MOTOROLA Order this document by J308/D SEMICONDUCTOR TECHNICAL DATA JFET VHF/UHF Amplifiers J308 N–Channel — Depletion J309 1 DRAIN J310 3 GATE Motorola Preferred Devices 2 SOURCE MAXIMUM RATINGS Rating Symbol Value Unit Drain – Source Voltage VDS 25 Vdc Gate–Source Voltage VGS 25 Vdc Forward Gate Current IGF 10 mAdc Total Device Dissipation @ TA = 25°C Derate above 25°C PD 350 2.8 mW mW/°C Junction Temperature Range TJ – 65 to +125 °C Storage Temperature Range Tstg – 65 to +150 °C 1 2 3 CASE 29–04, STYLE 5 TO–92 (TO–226AA) ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit V(BR)GSS – 25 — — Vdc — — — — –1.0 –1.0 nAdc µAdc – 1.0 – 1.0 – 2.0 — — — – 6.5 – 4.0 – 6.5 12 12 24 — — — 60 30 60 — — 1.0 — — — 0.7 0.7 0.5 — — — OFF CHARACTERISTICS Gate – Source Breakdown Voltage (IG = –1.0 µAdc, VDS = 0) Gate Reverse Current (VGS = –15 Vdc, VDS = 0, TA = 25°C) (VGS = –15 Vdc, VDS = 0, TA = +125°C) Gate Source Cutoff Voltage (VDS = 10 Vdc, ID = 1.0 nAdc) IGSS VGS(off) J308 J309 J310 Vdc ON CHARACTERISTICS Zero – Gate –Voltage Drain Current(1) (VDS = 10 Vdc, VGS = 0) IDSS J308 J309 J310 Gate–Source Forward Voltage (VDS = 0, IG = 1.0 mAdc) VGS(f) mAdc Vdc SMALL– SIGNAL CHARACTERISTICS Common–Source Input Conductance (VDS = 10 Vdc, ID = 10 mAdc, f = 100 MHz) Re(yis) J308 J309 J310 mmhos Common–Source Output Conductance (VDS = 10 Vdc, ID = 10 mAdc, f = 100 MHz) Re(yos) — 0.25 — mmhos Common–Gate Power Gain (VDS = 10 Vdc, ID = 10 mAdc, f = 100 MHz) Gpg — 16 — dB 1. Pulse Test: Pulse Width v 300 µs, Duty Cycle v 3.0%. Motorola Small–Signal Transistors, FETs and Diodes Device Data Motorola, Inc. 1997 1 J308 J309 J310 ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) (Continued) Characteristic Symbol Min Typ Max Unit Common–Source Forward Transconductance (VDS = 10 Vdc, ID = 10 mAdc, f = 100 MHz) Re(yfs) — 12 — mmhos Common–Gate Input Conductance (VDS = 10 Vdc, ID = 10 mAdc, f = 100 MHz) Re(yig) — 12 — mmhos 8000 10000 8000 — — — 20000 20000 18000 — — 250 — — — 13000 13000 12000 — — — — — — 150 100 150 — — — SMALL– SIGNAL CHARACTERISTICS (continued) Common–Source Forward Transconductance (VDS = 10 Vdc, ID = 10 mAdc, f = 1.0 kHz) Common–Source Output Conductance (VDS = 10 Vdc, ID = 10 mAdc, f = 1.0 kHz) Common–Gate Forward Transconductance (VDS = 10 Vdc, ID = 10 mAdc, f = 1.0 kHz) Common–Gate Output Conductance (VDS = 10 Vdc, ID = 10 mAdc, f = 1.0 kHz) µmhos gfs J308 J309 J310 gos µmhos gfg J308 J309 J310 µmhos gog J308 J309 J310 µmhos Gate–Drain Capacitance (VDS = 0, VGS = –10 Vdc, f = 1.0 MHz) Cgd — 1.8 2.5 pF Gate–Source Capacitance (VDS = 0, VGS = –10 Vdc, f = 1.0 MHz) Cgs — 4.3 5.0 pF Noise Figure (VDS = 10 Vdc, ID = 10 mAdc, f = 450 MHz) NF — 1.5 — dB Equivalent Short–Circuit Input Noise Voltage (VDS = 10 Vdc, ID = 10 mAdc, f = 100 Hz) en — 10 — nVń ǸHz FUNCTIONAL CHARACTERISTICS 2 Motorola Small–Signal Transistors, FETs and Diodes Device Data J308 J309 J310 50 Ω SOURCE 50 Ω LOAD U310 C3 L2P L1 L2S C2 C1 C4 C6 C5 C7 1.0 k RFC +VDD C1 = C2 = 0.8 – 10 pF, JFD #MVM010W. C3 = C4 = 8.35 pF Erie #539–002D. C5 = C6 = 5000 pF Erie (2443–000). C7 = 1000 pF, Allen Bradley #FA5C. RFC = 0.33 µH Miller #9230–30. L1 = One Turn #16 Cu, 1/4″ I.D. (Air Core). L2P = One Turn #16 Cu, 1/4″ I.D. (Air Core). L2S = One Turn #16 Cu, 1/4″ I.D. (Air Core). 