WEDC W3EG264M72EFSU265D4

White Electronic Designs
W3EG264M72EFSUxxxD4
ADVANCED*
1GB – 2x64Mx72 DDR SDRAM, UNBUFFERED, FBGA
FEATURES
DESCRIPTION
Fast data transfer rate: PC-2100, PC-2700 and
PC3200
Clock speeds of 133 MHz, 166 MHz and 200MHz
Supports ECC error detection and correction
The W3EG264M72EFSU is a 2x64Mx72 Double Data
Rate SDRAM memory module based on 512Mb DDR
SDRAM components. The module consists of eighteen
64Mx8 DDR SDRAMs in FBGA packages mounted on a
200 pin FR4 substrate.
Bi-directional data strobes (DQS)
Differential clock inputs (CK & CK#)
Programmable Read Latency 3 and 4 (clock)
Programmable Burst Length (2, 4 or 8)
Programmable Burst type (sequential & interleave)
Edge aligned data output, center aligned data input
Auto and self refresh
Serial presence detect (SPD) with EEPROM
Dual Rank
* This product is under development, is not qualified or characterized and is subject to
change or cancellation without notice.
VCC = VCCQ = +2.6V (200MHz)
VCC = VCCQ = +2.5V (133 and 166MHz)
Gold edge contacts
JEDEC standard 200 pin, small-outline, SO-DIMM
package
•
Synchronous design allows precise cycle control with the
use of system clock. Data I/O transactions are possible on
both edges and Burst Lengths allow the same device to be
useful for a variety of high bandwidth, high performance
memory system applications.
PCB height option:
31.75 mm (1.25”)
NOTE: Consult factory for availability of:
• RoHS compliant products
• Vendor source control options
• Industrial temperature option
OPERATING FREQUENCIES
DDR400@CL=3
DDR333@CL=2.5
DDR266@CL=2
DDR266@CL=2.5
Clock Speed
200MHz
166MHz
133MHz
133MHz
CL-tRCD-tRP
3-3-3
2.5-3-3
2-2-2
2.5-3-3
September 2004
Rev. 0
1
White Electronic Designs Corporation • (602) 437-1520 • www.wedc.com
White Electronic Designs
W3EG264M72EFSUxxxD4
ADVANCED
PIN CONFIGURATION
PIN NAMES
PIN# SYMBOL PIN# SYMBOL PIN# SYMBOL PIN# SYMBOL
51
VSS
101
A9
151
DQ42
1
VREF
2
VREF
52
VSS
102
A8
152
DQ46
53
DQ19
103
VSS
153
DQ43
3
VSS
4
VSS
54
DQ23
104
VSS
154
DQ47
5
DQ0
55
DQ24
105
A7
155
VCC
6
DQ4
56
DQ28
106
A6
156
VCC
7
DQ1
57
VCC
107
A5
157
VCC
8
DQ5
58
VCC
108
A4
158
CK1#
9
VCC
59
DQ25
109
A3
159
VSS
10
VCC
60
DQ29
110
A2
160
CK1
11
DQS0
61
DQS3
111
A1
161
VSS
12
DM0
62
DM3
112
A0
162
VSS
13
DQ2
63
VSS
113
VCC
163
DQ48
14
DQ6
64
VSS
114
VCC
164
DQ52
65
DQ26
115
A10
165
DQ49
15
VSS
16
VSS
66
DQ30
116
BA1
166
DQ53
17
DQ3
67
DQ27
117
BA0
167
VCC
18
DQ7
68
DQ31
118
RAS#
168
VCC
19
DQ8
69
VCC
119
WE#
169
DQS6
20
DQ12
70
VCC
120
CAS#
170
DM6
21
VCC
71
CB0
121
S0#
171
DQ50
22
VCC
72
CB4
122
S1#
172
DQ54
23
DQ9
73
CB1
123
NC
173
VSS
24
DQ13
74
CB5
124
NC
174
VSS
25
DQS1
75
VSS
125
VSS
175
DQ51
26
DM1
76
VSS
126
VSS
176
DQ55
