BACK RJ2411AA0PB 1/4-type Color CCD Area Sensors with 270 k Pixels RJ2411AA0PB DESCRIPTION PIN CONNECTIONS The RJ2411AA0PB is a 1/4-type (4.5 mm) solidstate image sensor that consists of PN photo-diodes and CCDs (charge-coupled devices). With approximately 270 000 pixels (542 horizontal x 492 vertical), the sensor provides a stable high-resolution color image. 14-PIN HALF-PITCH DIP FEATURES • Number of image pixels : 512 (H) x 492 (V) • Number of optical black pixels – Horizontal : 2 front and 28 rear • Pixel pitch : 7.2 µm (H) x 5.6 µm (V) • Mg, G, Cy, and Ye complementary color filters • Low fixed-pattern noise and lag • No burn-in and no image distortion • Blooming suppression structure • Built-in output amplifier • Built-in overflow drain voltage circuit and reset gate voltage circuit • Horizontal shift register clock and reset gate clock voltage : 3.3 V (TYP.) • Variable electronic shutter (1/60 to 1/10 000 s) • Compatible with NTSC standard • Package : 14-pin half-pitch DIP [Plastic] (P-DIP014-0400A) Row space : 10.16 mm TOP VIEW OD 1 14 GND ØRS 2 13 ØV4 NC 3 12 ØV3 OS 4 11 ØV2 OOFD 5 10 ØV1 ØH2 6 9 PW ØH1 7 8 OFD (P-DIP014-0400A) PRECAUTIONS • The exit pupil position of lens should be more than 10 mm from the top surface of the CCD. • Refer to "PRECAUTIONS FOR CCD AREA SENSORS" for details. In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. 1 RJ2411AA0PB PIN DESCRIPTION OD SYMBOL PIN NAME Output transistor drain OS ØRS Output signals Reset transistor clock ØV1, ØV2, ØV3, ØV4 ØH1, ØH2 Vertical shift register clock Horizontal shift register clock OFD Overflow drain OOFD PW Overflow drain output P-well GND NC Ground No connection ABSOLUTE MAXIMUM RATINGS PARAMETER Output transistor drain voltage (TA = +25˚C) SYMBOL VOD RATING 0 to +18 0 to +37 UNIT V V VØRS Internal output Internal output V V Overflow drain voltage VOFD Overflow drain output voltage VOOFD Reset gate clock voltage VØV VPW to +17.5 V Horizontal shift register clock voltage Voltage difference between P-well and vertical clock VØH VPW-VØV –0.3 to +12 –28 to 0 V V Voltage difference between vertical clocks Vertical shift register clock voltage VØV-VØV 0 to +15 V Storage temperature TSTG –40 to +85 ˚C Ambient operating temperature TOPR –20 to +70 ˚C NOTE 1 1 2 3 NOTES : 1. Use the circuit parameter indicated in "SYSTEM CONFIGURATION EXAMPLE", and do not connect to DC voltage directly. When OOFD is connected to GND, connect VOD to GND. 2. Do not connect to DC voltage directly. When ØRS is connected to GND, connect VOD to GND. Reset gate clock is applied below 8 Vp-p. 3. When clock width is below 10 µs, and clock duty factor is below 0.1%, voltage difference between vertical clocks will be below 27 V. 2 RJ2411AA0PB RECOMMENDED OPERATING CONDITIONS PARAMETER Ambient operating temperature SYMBOL TOPR MIN. TYP. 25.0 MAX. UNIT ˚C Output transistor drain voltage Overflow drain clock p-p level VOD VØOFD 14.55 21.5 15.0 (adj.) 15.45 23.5 V V 1 Ground P-well voltage GND VPW VØVL V V 2 –7.5 V LOW level Vertical shift register clock Horizontal shift register clock INTERMEDIATE level VØV1L, VØV2L VØV3L, VØV4L 0.0 –9.0 –8.5 VØV1I, VØV2I –8.0 0.0 V HIGH level VØV3I, VØV4I VØV1H, VØV3H 14.55 15.0 15.45 V LOW level HIGH level VØH1L, VØH2L VØH1H, VØH2H –0.05 3.0 0.0 3.3 +0.05 5.25 V V VØRS 3.0 3.3 5.25 V Reset gate clock p-p level Vertical shift register clock frequency Horizontal shift register clock frequency fØV1, fØV2 fØV3, fØV4 fØH1, fØH2 Reset gate clock frequency fØRS NOTE 15.73 kHz 9.53 9.53 MHz MHz 1 NOTES : • Connect NC to GND directly or through a capacitor larger than 0.047 µF. 1. Use the circuit parameter indicated in "SYSTEM CONFIGURATION EXAMPLE", and do not connect to DC voltage directly. 