SHARP RJ21P3AA0PT

BACK
RJ21P3AA0PT
1/1.8-type Interline Color CCD
Area Sensor with 3 370 k Pixels
RJ21P3AA0PT
• Package :
20-pin half-pitch DIP [Plastic]
(P-DIP020-0500)
Row space : 12.20 mm
DESCRIPTION
The RJ21P3AA0PT is a 1/1.8-type (8.93 mm) solidstate image sensor that consists of PN photodiodes and CCDs (charge-coupled devices). With
approximately 3 370 000 pixels (2 152 horizontal x
1 567 vertical), the sensor provides a stable highresolution color image.
PIN CONNECTIONS
20-PIN HALF-PITCH WDIP
TOP VIEW
FEATURES
OD 1
• Optical size : 8.93 mm (aspect ratio 4 : 3)
8.93 mm
1 544
3 210 k effective pixels
2 080
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Interline scan format
Square pixel
Number of image pixels : 2 096 (H) x 1 560 (V)
Number of effective pixels : 2 080 (H) x 1 544 (V)
Number of optical black pixels
– Horizontal : 2 front and 54 rear
– Vertical : 5 front and 2 rear
Number of dummy bits
– Horizontal : 24
– Vertical : 2
Pixel pitch : 3.45 µm (H) x 3.45 µm (V)
R, G, and B primary color mosaic filters
Supports monitoring mode
Low fixed-pattern noise and lag
No burn-in and no image distortion
Blooming suppression structure
Built-in output amplifier
Built-in overflow drain voltage circuit and reset
gate voltage circuit
Variable electronic shutter
20 OS
GND 2
19 GND
OFD 3
18 NC5
PW 4
17 NC4
ØRS 5
16 ØV1A
NC1 6
15 ØV1B
NC2 7
14 ØV2
ØH1 8
13 ØV3A
NC3 9
12 ØV3B
ØH2 10
11 ØV4
(P-DIP020-0500)
PRECAUTIONS
• The exit pupil position of lens should be 30 to 55
mm from the top surface of the CCD.
• Refer to "PRECAUTIONS FOR CCD AREA
SENSORS" for details.
In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices shown in
catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.
1
RJ21P3AA0PT
PIN DESCRIPTION
SYMBOL
OD
PIN NAME
Output transistor drain
OS
ØRS
Output signals
ØV1A, ØV1B, ØV2, ØV3A, ØV3B, ØV4
ØH1, ØH2
Vertical shift register clock
Horizontal shift register clock
Reset transistor clock
OFD
Overflow drain
PW
GND
P-well
Ground
NC1, NC2, NC3, NC4, NC5
No connection
ABSOLUTE MAXIMUM RATINGS
PARAMETER
Output transistor drain voltage
(TA = +25˚C)
SYMBOL
VOD
RATING
0 to +18
UNIT
V
NOTE
Overflow drain voltage
VOFD
Reset gate clock voltage
VØRS
Internal output
Internal output
V
V
1
2
Vertical shift register clock voltage
Horizontal shift register clock voltage
VØV
VØH
VPW to +18
–0.3 to +12
V
V
Voltage difference between P-well and vertical clock
VPW-VØV
–27 to 0
V
Voltage difference between vertical clocks
VØV-VØV
0 to +18
V
Storage temperature
TSTG
–40 to +85
˚C
Ambient operating temperature
TOPR
–20 to +70
˚C
3
NOTES :
1. Do not connect to DC voltage directly. When OFD is connected to GND, connect VOD to GND. Overflow drain clock is
applied below 24 Vp-p.
2. Do not connect to DC voltage directly. When ØRS is connected to GND, connect VOD to GND. Reset gate clock is
applied below 8 Vp-p.
3. When clock width is below 10 µs, and clock duty factor is below 0.1%, voltage difference between vertical clocks will be
below 26 V.
2
RJ21P3AA0PT
RECOMMENDED OPERATING CONDITIONS
PARAMETER
Ambient operating temperature
SYMBOL
TOPR
MIN.
TYP.
25.0
MAX.