27
VSS
77
DQS8
127
DQ32
177
DQ56
78
DM8
128
DQ36
178
DQ60
28
VSS
29
DQ10
79
CB2
129
DQ33
179
VCC
30
DQ14
80
CB6
130
DQ37
180
VCC
31
DQ11
81
VCC
131
VCC
181
DQ57
32
DQ15
82
VCC
132
VCC
182
DQ61
83
CB3
133
DQS4
183
DQS7
33
VCC
34
VCC
84
CB7
134
DM4
184
DM7
35
CK0
85
NC
135
DQ34
185
VSS
36
VCC
86
DNU
136
DQ38
186
VSS
37
CK0#
87
VSS
137
VSS
187
DQ58
38
VSS
88
VSS
138
VSS
188
DQ62
39
VSS
89
CK2
139
DQ35
189
DQ59
40
VSS
90
VSS
140
DQ39
190
DQ63
41
DQ16
91
CK2#
141
DQ40
191
VCC
42
DQ20
92
VCC
142
DQ44
192
VCC
43
DQ17
93
VCC
143
VCC
193
SDA
44
DQ21
94
VCC
144
VCC
194
SA0
45
VCC
95
CKE1
145
DQ41
195
SCL
46
VCC
96
CKE0
146
DQ45
196
SA1
47
DQS2
97
NC
147
DQS5
197
VCCSPD
48
DM2
98
NC
148
DM5
198
SA2
49
DQ18
99
A12
149
VSS
199
NC
50
DQ22
100
A11
150
VSS
200
VSS
September 2004
Rev. 0
2
Symbol
WE#, CAS#, RAS#
CK0, CK0#
CK1, CK1#
CK2, CK2#
CKE0-CKE1
S0#-S1#
BA0, BA1
A0-A12
SCL
SA0-SA2
SDA
DM0-DM8
DQS0-DQS8
CB0-CB7
DQ0-DQ63
VREF
VCC
VSS
VCCSPD
NC
DNU
Description
Command Input
Clock Input
Clock Enable Input
Chip Select Input
Bank Address
Address input
Serial Clock
Presence Detect Address Input
Input/Output: Serial PresenceDetect Data
Data Write Mask
Data Strobe
Input/Output: Check Bits
Input/Output: Data I/Os, Data bus
Supply: SSTL_2 reference voltage
Supply: Power Supply: +2.5V
±0.2V
Supply: Ground
Supply: Serial EEPROM Positive
Power Supply
No Connect
Do Not Use
White Electronic Designs Corporation • (602) 437-1520 • www.wedc.com
White Electronic Designs
W3EG264M72EFSUxxxD4
ADVANCED
FUNCTIONAL BLOCK DIAGRAM
S1#
S0#
DQS0
DQS5
DM5
DM0
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DM CS# DQS
DQ
DQ
DQ
U0
DQ
DQ
DQ
DQ
DQ
DM CS# DQS
DQ
DQ
DQ
DQ U9
DQ
DQ
DQ
DQ
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
DM CS# DQS
DQ
DQ
DQ
U5
DQ
DQ
DQ
DQ
DQ
DM CS# DQS
DQ
DQ
DQ
DQ U14
DQ
DQ
DQ
DQ
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
DM CS# DQS
DQ
DQ
DQ
U6
DQ
DQ
DQ
DQ
DQ
DM CS# DQS
DQ
DQ
DQ
DQ U15
DQ
DQ
DQ
DQ
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
DM CS# DQS
DQ
DQ
DQ
U7
DQ
DQ
DQ
DQ
DQ
DM CS# DQS
DQ
DQ
DQ
DQ U16
DQ
DQ
DQ
DQ
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
DM CS# DQ
DQ
DQ
DQ
U8
DQ
DQ
DQ
DQ
DQ
DM CS# DQS
DQ
DQ
DQ
DQ U17
DQ
DQ
DQ
DQ
DQS6
DQS1
DM1
DM6
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
DM CS# DQS
DQ
DQ
DQ
U1
DQ
DQ
DQ
DQ
DQ
DM CS# DQS
DQ
DQ
DQ
DQ U10
DQ
DQ
DQ
DQ
DQS7
DM7
DQS2
DM2
DM CS# DQS
DQ
DQ
DQ
U2
DQ
DQ
DQ
DQ
DQ
DM CS# DQS
DQ
DQ
DQ
DQ U11
DQ
DQ
DQ
DQ
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
DM CS# DQS
DQ
DQ
DQ
U3
DQ
DQ
DQ
DQ
DQ
DM CS# DQS
DQ
DQ
DQ
DQ U12
DQ
DQ
DQ
DQ
CB0
CB1
CB2
CB3
CB4
CB5
CB6
CB7
DM CS# DQS
DQ
DQ
DQ
U4
DQ
DQ
DQ
DQ
DQ
DM CS# DQS
DQ
DQ
DQ
DQ U13
DQ
DQ
DQ
DQ