2. VPW is set below VØVL that is low level of vertical shift register clock, or is used with the same power supply that is connected to VL of V driver IC. * To apply power, first connect GND and then turn on VOD. After turning on VOD, turn on VPW first and then turn on other powers and pulses. Do not connect the device to or disconnect it from the plug socket while power is being applied. 3 RJ2411AA0PB CHARACTERISTICS (Drive method : Field accumulation) (TA = +25˚C, Operating conditions : The typical values specified in "RECOMMENDED OPERATING CONDITIONS". Color temperature of light source : 3 200 K, IR cut-off filter (CM-500, 1 mmt) is used.) PARAMETER Standard output voltage SYMBOL VO Photo response non-uniformity Saturation output voltage PRNU VSAT MIN. TYP. 150 MAX. UNIT mV NOTE 2 15 % mV 3 4 700 Dark output voltage VDARK 0.5 3.0 mV 1, 5 Dark signal non-uniformity Sensitivity DSNU R 0.5 800 2.0 mV mV 1, 6 7 –105 –95 1.0 dB % 8 9 3.0 350 8.0 mA $ Vector breakup Line crawling 7.0 3.0 ˚, % % 11 12 Luminance flicker 2.0 % 13 Smear ratio Image lag SMR AI Blooming suppression ratio ABL Output transistor drain current Output impedance IOD RO 550 1 000 10 NOTES : • Within the recommended operating conditions of VOD, VOFD of the internal output satisfies with ABL larger than 1 000 times exposure of the standard exposure conditions, and VSAT larger than 700 mV. 1. TA = +60˚C 2. The average output voltage under uniform illumination. The standard exposure conditions are defined as when Vo is 150 mV. 3. The image area is divided into 10 x 10 segments under the standard exposure conditions. Each segment's voltage is the average output voltage of all pixels within the segment. PRNU is defined by (Vmax – Vmin)/Vo, where Vmax and Vmin are the maximum and minimum values of each segment's voltage respectively. 4. The image area is divided into 10 x 10 segments. Each segment's voltage is the average output voltage of all pixels within the segment. VSAT is the minimum segment's voltage under 10 times exposure of the standard exposure conditions. 5. The average output voltage under non-exposure conditions. 6. The image area is divided into 10 x 10 segments under non-exposure conditions. DSNU is defined by (Vdmax – Vdmin), where Vdmax and Vdmin are the maximum and minimum values of each segment's voltage respectively. 7. The average output voltage when a 1 000 lux light source with a 90% reflector is imaged by a lens of F4, f50 mm. 8. The sensor is exposed only in the central area of V/10 square with a lens at F4, where V is the vertical image size. SMR is defined by the ratio of the output voltage detected during the vertical blanking period to the maximum output voltage in the V/10 square. 9. The sensor is exposed at the exposure level corresponding to the standard conditions. AI is defined by the ratio of the output voltage measured at the 1st field during the non-exposure period to the standard output voltage. 10. The sensor is exposed only in the central area of V/10 square, where V is the vertical image size. ABL is defined by the ratio of the exposure at the standard conditions to the exposure at a point where blooming is observed. 11. Observed with a vector scope when the color bar chart is imaged under the standard exposure conditions. 12. The difference between the average output voltage of the (Mg + Ye), (G + Cy) line and that of the (Mg + Cy), (G + Ye) line under the standard exposure conditions. 