UNIT
˚C
Output transistor drain voltage
Overflow drain clock p-p level
VOD
VØOFD
14.55
15.0
15.45
V
20.7
21.5
22.8
V
1
Ground
P-well voltage
GND
VPW
VØVL
V
V
2
–6.65
V
LOW level
Vertical shift
register clock
INTERMEDIATE level
HIGH level
VØV1AL, VØV1BL, VØV2L
VØV3AL, VØV3BL, VØV4L
0.0
–8.0
–7.35
VØV1AI, VØV1BI, VØV2I
VØV3AI, VØV3BI, VØV4I
VØV1AH, VØV1BH
–7.0
0.0
V
14.55
15.0
15.45
V
–0.05
0.0
+0.05
V
Horizontal shift
LOW level
VØV3AH, VØV3BH
VØH1L, VØH2L
register clock
HIGH level
VØH1H, VØH2H
4.5
4.8
5.5
V
VØRS
fØV1A, fØV1B, fØV2
4.5
4.8
5.5
V
Reset gate clock p-p level
Vertical shift register clock frequency
Horizontal shift register clock frequency
fØV3A, fØV3B, fØV4
fØH1, fØH2
7.50
kHz
18.00
MHz
fØRS
18.00
MHz
Reset gate clock frequency
NOTE
1
NOTES :
1. Use the circuit parameter indicated in "SYSTEM CONFIGURATION EXAMPLE", and do not connect to DC voltage directly.
2. VPW is set below VØVL that is low level of vertical shift register clock, or is used with the same power supply that is connected
to VL of V driver IC.
* To apply power, first connect GND and then turn on VOD. After turning on VOD, turn on VPW first and then turn on other
powers and pulses. Do not connect the device to or disconnect it from the plug socket while power is being applied.
3
RJ21P3AA0PT
CHARACTERISTICS (Drive method : 1/30 s frame accumulation)
(TA = +25˚C, Operating conditions : The typical values specified in "RECOMMENDED OPERATING CONDITIONS".
Color temperature of light source : 3 200 K, IR cut-off filter (CM-500, 1 mmt) is used.)
PARAMETER
Standard output voltage
SYMBOL
VO
Photo response non-uniformity
PRNU
Saturation output voltage
VSAT
Dark output voltage
Dark signal non-uniformity
VDARK
DSNU
Sensitivity (green channel)
Smear ratio
R (G)
SMR
Image lag
Blooming suppression ratio
Output transistor drain current
MIN.
TYP.
150
450
530
320
400
130
MAX.
UNIT
mV
NOTE
2
10
%
mV
3
4
mV
5
0.5
0.5
3.0
2.0
mV
mV
1, 6
1, 7
160
–90
–82
mV
dB
8
9
1.0
%
AI
ABL
IOD
1 000
10
11
4.0
8.0
mA
NOTES :
6. The average output voltage under non-exposure
conditions.
7. The image area is divided into 10 x 10 segments under
non-exposure conditions. DSNU is defined by (Vdmax –
Vdmin), where Vdmax and Vdmin are the maximum and
minimum values of each segment's voltage respectively.
8. The average output voltage of G signal when a 1 000
lux light source with a 90% reflector is imaged by a lens
of F4, f50 mm.
9. The sensor is exposed only in the central area of V/10
square with a lens at F4, where V is the vertical image
size. SMR is defined by the ratio of the output voltage
detected during the vertical blanking period to the
maximum output voltage in the V/10 square.
10. The sensor is exposed at the exposure level
corresponding to the standard conditions. AI is defined
by the ratio of the output voltage measured at the 1st
field during the non-exposure period to the standard
output voltage.
11. The sensor is exposed only in the central area of V/10
square, where V is the vertical image size. ABL is
defined by the ratio of the exposure at the standard
conditions to the exposure at a point where blooming is
observed.
• Within the recommended operating conditions of VOD,
VOFD of the internal output satisfies with ABL larger than
1 000 times exposure of the standard exposure conditions,
and VSAT larger than 320 mV.
1. TA = +60˚C
2. The average output voltage of G signal under uniform
illumination. The standard exposure conditions are
defined as when Vo is 150 mV.
3. The image area is divided into 10 x 10 segments under
the standard exposure conditions. Each segment's
voltage is the average output voltage of all pixels within
the segment. PRNU is defined by (Vmax – Vmin)/Vo,
where Vmax and Vmin are the maximum and minimum
values of each segment's voltage respectively.