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
DQS8
DM8
DQS3
DM3
DQS4
DM4
BA0, BA1
A0-A12
120
U1, U2, U5,
U13, U14, U19
CK0
CK0#
120
U3, U4, U9,
U11, U12, U15
CK1
CK1#
120
CK2
CK2#
U6, U7, U8,
U16, U17, U18
BA0, BA1: DDR SDRAMs
A0-A12: DDR SDRAMs
VDDSPD
SPD/EEPROM
CAS#: DDR SDRAMs
VDD
DDR SDRAMs
CKE0
CKE0: DDR SDRAMs U1-U9
VREF
DDR SDRAMs
CKE1
CKE1: DDR SDRAMs U11-U19
WE#
WE#: DDR SDRAMs
VSS
DDR SDRAMs
RAS#
CAS#
RAS#: DDR SDRAMs
SERIAL PD
SCL
WP
SDA
A0
A1
A2
SA0 SA1 SA2
NOTE: 1. All resistor values are 22 Ω unless otherwise specified.
September 2004
Rev. 0
3
White Electronic Designs Corporation • (602) 437-1520 • www.wedc.com
White Electronic Designs
W3EG264M72EFSUxxxD4
ADVANCED
DC ELECTRICAL CHARACTERISTICS
PARAMETER/CONDITION
Supply Voltage
I/O Supply Voltage
I/O Reference Voltage
I/O Termination Voltage (system)
Input High (Logic 1) Voltage
Input Low (Logic 0) Voltage
High Current (VOUT = VCCQ - 0.373V, minimum VREF, minimum VTT)
Low Current (VOUT = 0.373V, maximum VREF, maximum VTT)
SYMBOL
VCC
VCCQ
VREF
VTT
VIH
VIL
VOH
VOL
MIN
2.3
2.3
0.49 × VCCQ
VREF - 0.04
VREF + 0.15
-0.3
-16.8
16.8
MAX
2.7
2.7
0.51 × VCCQ
VREF + 0.04
VCC + 0.3
VREF - 0.15
—
—
UNITS
V
V
V
V
V
V
mA
mA
CAPACITANCE
PARAMETER
Input/Output Capacitance: DQ, DQS,DM
Input Capacitance: Command and Address
Input Capacitance: CK, CK#,
Input Capacitance: CKE, S#
September 2004
Rev. 0
SYMBOL
CI0
CI1
CI2
CI3
4
MAX
12
47
25
25
UNITS
pF
pF
pF
pF
White Electronic Designs Corporation • (602) 437-1520 • www.wedc.com
White Electronic Designs
W3EG264M72EFSUxxxD4
ADVANCED
IDD SPECIFICATIONS AND CONDITIONS
0°C ≤ TA ≤ +70°C; VCC, VCCQ = +2.5V ±0.2V
DDR400: VCC = VCCQ = +2.6V ±0.2V
MAX
PARAMETER/CONDITION
SYM
OPERATING CURRENT: One device bank; Active-Precharge; tRC = tRC (MIN); tCK = tCK
(MIN); DQ, DM and DQS inputs changing once per clock cycle; Address and control inputs
changing once every two clock cycles
IDD0
2475
2070
2070
1845
mA
OPERATING CURRENT: One device bank; Active-Read-Precharge; Burst = 4; tRC = tRC
(MIN); tCK = tCK (MIN); IOUT = 0mA; Address and control inputs changing once per clock
cycle
IDD1
2745
2340
2340
2115
mA
PRECHARGE POWER-DOWN STANDBY CURRENT: All device banks idle; Power-down
mode; tCK = tCK (MIN); CKE = (LOW)
IDD2P
90
90
90
90
mA
IDLE STANDBY CURRENT: CS# = HIGH; All device banks are idle; tCK = tCK (MIN); CKE =
HIGH; Address and other control inputs changing once per clock cycle. VIN = VREF for DQ,
DQS, and DM
IDD2F
990
810
810
720
mA
ACTIVE POWER-DOWN STANDBY CURRENT: One device bank active; Power-down
mode; tCK = tCK (MIN); CKE = LOW
IDD3P
810
630
630
540
mA
ACTIVE STANDBY CURRENT: CS# = HIGH; CKE = HIGH; One device bank active; tRC =
