ONSEMI J308_06

J308
JFET VHF/UHF Amplifiers
N−Channel — Depletion
http://onsemi.com
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Drain −Source Voltage
VDS
25
Vdc
Gate−Source Voltage
VGS
25
Vdc
Forward Gate Current
IGF
10
mAdc
Total Device Dissipation
@ TA = 25°C
Derate above 25°C
PD
Junction Temperature Range
Storage Temperature Range
1
mW
350
2.8
mW/°C
TJ
−65 to +125
°C
Tstg
−65 to +150
°C
2
3
CASE 29−11, STYLE 5
TO−92 (TO−226AA)
1 DRAIN
3
GATE
2 SOURCE
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
V(BR)GSS
−25
—
—
Vdc
—
—
—
—
−1.0
−1.0
nAdc
μAdc
−1.0
−1.0
−2.0
—
—
—
−6.5
−4.0
−6.5
12
12
24
—
—
—
60
30
60
—
—
1.0
OFF CHARACTERISTICS
Gate −Source Breakdown Voltage
(IG = −1.0 μAdc, VDS = 0)
Gate Reverse Current
(VGS = −15 Vdc, VDS = 0, TA = 25°C)
(VGS = −15 Vdc, VDS = 0, TA = +125°C)
Gate Source Cutoff Voltage
(VDS = 10 Vdc, ID = 1.0 nAdc)
IGSS
VGS(off)
J308
J309
J310
Vdc
ON CHARACTERISTICS
Zero −Gate −Voltage Drain Current(1)
(VDS = 10 Vdc, VGS = 0)
IDSS
J308
J309
J310
Gate−Source Forward Voltage
(VDS = 0, IG = 1.0 mAdc)
© Semiconductor Components Industries, LLC, 2006
August, 2006 − Rev. 2
VGS(f)
1
mAdc
Vdc
Publication Order Number:
J308/D
J308
Symbol
Characteristic
Min
Typ
Max
—
—
—
0.7
0.7
0.5
—
—
—
Unit
SMALL−SIGNAL CHARACTERISTICS
Common−Source Input Conductance
(VDS = 10 Vdc, ID = 10 mAdc, f = 100 MHz)
Re(yis)
J308
J309
J310
mmhos
Common−Source Output Conductance
(VDS = 10 Vdc, ID = 10 mAdc, f = 100 MHz)
Re(yos)
—
0.25
—
mmhos
Common−Gate Power Gain
(VDS = 10 Vdc, ID = 10 mAdc, f = 100 MHz)
Gpg
—
16
—
dB
Common−Source Forward Transconductance
(VDS = 10 Vdc, ID = 10 mAdc, f = 100 MHz)
Re(yfs)
—
12
—
mmhos
Common−Gate Input Conductance
(VDS = 10 Vdc, ID = 10 mAdc, f = 100 MHz)
Re(yig)
—
12
—
mmhos
8000
10000
8000
—
—
—
20000
20000
18000
—
—
250
—
—
—
13000
13000
12000
—
—
—
—
—
—
150
100
150
—
—
—
1. Pulse Test: Pulse Width v 300 μs, Duty Cycle v 3.0%.
SMALL−SIGNAL CHARACTERISTICS (continued)
Common−Source Forward Transconductance
(VDS = 10 Vdc, ID = 10 mAdc, f = 1.0 kHz)
gfs
J308
J309
J310
Common−Source Output Conductance
(VDS = 10 Vdc, ID = 10 mAdc, f = 1.0 kHz)
Common−Gate Forward Transconductance
(VDS = 10 Vdc, ID = 10 mAdc, f = 1.0 kHz)
Common−Gate Output Conductance
(VDS = 10 Vdc, ID = 10 mAdc, f = 1.0 kHz)
gos
gfg
J308
J309
J310
gog
J308
J309
J310
μmhos
μmhos
μmhos
μmhos
Gate−Drain Capacitance
(VDS = 0, VGS = −10 Vdc, f = 1.0 MHz)
Cgd
—
1.8
2.5
pF
Gate−Source Capacitance
(VDS = 0, VGS = −10 Vdc, f = 1.0 MHz)
Cgs
—
4.3
5.0
pF
Noise Figure
(VDS = 10 Vdc, ID = 10 mAdc, f = 450 MHz)
NF
—
1.5
—
dB
Equivalent Short−Circuit Input Noise Voltage
(VDS = 10 Vdc, ID = 10 mAdc, f = 100 Hz)
en
—
10
—
nVń ǸHz
FUNCTIONAL CHARACTERISTICS
http://onsemi.com
2
J308
50 Ω
SOURCE
50 Ω
LOAD
U310
C3
L2P
L1
L2S
C2
C1
C4
C6
C5
C7
1.0 k
RFC
+VDD
C1 = C2 = 0.8 − 10 pF, JFD #MVM010W.