4. The image area is divided into 10 x 10 segments. Each
segment's voltage is the average output voltage of all
pixels within the segment. VSAT is the minimum
segment's voltage under 10 times exposure of the
standard exposure conditions. The operation of OFDC is
high. (for still image capturing)
5. The image area is divided into 10 x 10 segments. Each
segment's voltage is the average output voltage of all
pixels within the segment. VSAT is the minimum
segment's voltage under 10 times exposure of the
standard exposure conditions. The operation of OFDC is
low.
4
RJ21P3AA0PT
PIXEL STRUCTURE
OPTICAL BLACK
(2 PIXELS)
OPTICAL BLACK
(2 PIXELS)
OPTICAL BLACK
(54 PIXELS)
2 096 (H) x 1 560 (V)
1 pin
OPTICAL BLACK
(5 PIXELS)
COLOR FILTER ARRAY
(1, 1 560)
Pin arrangement
of the vertical
readout clock
(2 096, 1 560)
ØV3B
ØV1A
ØV3B
ØV1B
ØV3B
ØV1B
ØV3B
ØV1B
ØV3A
ØV1B
ØV3B
ØV1B
ØV3B
ØV1B
ØV3B
ØV1A
ØV3B
ØV1B
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
ØV3B
ØV1B
ØV3B
ØV1B
ØV3B
ØV1B
ØV3A
ØV1B
ØV3B
ØV1B
ØV3B
ØV1B
ØV3B
ØV1A
ØV3B
ØV1B
ØV3B
ØV1B
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
G
R
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
B
G
(1, 1)
(2 096, 1)
5
RJ21P3AA0PT
TIMING CHART
TIMING CHART EXAMPLE
Pulse diagram in more detail is shown in the figure q to r after next page.
Field accumulation mode
q
VD
227.5
q'
455 1
ØV1A
ØV1B
ØV2
ØV3A
ØV3B
ØV4
ØOFD
(at OFD shutter operation)
OFDC
At first frame
Frame accumulation
accumulation mode mode
w
227.5
At first field
Field accumulation mode
accumulation mode
e
848 1
455 1
;
;
;
;
;
;
r
q
q'
q
q'
848 1
227.5
455 1
227.5
455 1
;
;
;
;
;
;
OS
(Number of
vertical line)
Field accumulation Not for use Not for use
(NOTE 1)
(NOTE 1)
mode (5, 12, 19...)
Frame accumulation mode
(1, 3, 5, 7, 9...)
(2, 4, 6, 8, 10...)
Not for use
(NOTE 2)
Field accumulation mode
(5, 12, 19..) (5, 12, 19..) (5, 12, 19..)
NOTES :
1. Do not use these signals immediately after field accumulation mode is transferred to frame
accumulation mode for still image capturing.
2. Do not use these signals immediately after frame accumulation mode is transferred to field
accumulation mode for monitoring image.
* Start the exposure period after 10 ms later that OFDC is high, and finish before change swept
transfer.
* Apply at least an OFD shutter pulse to OFD in each field accumulation mode.
6
RJ21P3AA0PT
q VERTICAL TRANSFER TIMING ¿FIELD ACCUMULATION MODE¡
2 640 clk/H
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
HD
VD
ØV1A
ØV1B
ØV2
ØV3A
ØV3B
ØV4
OFDC
ØOFD
1475
OS
1489
1503
1517
1531
1545
1559
1482
1496
1510
1524
1538
1552
RG GB RG GB RG GB RG GB RG GB RG GB RG
5 12 19 26 33 40 47 54 61 68
RG GB RG GB RG GB RG GB RG GB
OB3
q' VERTICAL TRANSFER TIMING ¿FIELD ACCUMULATION MODE¡
444 445 446 447 448 449 450 451 452 453 454 455 1
2
3
4
5
6
7
8
9
2 640 clk/H
10 11 12 13 14 15 16
HD
VD
ØV1A
ØV1B
ØV2
ØV3A
ØV3B
ØV4
OFDC
ØOFD
OS
1475
1489
1503
1517
1531
1545
1559
1468
1482
1496
1510
1524
1538
1552
GB RG GB RG GB RG GB RG GB RG GB RG GB RG
7
OB3
5
12 19 26 33 40 47 54 61 68
RG GB RG GB RG GB RG GB RG GB
RJ21P3AA0PT
w VERTICAL TRANSFER TIMING ¿AT FIRST FRAME ACCUMULATION MODE¡
451 452 453 454 455 1
2
3
4
5
6
7
8
2 640 clk/H
… 61 62 63 64 65 66 67 68 69 70 71 72 73
9
HD
VD
ØV1A
ØV1B
ØV2
ØV3A
ØV3B
ØV4
Charge swept transfer (2 112 stages)
OFDC
ØOFD
OB2 OB4
OS
1
3
5
7
RG RG RG RG
Not for use
* Do not use the frame signals immediately after field accumulation mode is transferred to frame
accumulation mode.