tRAS (MAX); tCK = tCK (MIN); DQ, DM and DQS inputs changing twice per clock cycle; Address
and other control inputs changing once per clock cycle
IDD3N
1080
900
900
810
mA
OPERATING CURRENT: Burst = 2; Reads; Continuous burst; One device bank active;
Address and control inputs changing once per clock cycle; tCK = tCK (MIN); IOUT = 0mA
IDD4R
2790
2385
2385
2115
mA
OPERATING CURRENT: Burst = 2; Writes; Continuous burst; One device bank active;
Address and control inputs changing once per clock cycle; tCK = tCK (MIN); DQ, DM, and DQS
inputs changing twice per clock cycle
IDD4W
2790
2295
2295
2025
mA
AUTO REFRESH BURST CURRENT:
IDD5
4185
3510
3510
3330
mA
SELF REFRESH CURRENT: CKE ≤ 0.2V
IDD6
90
90
90
90
mA
OPERATING CURRENT: Four device bank interleaving READs (Burst = 4) with auto
precharge, tRC = minimum tRC allowed; tCK = tCK (MIN); Address and control inputs change
only during Active READ, or WRITE commands
IDD7
5130
4545
4545
3960
mA
September 2004
Rev. 0
tREFC = tRFC (MIN)
DDR400 DDR333 DDR266 DDR266 UNITS
@CL=3 @CL=2.5 @CL=2 @CL=2.5
5
White Electronic Designs Corporation • (602) 437-1520 • www.wedc.com
White Electronic Designs
W3EG264M72EFSUxxxD4
ADVANCED
DDR SDRAM COMPONENT ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC
OPERATING CONDITIONS
0°C ≤ TA ≤ +70°C; VCC = VCCQ = +2.5V ±0.2V
AC CHARACTERISTICS
403
335
PARAMETER
Access window of DQs from CK/CK#
CK high-level width
CK low-level width
Clock cycle time
SYMBOL MIN
MAX
tAC
-0.65 +0.65
tCH
0.45
0.55
tCL
0.45
0.55
CL = 3
tCK (3)
5
10
CL = 2.5 tCK (2.5)
CL = 2
tCK (2)
DQ and DM input hold time relative to DQS
tDH
0.40
DQ and DM input setup time relative to DQS
tDS
0.40
DQ and DM input pulse width (for each input)
tDIPW
1.75
Access window of DQS from CK/CK#
tDQSCK
-0.55 +0.55
DQS input high pulse width
tDQSH
0.35
DQS input low pulse width
tDQSL
0.35
DQS-DQ skew, DQS to last DQ valid, per group, per
tDQSQ
0.4
access
Write command to first DQS latching transition
tDQSS
0.72
1.25
DQS falling edge to CK rising - setup time
tDSS
0.20
DQS falling edge from CK rising - hold time
tDSH
0.20
Half clock period
tHP
tCH,tCL
Data-out high-impedance window from CK/CK#
tHZ
+0.65
Data-out low-impedance window from CK/CK#
tLZ
-0.65 +0.65
Address and control input hold time (fast slew rate)
tIHF
0.60
Address and control input setup time (fast slew rate)
tISF
0.60
Address and control input hold time (slow slew rate)
tIHS
0.8
September 2004
Rev. 0
6
262
265
MIN
-0.70
0.45
0.45
MAX
+0.70
0.55
0.55
MIN
-0.75
0.45
0.45
MAX
+0.75
0.55
0.55
MIN
-0.75
0.45
0.45
MAX
0.75
0.55
0.55
6
7.5
0.45
0.45
1.75
-0.60
0.35
0.35
13
13
7.5
7.5
0.5
0.5
1.75
-0.75
0.35
0.35
13
13
7.5
7.5/10
0.5
0.5
1.75
-0.75
0.35
0.35
13
13
+0.60