60 60 TA = – 55°C 50 50 + 25°C IDSS + 25°C 40 40 30 30 +150°C 20 20 + 25°C – 55°C 10 –5.0 +150°C 10 30 20 +150°C 15 + 25°C – 55°C 10 +150°C 0 5.0 4.0 Yos VGS(off) = – 2.3 V = VGS(off) = – 5.7 V = 0 10 10 120 RDS CAPACITANCE (pF) Yos, OUTPUT ADMITTANCE (µ mhos) Yfs , FORWARD TRANSCONDUCTANCE (µmhos) 100 1.0 k 1.0 2.0 Figure 3. Forward Transconductance versus Gate–Source Voltage Yfs 10 k 3.0 VGS, GATE–SOURCE VOLTAGE (VOLTS) 1.0 k Yfs + 25°C 25 Figure 2. Drain Current and Transfer Characteristics versus Gate–Source Voltage 100 k TA = – 55°C VDS = 10 V f = 1.0 MHz 5.0 0 0 –1.0 –4.0 –3.0 –2.0 ID – VGS, GATE–SOURCE VOLTAGE (VOLTS) IDSS – VGS, GATE–SOURCE CUTOFF VOLTAGE (VOLTS) 35 96 7.0 72 Cgs 4.0 48 24 Cgd R DS , ON RESISTANCE (OHMS) VDS = 10 V IDSS, SATURATION DRAIN CURRENT (mA) 70 70 I D , DRAIN CURRENT (mA) Yfs , FORWARD TRANSCONDUCTANCE (mmhos) Figure 1. 450 MHz Common–Gate Amplifier Test Circuit 1.0 100 0.01 1.0 0.1 0.2 0.3 0.5 1.0 2.0 3.0 5.0 10 20 30 50 100 ID, DRAIN CURRENT (mA) Figure 4. Common–Source Output Admittance and Forward Transconductance versus Drain Current Motorola Small–Signal Transistors, FETs and Diodes Device Data 0 10 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0 0 VGS, GATE SOURCE VOLTAGE (VOLTS) Figure 5. On Resistance and Junction Capacitance versus Gate–Source Voltage 3 J308 J309 J310 |S21|, |S11| 0.85 0.45 2.4 0.79 0.39 |S12|, |S22| 0.060 1.00 S22 VDS = 10 V ID = 10 mA TA = 25°C 24 3.0 0.048 0.98 S21 Y11 18 1.8 Y21 12 1.2 0.73 0.33 VDS = 10 V ID = 10 mA TA = 25°C 0.67 0.27 0.024 0.94 0.61 0.21 0.6 0.012 0.92 S12 Y12 0 100 200 300 500 f, FREQUENCY (MHz) 700 0.55 0.15 100 1000 Figure 6. Common–Gate Y Parameter Magnitude versus Frequency θ22 160° 40° 200 300 500 f, FREQUENCY (MHz) θ11, θ12 – 20° 120° – 40° 0.90 86° – 40° 100° 85° – 60° 80° – 120° 84° – 80° 60° – 100° 40° – 120° 20° 100 θ21, θ22 0 θ11 – 20° θ21 700 1000 Figure 7. Common–Gate S Parameter Magnitude versus Frequency θ12, θ22 – 20° 87° θ21, θ11 180° 50° 170° 0.036 0.96 S11 Y22 6.0 Y12 (mmhos) |Y11|, |Y21 |, |Y22 | (mmhos) 30 θ21 θ22 – 20° – 60° – 80° 30° – 40° – 100° 20° 140° 10° θ12 θ11 130° 0° 100 – 140° VDS = 10 V ID = 10 mA TA = 25°C 200 300 500 f, FREQUENCY (MHz) – 180° – 200° 82° 1000 Figure 8. Common–Gate Y Parameter Phase–Angle versus Frequency 8.0 7.0 21 6.0 18 15 Gpg 4.0 12 NF 3.0 9.0 2.0 6.0 1.0 3.0 6.0 8.0 θ11 200 300 500 f, FREQUENCY (MHz) 700 – 80° – 100° 1000 26 VDD = 20 V f = 450 MHz BW ≈ 10 MHz CIRCUIT IN FIGURE 1 5.0 0 4.0 10 12 14 16 18 ID, DRAIN CURRENT (mA) 20 Figure 10. Noise Figure and Power Gain versus Drain Current 4 24 22 0 24 NF, NOISE FIGURE (dB) 6.0 VDS = 10 V ID = 10 mA TA = 25°C Figure 9. S Parameter Phase–Angle versus Frequency G pg , POWER GAIN (dB) NF, NOISE FIGURE (dB) 7.0 – 60° θ12 – 160° 83° 700 θ21 22 5.0 4.0 3.0 2.0 18 Gpg VDS = 10 V ID = 10 mA TA = 25°C CIRCUIT IN FIGURE 1 14 10 NF G pg , POWER GAIN (dB) 150° 6.0 1.0 2.0 0 50 100 200 300 f, FREQUENCY (MHz) 500 700 1000 Figure 11. Noise Figure and Power Gain versus Frequency Motorola Small–Signal Transistors, FETs and Diodes Device Data J308 J309 J310 C1 C6 U310 S D G C3 L1 INPUT RS = 50 Ω C4 L3 OUTPUT RL = 50 Ω C5 C2 L2 L4 VS C1 = 1–10 pF Johanson Air variable trimmer. C2, C5 = 100 pF feed thru button capacitor. C3, C4, C6 = 0.5–6 pF Johanson Air variable trimmer. L1 = 1/8″ x 1/32″ x 1–5/8″ copper bar. L2, L4 = Ferroxcube Vk200 choke. L3 = 1/8″ x 1/32″ x 1–7/8″ copper bar. VD SHIELD BW (3 dB) – 36.5 MHz ID – 10 mAdc VDS – 20 Vdc Device case grounded IM test tones – f1 = 449.5 MHz, f2 = 450.5 MHz Figure 12. 