e VERTICAL TRANSFER TIMING ¿FRAME ACCUMULATION MODE¡
844 845 846 847 848 1
2
3
4
5
6
7
8
9
2 640 clk/H
… 61 62 63 64 65 66 67 68 69 70 71 72 73
HD
VD
ØV1A
ØV1B
ØV2
ØV3A
ØV3B
ØV4
Charge swept transfer (2 112 stages)
OFDC
ØOFD
1549
OS
1553
1557
1551
1555
1559
RG RG RG RG RG RG
OB1 OB3 OB5
Not for use
8
2
4
6
GB GB GB
RJ21P3AA0PT
r VERTICAL TRANSFER TIMING ¿AT FIRST FIELD ACCUMULATION MODE¡
837 838 839 840 841 842 843 844 845 846 847 848 1
2
3
4
5
6
7
8
9
2 640 clk/H
10 11 12 13 14 15 16
HD
VD
ØV1A
ØV1B
ØV2
ØV3A
ØV3B
ØV4
OFDC
ØOFD
1534
OS
1538
1542
1546
1550
1554
1558
OB2
1536
1540
1544
1548
1552
1556
1560
GB GB GB GB GB GB GB GB GB GB GB GB GB GB
Not for use
* Do not use the field signals immediately after frame accumulation mode is transferred to field
accumulation mode for monitoring image.
9
RJ21P3AA0PT
READOUT TIMING ¿FIELD ACCUMULATION MODE¡
2640
(0)
2640
(0)
260
260
HD
698 824
908
ØV1A
166
ØV1B
222
992
ØV2
1034 1160
866
ØV3A
194
ØV3B
950
250
ØV4
38.9 µs (698 bits)
57.6 µs (1 034 bits)
7.02 µs
(126 bits)
7.02 µs
(126 bits)
READOUT TIMING ¿FRAME ACCUMULATION MODE¡
w
2640
(0)
2640
(0)
260
260
HD
ØV1A
ØV1B
698 824
908
16
166
992
36
222
ØV2
ØV3A
ØV3B
16
194
866
36
250
950
ØV4
38.9 µs (698 bits)
e
2640
(0)
7.02 µs
(126 bits)
2640
(0)
260
260
HD
ØV1A
ØV1B
16
908
36
992
166
222
ØV2
1034 1160
866
ØV3A
ØV3B
36
950
ØV4
7.02 µs
(126 bits)
57.6 µs (1 034 bits)
10
194
250
RJ21P3AA0PT
HORIZONTAL TRANSFER TIMING ¿FIELD ACCUMULATION MODE¡-1
2640
(0) 54
82
110
138
166
1 clk = 55.7 ns (= 1/18.0 MHz)
222
250
260 278
194
HD
ØH1
ØH2
ØRS
OS
ππ2096
OB (54)
28 clk
(= 1.56 µs)
4-stage transfer
ØV1A
ØV1B
ØV2
ØV3A
ØV3B
ØV4
3-stage transfer
ØV1A
ØV1B
ØV2
ØV3A
ØV3B
ØV4
152
208
OFD
* Keep over 1.56 µs when vertical transfer clock pulse is overlapping.