0.4
0.75
1.25
0.20
0.20
tCH,tCL
+0.70
-0.70
0.75
0.75
0.8
+0.75
0.5
0.75
1.25
0.20
0.20
tCH,tCL
+0.75
-0.75
0.90
0.90
1
+0.75
0.5
0.75
1.25
0.2
0.2
tCH, tCL
+0.75
-0.75
0.90
0.90
1
UNITS NOTES
ns
tCK
26
tCK
26
ns
39, 44
ns
39, 44
ns
39, 44
ns
23, 27
ns
23, 27
ns
27
ns
tCK
tCK
ns
22, 23
tCK
tCK
tCK
ns
ns
ns
ns
ns
ns
30
16, 36
16, 36
12
12
12
White Electronic Designs Corporation • (602) 437-1520 • www.wedc.com
White Electronic Designs
W3EG264M72EFSUxxxD4
ADVANCED
DDR SDRAM COMPONENT ELECTRICAL CHARACTERISTICS AND RECOMMENDED
AC OPERATING CONDITIONS (Continued)
0°C < TA <+70°C; VCC = VCCQ = +2.5V ±0.2V
AC CHARACTERISTICS
RAMETER
403
335
MIN
SYMBOL
MIN
MIN
MAX
tISS
0.8
0.8
1
1
ns
Address and Control input pulse width (for each
input)
tIPW
2.2
2.2
2.2
2.2
ns
LOAD MODE REGISTER command cycle time
tMRD
12
12
15
15
ns
DQ-DQS hold, DQS to first DQ to go non-valid, per
access
tQH
tHP - tQHS
tHP - tQHS
tHP - tQHS
tHP - tQHS
ns
Data hold skew factor
tQHS
ACTIVE to PRECHARGE command
tRAS
40
ACTIVE to READ with Auto precharge command
tRAP
15
18
15
20
ns
ACTIVE to ACTIVE/AUTO REFRESH command
period
tRC
55
60
60
65
ns
AUTO REFRESH command period
tRFC
70
72
75
78
ns
ACTIVE to READ or WRITE delay
tRCD
15
18
15
20
ns
0.50
70,000
MAX
MIN
265
Address and control input setup time (slow slew rate)
PRECHARGE command period
MAX
262
0.50
42
70,000
MAX
0.75
40
120,000
40
UNITS NOTES
12
0.75
ns
120,000
ns
22, 23
30, 47
42
tRP
15
DQS read preamble
tRPRE
0.9
1.1
0.9
1.1
0.9
1.1
0.9
1.1
tCK
37
DQS read postamble
tRPST
0.4
0.6
0.4
0.6
0.4
0.6
0.4
0.6
tCK
37
ACTIVE bank a to ACTIVE bank b command
tRRD
10
12
15
15
ns
DQS write preamble
tWPRE
0.25
0.25
0.25
0.25
tCK
DQS write preamble setup time
tWPRES
0
DQS write postamble
tWPST
0.4
Write recovery time
tWR
15
15
15
15
ns
Internal WRITE to READ command delay
tWTR
1
1
1
1
tCK
NA
tQH -tDQSQ
Data valid output window
18
15
0
0.6
0.4
20
0
0.6
tQH -tDQSQ
0.4
0
0.6
tQH -tDQSQ
0.4
tREFC
Average periodic refresh interval
tREFI
Terminating voltage delay to VDD
tVTD
Exit SELF REFRESH to non-READ command
tXSNR
75
75
75
75
Exit SELF REFRESH to READ command
tXSRD
200
200
200
200
September 2004
Rev. 0
70.3
7.8
0
7
70.3
7.8
0
7.8
0
0.6
tQH - tDQSQ
REFRESH to REFRESH command interval
70.3
ns
ns
18, 19
tCK
17
ns
22
70.3
µs
21
7.8
µs
21
0
ns
ns
tCK
White Electronic Designs Corporation • (602) 437-1520 • www.wedc.com
White Electronic Designs
W3EG264M72EFSUxxxD4
ADVANCED
Notes
1. All voltages referenced to VSS.
2. Tests for AC timing, IDD, and electrical AC and DC characteristics may be conducted
at nominal reference/supply voltage levels, but the related specifications and device
operation are guaranteed for the full voltage range specified.
