized On-Resistance Vs. Temperature 3 IRFP17N50LPbF 20 100000 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Energy (µJ) C, Capacitance(pF) 15 Coss = Cds + Cgd 10000 Ciss 1000 10 Coss 5 100 Crss 0 10 1 10 100 0 1000 VDS, Drain-to-Source Voltage (V) ISD , Reverse Drain Current (A) VGS , Gate-to-Source Voltage (V) 12 8 4 30 60 90 120 QG , Total Gate Charge (nC) Fig 7. Typical Gate Charge Vs. Gate-to-Source Voltage 4 400 500 600 100 V DS= 400V V DS= 250V V DS= 100V 0 300 Fig 6. Typ. Output Capacitance Stored Energy vs. VDS ID = 16A 16 0 200 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 20 100 150 TJ = 150 ° C 10 TJ = 25 ° C 1 0.1 0.2 V GS = 0 V 0.6 0.9 1.3 1.6 VSD ,Source-to-Drain Voltage (V) Fig 8. Typical Source-Drain Diode Forward Voltage www.irf.com IRFP17N50LPbF 20 V GS 16 ID , Drain Current (A) RD VDS RG 12 D.U.T. + - VDD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 8 Fig 10a. Switching Time Test Circuit 4 VDS 90% 0 25 50 75 100 125 150 TC , Case Temperature ( °C) 10% VGS Fig 9. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms Thermal Response(Z thJC ) 1 D = 0.50 0.20 0.1 0.10 0.05 0.02 0.01 SINGLE PULSE (THERMAL RESPONSE) PDM 0.01 t1 t2 0.001 0.00001 Notes: 1. Duty factor D =t 1 / t 2 2. Peak TJ = P DM x ZthJC + TC 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 EAS , Single Pulse Avalanche Energy (mJ) IRFP17N50LPbF 1000 OPERATION IN THIS AREA LIMITED BY RDS(on) ID , Drain Current (A) 100 10us 10 100us 1ms 1 0.1 10ms TC = 25 °C TJ = 150 °C Single Pulse 10 100 1000 800 ID 7A 10A BOTTOM 16A TOP 640 480 320 160 0 10000 25 50 75 100 125 150 Starting T J , Junction Temperature ( ° C) VDS , Drain-to-Source Voltage (V) Fig 13. Maximum Avalanche Energy vs. Drain Current Fig 12. Maximum Safe Operating Area 15V V(BR)DSS DRIVER L VDS D.U.T RG + V - DD IAS 20V tp tp 0.01Ω A I AS Fig 14a. Unclamped Inductive Test Circuit Fig 14b. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. QG 50KΩ 12V VGS .2µF .3µF D.U.T. QGS + V - DS QGD VG VGS 3mA IG ID Current Sampling Resistors Fig 15a. Gate Charge Test Circuit 6 Charge Fig 15b. Basic Gate Charge Waveform www.irf.com IRFP17N50LPbF Peak Diode Recovery dv/dt Test Circuit Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D.U.T + - - + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test Driver Gate Drive P.W. Period D= + - VDD P.W. Period VGS=10V * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 16. For N-Channel HEXFET® Power MOSFETs www.irf.com 7 IRFP17N50LPbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information EXAMPLE: T HIS IS AN IRFPE30 WITH AS SEMBLY LOT CODE 5657 ASSEMBLED ON WW 35, 2000 IN THE ASSEMBLY LINE "H" Note: "P" in assembly line position indicates "Lead-Free" PART NUMBER INT ERNATIONAL RECTIF IER LOGO IRFPE30 56 AS SEMBLY LOT CODE 035H 57 DATE CODE YEAR 0 = 2000 WEEK 35 LINE H Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.07/04 8 www.irf.com