11
RJ21P3AA0PT
HORIZONTAL TRANSFER TIMING ¿FIELD ACCUMULATION MODE¡-2
278
306
334
362
390
418
446
1 clk = 55.7 ns (= 1/18.0 MHz)
518
474
HD
ØH1
ØH2
ØRS
OS
PRE SCAN (24)
OB (2)
OUTPUT (2 096) 1ππππππππ
4-stage transfer
ØV1A
ØV1B
ØV2
ØV3A
ØV3B
ØV4
3-stage transfer
ØV1A
ØV1B
ØV2
ØV3A
ØV3B
ØV4
OFD
* Keep over 1.56 µs when vertical transfer clock pulse is overlapping.
12
RJ21P3AA0PT
HORIZONTAL TRANSFER TIMING ¿FRAME ACCUMULATION MODE¡-1
2640
(0) 54
82
110
138
166
1 clk = 55.7 ns (= 1/18.0 MHz)
222
250
260 278
194
HD
ØH1
ØH2
ØRS
OS
ππ2096
OB (54)
56 clk
(= 3.11 µs)
ØV1A
ØV1B
ØV2
ØV3A
ØV3B
ØV4
208
152
OFD
* Keep over 3.11 µs when vertical clock pulse is overlapping.
HORIZONTAL TRANSFER TIMING ¿FRAME ACCUMULATION MODE¡-2
278
306
334
362
390
418
446
1 clk = 55.7 ns (= 1/18.0 MHz)
474
508
HD
ØH1
ØH2
ØRS
OS
PRE SCAN (24)
OB (2)
OUTPUT (2 096) 1ππππππππ
ØV1A
ØV1B
ØV2
ØV3A
ØV3B
ØV4
OFD
* Keep over 3.11 µs when vertical transfer clock pulse is overlapping.
13
RJ21P3AA0PT
CHARGE SWEPT TRANSFER TIMING ¿FRAME ACCUMULATION MODE¡
w, e 2H
0
3H
4H
5H
•••••••
260
65H
66H
2640
HD
ØV1A
ØV1B
56
96
76
136
116
176
156
216
2616 16
196
2636 36
ØV2
ØV3A
ØV3B
56
96
76
136
116
176
156
216
2616 16
2636 36
196
ØV4
1
2
3
•••••••
2110
2111
2112
* Keep over 1.56 µs when vertical transfer clock pulse of charge swept transfer is overlapping.
14
VL
V2
V4
NC
V3B
V3A
V1B
V1A
VMa
VH
15
13 14 15 16 17 18 19 20 21 22 23 24
9
8
7
5
(*1)
6
4
270
pF
3
(*1)
2
1
11 12 13 14 15 16 17 18 19 20
RJ21P3AA0PT
10
NC1
ØV1B
ØV3A
ØV3B
ØV4
Be sure to use the parameter indicated
in this circuit example.
(*1) ØRS, OFD :
Do not connect to DC voltage directly.
ØV2
VDD
+VDD
V3X
VH1AX
V1X
V2X
OFDX
VH3BX
VMb
1
POFD
2
0. 1 µF
ØRS
LR36685
+
3
ØH2
4
NC3
5
100 k$
0.01 µF
1 M$
ØH1
6
1.0 µF
NC2
7
100 $
PW
8
33 k$
OFD
9
47 µF
OD
12 11 10
47 k$
1 M$
CCD
OUT
+
V4X
VH3AX
5.6 k$
GND
VH1BX
VH
ØH2
VL (VPW)
ØRS
ØH1
OFDC
VOD
RJ21P3AA0PT
SYSTEM CONFIGURATION EXAMPLE
OS
GND
NC5
NC4
ØV1A
VOFDH
VH3BX
OFDX
V2X
V1X
VH1AX
V3X
GND
+
VH3AX
V4X
VH1BX
+
RJ21P3AA0PT
PACKAGE OUTLINES
20 DIP (P-DIP020-0500)
(Unit : mm)
Center of effective imaging area
and center of package
6.9±0.075
0.4±0.4
11
11.2±0.1 (◊2)
12±0.1
0.4±0.4
6±0.075
20
¬
Rotation error of die : ¬ = 1.0˚MAX.