13. The difference between the average output voltage of the odd field and that of the even field under the standard exposure conditions. 4 RJ2411AA0PB PIXEL STRUCTURE yyyyyyyyy ;;;;;;;;; ;;;;;;;;; yyyyyyyyy ;;;;;;;;; yyyyyyyyy ;;;;;;;;; yyyyyyyyy ;;;;;;;;; yyyyyyyyy ;;;;;;;;; yyyyyyyyy OPTICAL BLACK (2 PIXELS) OPTICAL BLACK (28 PIXELS) 512 (H) x 492 (V) 1 pin COLOR FILTER ARRAY (1, 492) ODD field (512, 492) Mg G Mg G Mg G Mg G Mg G Cy Ye Cy Ye Cy Ye Cy Ye Cy Ye G Mg G Mg G Mg G Mg G Mg Cy Ye Cy Ye Cy Ye Cy Ye Cy Ye Mg G Mg G Mg G Mg G Mg G Cy Ye Cy Ye Cy Ye Cy Ye Cy Ye G Mg G Mg G Mg G Mg G Mg Cy Ye Cy Ye Cy Ye Cy Ye Cy Ye Mg G Mg G Mg G Mg G Mg G Cy Ye Cy Ye Cy Ye Cy Ye Cy Ye G Mg G Mg G Mg G Mg G Mg Cy Ye Cy Ye Cy Ye Cy Ye Cy Ye (1, 1) EVEN field (512, 1) 5 RJ2411AA0PB TIMING CHART VERTICAL TRANSFER TIMING Shutter speed 1/2 000 s (ODD FIELD) 525 1 10 17 19 HD VD ØV1 ØV2 ØV3 ØV4 ØOFD 484 486 488 490 492 + + + + 485 487 489 491 1 + 2 3 + 4 5 + 6 7 + 8 9 + 10 11 + 12 4 + 5 6 + 7 8 + 9 10 + 11 OS (EVEN FIELD) 263 272 279 282 HD VD ØV1 ØV2 ØV3 ØV4 ØOFD 483 485 487 489 491 + + + + + 484 486 488 490 492 1 2 + 3 OS HORIZONTAL TRANSFER TIMING 606 (0) 60 HD ØH1 ØH2 ØRS OS …512 OB (2) OUTPUT (512) 1πππππππ OB (28) 29 49 ØV1 59 39 ØV2 24 54 ØV3 34 64 ØV4 62 ØOFD 6 72 RJ2411AA0PB READOUT TIMING (ODD FIELD) 0 606 (0) 60 60 HD 242 290 29 49 ØV1 29 49 39 59 161 449 39 59 ØV2 290 24 ØV3 54 34 338 180 54 34 64 64 ØV4 (EVEN FIELD) 0 606 (0) 60 60 HD 242 ØV1 290 29 49 39 59 59 161 ØV2 290 ØV3 24 34 54 338 180 54 450 64 ØV4 7 64 V2 NC V4 V3B V3A V1B VMa V1A VH 8 13 14 15 16 17 18 19 20 21 22 23 24 1 6 5 (*1) 4 3 2 (*1) 1 10 11 12 13 14 ØV2 ØV1 OFD VDD (*1) ØRS, OFD, OOFD : Use the circuit parameter indicated in this circuit example, and do not connect to DC voltage directly. 9 PW 8 (*1) 1 M$ 100 k$ CCD OUT 270 pF RJ2411AA0PB 7 ØV3 +VDD V3X VH1AX V1X V2X OFDX VL 2 VMb LR36685 + 3 POFD 4 ØH1 5 ØH2 6 OOFD 7 OS 8 0.01 µF 1 M$ NC 9 0.01 µF 100 k$ ØRS 12 11 10 100 $ 1.0 µF OD V4X VH3AX VH ØH2 ØH1 VL (VPW) ØRS VOD RJ2411AA0PB SYSTEM CONFIGURATION EXAMPLE + GND ØV4 VOFDH VH3BX OFDX V2X V1X VH1AX V3X GND + VH3AX V4X VH1BX + RJ2411AA0PB PACKAGE OUTLINES 14 DIP (P-DIP014-0400A) (Unit : mm) 10±0.1 9±0.1 (◊) Center of effective imaging area and center of package (◊ : Lid's size) 9±0.1 (◊) 8 CCD 1 0.5±0.5 7 Rotation error of die : ¬ = 1.0˚MAX Refractive index : nd = 1.5 1.96±0.05 A' 14-0.3TYP. 14-0.46TYP. 3.35±0.1 5.02MAX. A ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Glass Lid ;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;; CCD ;;;;;;;;;;;;;;;;; Package ;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;; P-1.27TYP. 0.25±0.1 0.25 0.03 A 1.39±0.025 1.27±0.25 2.55±0.1 5±0.075 0.8±0.05 (◊) 0.5±0.5 5±0.075 ¬ 3.5±0.3 3.35±0.1 10±0.1 14 A' 0.03 0.03 +0.5 10.16–0 M 9 RJ2411AA0PB (In the case of plastic packages) – The leads of the package are fixed with package body (plastic), so stress added to a lead could cause a crack in the package body (plastic) in the jointed part of the lead. PRECAUTIONS FOR CCD AREA SENSORS 1. Package Breakage In order to prevent the package from being broken, observe the following instructions : 1) The CCD is a precise optical component and the package material is ceramic or plastic. Therefore, ø Take care not to drop the device when mounting, handling, or transporting. ø Avoid giving a shock to the package. Especially when leads are fixed to the socket or the circuit board, small shock could break the package more easily than when the package isn’t fixed. 