C3 = C4 = 8.35 pF Erie #539−002D.
C5 = C6 = 5000 pF Erie (2443−000).
C7 = 1000 pF, Allen Bradley #FA5C.
RFC = 0.33 μH Miller #9230−30.
L1 = One Turn #16 Cu, 1/4″ I.D. (Air Core).
L2P = One Turn #16 Cu, 1/4″ I.D. (Air Core).
L2S = One Turn #16 Cu, 1/4″ I.D. (Air Core).
60
VDS = 10 V
TA = −55°C
50
50
+25 °C
IDSS
+25 °C
40
40
30
30
+150°C
20
20
+25 °C
−55 °C
10
−5.0
+150°C 10
0
0
−1.0
−4.0
−3.0
−2.0
ID − VGS, GATE−SOURCE VOLTAGE (VOLTS)
IDSS − VGS, GATE−SOURCE CUTOFF VOLTAGE (VOLTS)
35
30
20
+150°C
15
−55 °C
10
+150°C
0
5.0
4.0
0
10
120
RDS
CAPACITANCE (pF)
10
Yos, OUTPUT ADMITTANCE (μ mhos)
Yfs , FORWARD TRANSCONDUCTANCE (μmhos)
Yos
VGS(off) = −2.3 V =
VGS(off) = −5.7 V =
1.0
2.0
Figure 3. Forward Transconductance
versus Gate−Source Voltage
100
1.0 k
3.0
VGS, GATE−SOURCE VOLTAGE (VOLTS)
Yfs
10 k
+25 °C
5.0
1.0 k
Yfs
+25 °C
25
Figure 2. Drain Current and Transfer
Characteristics versus Gate−Source Voltage
100 k
TA = −55°C
VDS = 10 V
f = 1.0 MHz
96
7.0
72
Cgs
4.0
48
24
Cgd
1.0
100
0.01
1.0
0.1 0.2 0.3 0.5 1.0 2.0 3.0 5.0 10 20 30 50 100
0
10
ID, DRAIN CURRENT (mA)
9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
VGS, GATE SOURCE VOLTAGE (VOLTS)
Figure 4. Common−Source Output
Admittance and Forward Transconductance
versus Drain Current
Figure 5. On Resistance and Junction
Capacitance versus Gate−Source Voltage
http://onsemi.com
3
0
0
R DS , ON RESISTANCE (OHMS)
I D , DRAIN CURRENT (mA)
60
IDSS, SATURATION DRAIN CURRENT (mA)
70
70
Yfs , FORWARD TRANSCONDUCTANCE (mmhos)
Figure 1. 450 MHz Common−Gate Amplifier Test Circuit
J308
3.0
2.4
0.79 0.39
S22
VDS = 10 V
ID = 10 mA
TA = 25°C
24
|S12|, |S22|
0.060 1.00
0.048 0.98
S21
Y11
18
1.8
Y21
12
1.2
0.73 0.33
VDS = 10 V
ID = 10 mA
TA = 25°C
0.67 0.27
0.024 0.94
0.61 0.21
0.6
0.012 0.92
S12
Y12
0
100
200
300
500
f, FREQUENCY (MHz)
700
0.55 0.15
100
1000
Figure 6. Common−Gate Y Parameter
Magnitude versus Frequency
θ22
40°
160°
30°
150°
20°
140°
10°
200
300
500
f, FREQUENCY (MHz)
−40 °
0.90
θ21, θ22
θ11, θ12
−20 ° 120°
86°
−40 ° 100°
85°
−60 ° 80°
−120 ° 84°
−80 ° 60°
0
θ11
−20 °
θ21
700 1000
Figure 7. Common−Gate S Parameter
Magnitude versus Frequency
θ12, θ22
−2 0° 87°
θ21, θ11
180° 50°
170°
0.036 0.96
S11
Y22
6.0
Y12 (mmhos)
|Y11|, |Y21 |, |Y22 | (mmhos)
30
|S21|, |S11|
0.85 0.45
θ21
−20 °
θ22
−60 °
−80 °
−40 °
−100 °
θ12
130°
0°
100
−140 °
VDS = 10 V
ID = 10 mA
TA = 25°C
200
300
500
f, FREQUENCY (MHz)
θ12
−160 ° 83°
−100 ° 40°
−180 °
700
−200 ° 82°
1000
−120 ° 20°
100
Figure 8. Common−Gate Y Parameter
Phase−Angle versus Frequency
8.0
24
7.0
21
6.0
18
5.0
15
Gpg
4.0
12
NF
3.0
9.0
2.0
6.0
1.0
3.0
0
4.0
6.0
8.0
θ11
200
300
500
f, FREQUENCY (MHz)
700
−80 °
−100 °
1000
26
VDD = 20 V
f = 450 MHz
BW ≈ 10 MHz
CIRCUIT IN FIGURE 1
10 12
14 16
18
ID, DRAIN CURRENT (mA)
20
22
NF, NOISE FIGURE (dB)
6.0
VDS = 10 V
ID = 10 mA
TA = 25°C
Figure 9. S Parameter Phase−Angle
versus Frequency
G pg , POWER GAIN (dB)