450 MHz IMD Evaluation Amplifier Amplifier power gain and IMD products are a function of the load impedance. For the amplifier design shown above with C4 and C6 adjusted to reflect a load to the drain resulting in a nominal power gain of 9 dB, the 3rd order intercept point (IP) value is 29 dBm. Adjusting C4, C6 to provide larger load values will result in higher gain, smaller bandwidth and lower IP values. For example, a nominal gain of 13 dB can be achieved with an intercept point of 19 dBm. OUTPUT POWER PER TONE (dBm) +40 +20 0 –20 –40 U310 JFET VDS = 20 Vdc ID = 10 mAdc F1 = 449.5 MHz F2 = 450.5 MHz 3RD ORDER INTERCEPT POINT FUNDAMENTAL OUTPUT Example of intercept point plot use: Assume two in–band signals of –20 dBm at the amplifier input. They will result in a 3rd order IMD signal at the output of –90 dBm. Also, each signal level at the output will be –11 dBm, showing an amplifier gain of 9.0 dB and an intermodulation ratio (IMR) capability of 79 dB. The gain and IMR values apply only for signal levels below comparison. –60 –80 3RD ORDER IMD OUTPUT –100 –120 –120 –100 –60 –40 –20 –80 INPUT POWER PER TONE (dBm) 0 +20 Figure 13. Two Tone 3rd Order Intercept Point Motorola Small–Signal Transistors, FETs and Diodes Device Data 5 J308 J309 J310 PACKAGE DIMENSIONS A NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. 4. DIMENSION F APPLIES BETWEEN P AND L. DIMENSION D AND J APPLY BETWEEN L AND K MINIMUM. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM. B R P L F SEATING PLANE K DIM A B C D F G H J K L N P R V D X X G J H V C SECTION X–X 1 N N CASE 029–04 (TO–226AA) ISSUE AD 6 INCHES MIN MAX 0.175 0.205 0.170 0.210 0.125 0.165 0.016 0.022 0.016 0.019 0.045 0.055 0.095 0.105 0.015 0.020 0.500 ––– 0.250 ––– 0.080 0.105 ––– 0.100 0.115 ––– 0.135 ––– MILLIMETERS MIN MAX 4.45 5.20 4.32 5.33 3.18 4.19 0.41 0.55 0.41 0.48 1.15 1.39 2.42 2.66 0.39 0.50 12.70 ––– 6.35 ––– 2.04 2.66 ––– 2.54 2.93 ––– 3.43 ––– STYLE 5: PIN 1. DRAIN 2. SOURCE 3. GATE Motorola Small–Signal Transistors, FETs and Diodes Device Data J308 J309 J310 Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. Motorola Small–Signal Transistors, FETs and Diodes Device Data 7 J308 J309 J310 Mfax is a trademark of Motorola, Inc. How to reach us: USA / EUROPE / Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447 JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4–32–1, Nishi–Gotanda, Shinagawa–ku, Tokyo 141, Japan. 81–3–5487–8488 Mfax: [email protected] – TOUCHTONE 602–244–6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, – US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298 INTERNET: http://motorola.com/sps 8 ◊ Motorola Small–Signal Transistors, FETs and Diodes DeviceJ308/D Data