2) When applying force for mounting the device or any other purposes, fix the leads between a joint and a stand-off, so that no stress will be given to the jointed part of the lead. In addition, when applying force, do it at a point below the stand-off part. Glass cap Package Lead Fixed Stand-off 3) When mounting the package on the housing, be sure that the package is not bent. – If a bent package is forced into place between a hard plate or the like, the package may be broken. 4) If any damage or breakage occurs on the surface of the glass cap, its characteristics could deteriorate. Therefore, ø Do not hit the glass cap. ø Do not give a shock large enough to cause distortion. ø Do not scrub or scratch the glass surface. – Even a soft cloth or applicator, if dry, could cause flaws to scratch the glass. (In the case of ceramic packages) – The leads of the package are fixed with low melting point glass, so stress added to a lead could cause a crack in the low melting point glass in the jointed part of the lead. Low melting point glass Lead 2. Electrostatic Damage As compared with general MOS-LSI, CCD has lower ESD. Therefore, take the following antistatic measures when handling the CCD : 1) Always discharge static electricity by grounding the human body and the instrument to be used. To ground the human body, provide resistance of about 1 M$ between the human body and the ground to be on the safe side. 2) When directly handling the device with the fingers, hold the part without leads and do not touch any lead. Fixed Stand-off 10 RJ2411AA0PB 3) To avoid generating static electricity, a. do not scrub the glass surface with cloth or plastic. b. do not attach any tape or labels. c. do not clean the glass surface with dustcleaning tape. 4) When storing or transporting the device, put it in a container of conductive material. 4. Other 1) Soldering should be manually performed within 5 seconds at 350°C maximum at the tip of soldering iron. 2) Avoid using or storing the CCD at high temperature or high humidity as it is a precise optical component. Do not give a mechanical shock to the CCD. 3)* Do not expose the device to strong light. For the color device, long exposure to strong light will fade the color of the color filters. 3. Dust and Contamination Dust or contamination on the glass surface could deteriorate the output characteristics or cause a scar. In order to minimize dust or contamination on the glass surface, take the following precautions : 1) Handle the CCD in a clean environment such as a cleaned booth. (The cleanliness level should be, if possible, class 1 000 at least.) 2) Do not touch the glass surface with the fingers. If dust or contamination gets on the glass surface, the following cleaning method is recommended : ø Dust from static electricity should be blown off with an ionized air blower. For antielectrostatic measures, however, ground all the leads on the device before blowing off the dust. ø The contamination on the glass surface should be wiped off with a clean applicator soaked in isopropyl alcohol. Wipe slowly and gently in one direction only. – Frequently replace the applicator and do not use the same applicator to clean more than one device. ◊ Note : In most cases, dust and contamination are unavoidable, even before the device is first used. It is, therefore, recommended that the above procedures should be taken to wipe out dust and contamination before using the device. * Only for color devices 11