3. Outputs measured with equivalent load:
17. The intent of the Don’t Care state after completion of the postamble is the DQSdriven signal should either be high, low, or high-Z and that any signal transition
within the input switching region must follow valid input requirements. That is, if
DQS transitions high (above VIH DC (MIN) then it must not transition low (below VIH
DC) prior to tDQSH (MIN).
18. This is not a device limit. The device will operate with a negative value, but system
performance could be degraded due to bus turnaround.
19. It is recommended that DQS be valid (HIGH or LOW) on or before the WRITE
command. The case shown (DQS going from High-Z to logic LOW) applies when
no WRITEs were previously in progress on the bus. If a previous WRITE was in
progress, DQS could be HIGH during this time, depending on tDQSS.
20. MIN (tRC or tRFC) for IDD measurements is the smallest multiple of tCK that meets
the minimum absolute Value for the respective parameter. tRAS (MAX) for IDD
measurements is the largest multiple of tCK that meets the maximum absolute value
for tRAS.
21. The refresh period 64ms. This equates to an aver-age refresh rate of 7.8125µs.
However, an AUTO REFRESH command must be asserted at least once every
70.3µs; burst refreshing or posting by the DRAM controller greater than eight
refresh cycles is not allowed.
22. The valid data window is derived by achieving other specifications: tHP (tCK/2), tDQSQ,
and tQH (tQH = tHP - tQHS). The data valid window derates directly porportional with
the clock duty cycle and a practical data valid window can be derived. The clock
is allowed a maximum duty cycle variation of 45/55, beyon which functionality is
uncertain. Figure 7, Derating Data Valid Window, shows derating curves for duty
cycles ranging between 50/50 and 45/55.
23. Each byte lane has a corresponding DQS.
24. This limit is actually a nominal value and does not result in a fail value. CKE is
HIGH during REFRESH command period (tRFC [MIN]) else CKE is LOW (i.e., during
standby).
25. To maintain a valid level, the transitioning edge of the input must:
a. Sustain a constant slew rate from the current AC level through to the target AC
level, VIL(AC) or VIH(AC).
b. Reach at least the target AC level.
c. After the AC target level is reached, continue to maintain at least the target DC
level, VIL(DC) or VIH(DC).
26. JEDEC specifies CK and CK# input slew rate must be ≥ 1V/ns (2V/ns differentially).
27. DQ and DM input slew rates must not deviate from DQS by more than 10 percent.
If the DQ/ DM/DQS slew rate is less than 0.5V/ns, timing must be derated: 50ps
must be added to tDS and tDH for each 100mv/ns reduction in slew rate. If slew rate
exceeds 4V/ns, functionality is uncertain. For -335, slew rates must be ≥ 0.5 V/ns.
28. VCC must not vary more than 4 percent if CKE is not active while any bank is active.
29. The clock is allowed up to ±150ps of jitter. Each timing parameter is allowed to vary
by the same amount. tHP min is the lesser of tCL minimum and tCH minimum actually
applied to the device CK and CK# inputs, collectively during bank active.
30. READs and WRITEs with auto precharge are not allowed to be issued until
tRAS(MIN) can be satisfied prior to the internal precharge command being issued.
31. Any positive glitch must be less than 1/3 of the clock and not more than +400mV or
2.9V, which-ever is less. Any negative glitch must be less than 1/3 of the clock cycle
and not exceed either - 300mV or 2.2V, whichever is more positive.
VTT
Output
(VOUT)
50Ω
Reference
Point
30pF
4. AC timing and IDD tests may use a VIL-to-VIH swing of up to 1.5V in the test
environment, but input timing is still referenced to VREF (or to the crossing point for
CK/CK#), and parameter specifications are guaranteed for the specified AC input
levels under normal use conditions. The mini-mum slew rate for the input signals
used to test the device is 1V/ns in the range between VIL(AC) and VIH(AC).
5. The AC and DC input level specifications are as defined in the SSTL_2 Standard
(i.e., the receiver will effectively switch as a result of the signal crossing the AC input
level, and will remain in that state as long as the signal does not ring back above
[below] the DC input LOW [HIGH] level).
6. VREF is expected to equal VDDQ/2 of the transmitting device and to track variations in
the DC level of the same. Peak-to-peak noise (non-common mode) on VREF may not
exceed ±2 percent of the DC value. Thus, from VDDQ/2, VREF is allowed ±25mV for
DC error and an additional ±25mV for AC noise. This measurement is to be taken at
the nearest VREF bypass capacitor.