(◊ 1 : Effective imaging area)
(◊ 2 : Lid's size)
CCD
1
10
12.2±0.1
13±0.1 (◊2)
Refractive index : nd = 1.5
0.02
(◊1)
A
±0.1
2.4±0.1
13.8
A
20-0.3TYP.
20-0.64TYP.
A'
0.5±0.05 (◊2)
1.41±0.025
2.9±0.1
3.5±0.1
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
P-1.27TYP.
Glass Lid
;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;
CCD
;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;
Package
;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;
A'
0.02
(◊1)
0.04
0.25±0.1
+0.3
0.2 M
12.2 –0
16
RJ21P3AA0PT
(In the case of plastic packages)
– The leads of the package are fixed with
package body (plastic), so stress added to a
lead could cause a crack in the package
body (plastic) in the jointed part of the lead.
PRECAUTIONS FOR CCD AREA SENSORS
1. Package Breakage
In order to prevent the package from being broken,
observe the following instructions :
1) The CCD is a precise optical component and
the package material is ceramic or plastic.
Therefore,
ø Take care not to drop the device when
mounting, handling, or transporting.
ø Avoid giving a shock to the package.
Especially when leads are fixed to the socket
or the circuit board, small shock could break
the package more easily than when the
package isn’t fixed.
2) When applying force for mounting the device or
any other purposes, fix the leads between a
joint and a stand-off, so that no stress will be
given to the jointed part of the lead. In addition,
when applying force, do it at a point below the
stand-off part.
Glass cap
Package
Lead
Fixed
Stand-off
3) When mounting the package on the housing,
be sure that the package is not bent.
– If a bent package is forced into place
between a hard plate or the like, the package may be broken.
4) If any damage or breakage occurs on the surface of the glass cap, its characteristics could
deteriorate.
Therefore,
ø Do not hit the glass cap.
ø Do not give a shock large enough to cause
distortion.
ø Do not scrub or scratch the glass surface.
– Even a soft cloth or applicator, if dry, could
cause flaws to scratch the glass.
(In the case of ceramic packages)
– The leads of the package are fixed with low
melting point glass, so stress added to a
lead could cause a crack in the low melting
point glass in the jointed part of the lead.
Low melting point glass
Lead
2. Electrostatic Damage
As compared with general MOS-LSI, CCD has
lower ESD. Therefore, take the following antistatic
measures when handling the CCD :
1) Always discharge static electricity by grounding
the human body and the instrument to be used.
To ground the human body, provide resistance
of about 1 M$ between the human body and
the ground to be on the safe side.
2) When directly handling the device with the
fingers, hold the part without leads and do not
touch any lead.
Fixed
Stand-off
17
RJ21P3AA0PT
3) To avoid generating static electricity,
a. do not scrub the glass surface with cloth or
plastic.
b. do not attach any tape or labels.
c. do not clean the glass surface with dustcleaning tape.
4) When storing or transporting the device, put it in
a container of conductive material.
4. Other
1) Soldering should be manually performed within
5 seconds at 350°C maximum at the tip of
soldering iron.
2) Avoid using or storing the CCD at high temperature or high humidity as it is a precise
optical component. Do not give a mechanical
shock to the CCD.
3)* Do not expose the device to strong light. For
the color device, long exposure to strong light
will fade the color of the color filters.
3. Dust and Contamination
Dust or contamination on the glass surface could
deteriorate the output characteristics or cause a
scar. In order to minimize dust or contamination on
the glass surface, take the following precautions :
1) Handle the CCD in a clean environment such
as a cleaned booth. (The cleanliness level
should be, if possible, class 1 000 at least.)
2) Do not touch the glass surface with the fingers.
If dust or contamination gets on the glass
surface, the following cleaning method is
recommended :
ø Dust from static electricity should be blown
off with an ionized air blower. For antielectrostatic measures, however, ground all
the leads on the device before blowing off
the dust.
ø The contamination on the glass surface
should be wiped off with a clean applicator
soaked in isopropyl alcohol. Wipe slowly and
gently in one direction only.
– Frequently replace the applicator and do not
use the same applicator to clean more than
one device.
◊ Note : In most cases, dust and contamination
are unavoidable, even before the device
is first used. It is, therefore, recommended
that the above procedures should be
taken to wipe out dust and contamination
before using the device.
* Only for color devices
18