NF, NOISE FIGURE (dB)
7.0
−60 °
22
5.0
18
Gpg
4.0
3.0
2.0
VDS = 10 V
ID = 10 mA
TA = 25°C
CIRCUIT IN FIGURE 1
14
10
NF
6.0
1.0
2.0
0
24
0
Figure 10. Noise Figure and
Power Gain versus Drain Current
50
100
200 300
f, FREQUENCY (MHz)
500 700 1000
Figure 11. Noise Figure and Power Gain
versus Frequency
http://onsemi.com
4
G pg , POWER GAIN (dB)
θ11
θ21
J308
C1
C6
U310
S
D
G
C3
L1
INPUT
RS = 50 Ω
C4
L3
OUTPUT
RL = 50 Ω
C5
C2
L2
L4
VS
VD
SHIELD
BW (3 dB) − 36.5 MHz
ID − 10 mAdc
VDS − 20 Vdc
Device case grounded
IM test tones − f1 = 449.5 MHz, f2 = 450.5 MHz
C1 = 1−10 pF Johanson Air variable trimmer.
C2, C5 = 100 pF feed thru button capacitor.
C3, C4, C6 = 0.5−6 pF Johanson Air variable trimmer.
L1 = 1/8″ x 1/32″ x 1−5/8″ copper bar.
L2, L4 = Ferroxcube Vk200 choke.
L3 = 1/8″ x 1/32″ x 1−7/8″ copper bar.
Figure 12. 450 MHz IMD Evaluation Amplifier
Amplifier power gain and IMD products are a function of the load impedance. For the amplifier design shown above with
C4 and C6 adjusted to reflect a load to the drain resulting in a nominal power gain of 9 dB, the 3rd order intercept point (IP)
value is 29 dBm. Adjusting C4, C6 to provide larger load values will result in higher gain, smaller bandwidth and lower IP
values. For example, a nominal gain of 13 dB can be achieved with an intercept point of 19 dBm.
OUTPUT POWER PER TONE (dBm)
+40
+20
0
−20
−40
U310 JFET
VDS = 20 Vdc
ID = 10 mAdc
F1 = 449.5 MHz
F2 = 450.5 MHz
3RD ORDER INTERCEPT POINT
FUNDAMENTAL OUTPUT
Example of intercept point plot use:
Assume two in−band signals of −20 dBm at the amplifier input. They will result in a 3rd order IMD signal at
the output of −90 dBm. Also, each signal level at the
output will be −11 dBm, showing an amplifier gain of
9.0 dB and an intermodulation ratio (IMR) capability
of 79 dB. The gain and IMR values apply only for signal levels below comparison.
−60
−80
3RD ORDER IMD OUTPUT
−100
−120
−120
−100
−40
−20
−60
−80
INPUT POWER PER TONE (dBm)
0
+20
Figure 13. Two Tone 3rd Order Intercept Point
http://onsemi.com
5
J308
PACKAGE DIMENSIONS
TO−92 (TO−226AA)
CASE 29−11
ISSUE AL
A
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. CONTOUR OF PACKAGE BEYOND DIMENSION R
IS UNCONTROLLED.
4. LEAD DIMENSION IS UNCONTROLLED IN P AND
BEYOND DIMENSION K MINIMUM.
B
R
P
L
SEATING
PLANE
K
DIM
A
B
C
D
G
H
J
K
L
N
P
R
V
D
X X
G
J
H
V
C
1
N
SECTION X−X
N
INCHES
MIN
MAX
0.175
0.205
0.170
0.210
0.125
0.165
0.016
0.021
0.045
0.055
0.095
0.105
0.015
0.020
0.500
−−−
0.250
−−−
0.080
0.105
−−−
0.100
0.115
−−−
0.135
−−−
MILLIMETERS
MIN
MAX
4.45
5.20
4.32
5.33
3.18
4.19
0.407
0.533
1.15
1.39
2.42
2.66
0.39
0.50
12.70
−−−
6.35
−−−
2.04
2.66
−−−
2.54
2.93
−−−
3.43
−−−
STYLE 5:
PIN 1. DRAIN
2. SOURCE
3. GATE
Thermal Clad is a trademark of the Bergquist Company.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5773−3850
http://onsemi.com
6
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
J308/D