7. VTT is not applied directly to the device. VTT is a system supply for signal termination
resistors, is expected to be set equal to VREF and must track variations in the DC
level of VREF.
8. IDD is dependent on output loading and cycle rates. Specified values are obtained
with mini-mum cycle time at CL = 2 for -262, and -26A, CL = 2.5 for-335 and -265
with the outputs open.
9. Enables on-chip refresh and address counters.
10. IDD specifications are tested after the device is properly initialized, and is averaged
at the defined cycle rate.
11. This parameter is sampled. VCC = +2.5V ±0.2V, VCCQ = +2.5V ±0.2V, VREF = VSS, f
= 100 MHz, TA = 25°C, VOUT(DC) = VCCQ/2, VOUT (peak to peak) = 0.2V. DM input is
grouped with I/O pins, reflecting the fact that they are matched in loading.
12. For slew rates < 1 V/ns and ≥ to 0.5 Vns. If the slew rate is < 0.5V/ns, timing must
be derated: tIS has an additional 50ps per each 100 mV/ns reduction in slew
rate from 500mV/ns, while tIH is unaffected. If the slew rate exceeds 4.5 V/ns,
functionality is uncertain. For -335, slew rates must be 0.5 V/ns.
13. The CK/CK# input reference level (for timing referenced to CK/CK#) is the point at
which CK and CK# cross; the input reference level for signals other than CK/CK# is
VREF.
14. Inputs are not recognized as valid until VREF stabilizes. Exception: during the period
before VREF stabilizes, CKE < 0.3 x VCCQ is recognized as LOW.
15. The output timing reference level, as measured at the timing reference point
indicated in Note 3, is VTT.
16. tHZ and tLZ transitions occur in the same access time windows as valid data
transitions. These parameters are not referenced to a specific voltage level, but
specify when the device output is no longer driving (HZ) or begins driving (LZ).
September 2004
Rev. 0
8
White Electronic Designs Corporation • (602) 437-1520 • www.wedc.com
White Electronic Designs
W3EG264M72EFSUxxxD4
ADVANCED
32. Normal Output Drive Curves:
a. The full variation in driver pull-down current from minimum to maximum process,
temperature and voltage will lie within the outer bounding lines of the V-I curve of
Figure 8, Pull-Down Characteristics.
b. The variation in driver pull-down current within nominal limits of voltage and
temperature is expected, but not guaranteed, to lie within the inner bounding
lines of the V-I curve of Figure 8, Pull-Down Characteristics.
c.The full variation in driver pull-up current from minimum to maximum process,
temperature and voltage will lie within the outer bounding lines of the V-I curve of
Figure 9, Pull-Up Characteristics.
d. The variation in driver pull-up current within nominal limits of voltage and
temperature is expected, but not guaranteed, to lie within the inner bounding
lines of the V-I curve of Figure 9, Pull-Up Characteristics.
e. The full variation in the ratio of the maximum to minimum pull-up and pull-down
current should be between 0.71 and 1.4, for device drain-to-source voltages from
0.1V to 1.0V, and at the same voltage and temperature.
f. The full variation in the ratio of the nominal pull-up to pull-down current should be
unity ±10 percent, for device drain-to-source voltages from 0.1V to 1.0V.
33. The voltage levels used are derived from a mini-mum VCC level and the referenced
test load. In practice, the voltage levels obtained from a properly terminated bus will
provide significantly different voltage values.
34. VIH overshoot: VIH (MAX) = VCCQ + 1.5V for a pulse width < 3ns and the pulse width
can not be greater than 1/3 of the cycle rate. VIL undershoot: VIL (MIN) = -1.5V for a
pulse width !5 3ns and the pulse width can not be greater than 1/3 of the cycle rate.
35. VCC and VCCQ must track each other.
36. tHZ (MAX) will prevail over tDQSCK (MAX) + tRPST (MAX) condition. tLZ (MIN) will
prevail over tDQSCK (MIN) + tRPRE (MAX) condition.
September 2004
Rev. 0
37. tRPST end point and tRPRE begin point are not referenced to a specific voltage level
but specify when the device output is no longer driving (tRPST), or begins driving
(tRPRE).
38. During Initialization, VCCQ, VTT, and VREF must be equal to or less than VCC + 0.3V.
Alternatively, VTT may be 1.35V maximum during power up, even if VCC/VCCQ are
0.0V, provided a minimum of 42 0 of series resistance is used between the VTT
supply and the input pin.
39. The current part operates below the slowest JEDEC operating frequency of 83 MHz.
As such, future die may not reflect this option.
40. Random addressing changing and 50 percent of data changing at every transfer.
41. Random addressing changing and 100 percent of data changing at every transfer.
42. CKE must be active (high) during the entire time a refresh command is executed.
That is, from the time the AUTO REFRESH command is registered, CKE must be
active at each rising clock edge, until tREF later.
43. IDD2N specifies the DQ, DQS, and DM to be driven to a valid high or low logic level.
IDD2Q is similar to IDD2F except IDD2Q specifies the address and control inputs to
remain stable. Although IDD2F, IDD2N, and IDD2Q are similar, IDD2F is “worst case.”
44. Whenever the operating frequency is altered, not including jitter, the DLL is required
to be reset. This is followed by 200 clock cycles.
45. Leakage number reflects the worst case leakage possible through the module pin,
not what each memory device contributes.
46. When an input signal is HIGH or LOW, it is defined as a steady state logic HIGH or
LOW.
47. The -335 speed grade will operate with tRAS (MIN) = 40ns and tRAS (MAX) =
120,000ns at any slower frequency.
9
White Electronic Designs Corporation • (602) 437-1520 • www.wedc.com
White Electronic Designs
W3EG264M72EFSUxxxD4
ADVANCED
ORDERING INFORMATION FOR D4
Part Number
Speed
CAS Latency
tRCD
tRP
Height*
W3EG264M72EFSU403D4
200MHz/400Mbps
3
3
3
31.75 (1.25") MAX
W3EG264M72EFSU335D4
166MHz/333Mbps
2.5
3
3
31.75 (1.25") MAX
W3EG264M72EFSU262D4
133MHz/266Mbps
2
2
2
31.75 (1.25") MAX
W3EG264M72EFSU265D4
133MHz/266Mbps
2.5
3
3
31.75 (1.25") MAX
NOTES:
• Consult Factory for availability of RoHS compliant products. (G = RoHS Compliant)
• Vendor specific part numbers are used to provide memory components source control. The place holder for this is shown as lower case “x” in the part numbers above and is to be
replaced with the respective vendors code. Consult factory for qualified sourcing options. (M = Micron, S = Samsung & consult factory for others)
• Consult factory for availability of industrial temperature (-40°C to 85°C) option
200-PIN DDR SO-DIMM DIMENSIONS
FRONT VIEW
3.81 (0.150 )
MAX
67.56 (2.66)
2.00 (0.079) R
(2X)
31.75
(1.25)
1.80 (0.071)
(2X)
20.00 (0.787)
TYP
6.00 (0.236)
2.44 (0.096)
1.10 (0.043)
2.00 (0.079)
0.99 (0.039)
TYP
PIN 1
0.46 (0.018)
TYP
0.61 (0.024)
TYP
PIN 199
63.60 (2.504)
TYP
BACK VIEW
PIN 200
PIN 2
* ALL DIMENSIONS ARE IN MILLIMETERS AND (INCHES)
September 2004
Rev. 0
10
White Electronic Designs Corporation • (602) 437-1520 • www.wedc.com
White Electronic Designs
W3EG264M72EFSUxxxD4
ADVANCED
PART NUMBERING GUIDE
W 3 E G 264M 72 E F S U xxx D4
WEDC
MEMORY
DDR
GOLD
DEPTH (Dual Rank)
BUS WIDTH
x8
FBGA
2.5V
UNBUFFERED
SPEED (MHz)
PACKAGE 200 PIN
September 2004
Rev. 0
11
White Electronic Designs Corporation • (602) 437-1520 • www.wedc.com
White Electronic Designs
W3EG264M72EFSUxxxD4
ADVANCED
Document Title
1GB – 2x64Mx72 DDR SDRAM, UNBUFFERED, FBGA
Revision History
Rev #
History
Release Date
Status
Rev 0
Created
9-04
Advanced
September 2004
Rev. 0
12
White Electronic Designs Corporation • (602) 437-1520 • www.wedc.com