SEMIKRON SKIM459GD12E4

SKiM459GD12E4
Absolute Maximum Ratings
Symbol
Conditions
Values
Unit
IGBT
VCES
IC
Tj = 175 °C
1200
V
Ts = 25 °C
554
A
Ts = 70 °C
450
A
450
A
ICnom
ICRM
ICRM = 3xICnom
1350
A
-20 ... 20
V
10
µs
-40 ... 175
°C
Ts = 25 °C
438
A
Ts = 70 °C
347
A
450
A
VGES
SKiM® 93
tpsc
Trench IGBT Modules
VCC = 800 V
VGE ≤ 15 V
VCES ≤ 1200 V
Tj = 150 °C
Tj
Inverse diode
IF
SKiM459GD12E4
Tj = 175 °C
IFnom
Features
• IGBT 4 Trench Gate Technology
• Solderless sinter technology
• VCE(sat) with positive temperature
coefficient
• Low inductance case
• Isolated by Al2O3 DCB (Direct Copper
Bonded) ceramic substrate
• Pressure contact technology
forthermal contacts and
electricalcontacts
• High short circuit capability, self
limiting to 6 x IC
• Integrated temperature sensor
IFRM
IFRM = 3xIFnom
1350
A
IFSM
tp = 10 ms, sin 180°, Tj = 25 °C
2430
A
-40 ... 175
°C
Tj
Module
It(RMS)
Tstg
Visol
A
°C
2500
V
Characteristics
Symbol
Conditions
min.
typ.
max.
Unit
Tj = 25 °C
1.85
2.10
V
Tj = 150 °C
2.25
2.45
V
VCE0
Tj = 25 °C
0.8
0.9
V
Tj = 150 °C
0.7
0.8
V
rCE
Tj = 25 °C
2.3
2.7
mΩ
IGBT
VCE(sat)
Typical Applications
• Automotive inverter
• High reliability AC inverter wind
• High reliability AC inverter drives
AC sinus 50 Hz, t = 1 min
700
-40 ... 125
IC = 450 A
VGE = 15 V
chiplevel
VGE = 15 V
Tj = 150 °C
3.4
3.7
mΩ
5.8
6.5
V
Tj = 25 °C
0.1
0.3
mA
f = 1 MHz
26.4
nF
f = 1 MHz
1.74
nF
VGE(th)
VGE=VCE, IC = 18 mA
ICES
VGE = 0 V
VCE = 1200 V
Cies
Coes
Cres
VCE = 25 V
VGE = 0 V
QG
VGE = - 8 V...+ 15 V
RGint
Tj = 25 °C
td(on)
tr
Eon
td(off)
tf
Eoff
Rth(j-s)
VCC = 600 V
IC = 450 A
RG on = 1.3 Ω
RG off = 1.3 Ω
di/dton = 8340 A/µs
di/dtoff = 3660 A/µs
5
mA
f = 1 MHz
1.41
nF
2550
nC
1.7
Ω
Tj = 150 °C
276
ns
Tj = 150 °C
55
ns
Tj = 150 °C
22
mJ
Tj = 150 °C
538
ns
Tj = 150 °C
114
ns
Tj = 150 °C
57
per IGBT
mJ
0.092
K/W
GD
© by SEMIKRON
Rev. 2 – 26.08.2009
1
SKiM459GD12E4
Characteristics
Symbol
SKiM® 93
rF
IRRM
Qrr
Trench IGBT Modules
Err
Rth(j-s)
SKiM459GD12E4
• IGBT 4 Trench Gate Technology
• Solderless sinter technology
• VCE(sat) with positive temperature
coefficient
• Low inductance case
• Isolated by Al2O3 DCB (Direct Copper
Bonded) ceramic substrate
• Pressure contact technology
forthermal contacts and
electricalcontacts
• High short circuit capability, self
limiting to 6 x IC
• Integrated temperature sensor
min.
typ.
max.
Unit
Tj = 25 °C
2.1
2.5
V
Tj = 150 °C
2.1
2.4
V
Tj = 25 °C
1.3
1.5
V
Tj = 150 °C
0.9
1.1
V
Tj = 25 °C
1.9
2.1
mΩ
2.6
2.8
mΩ
Tj = 150 °C
IF = 450 A
Tj = 150 °C
di/dtoff = 8880 A/µs T = 150 °C
j
VGE = -15 V
T
j = 150 °C
VCC = 600 V
per diode
570
A
80
µC
40
mJ
0.155
K/W
Module
LCE
RCC'+EE'
Features
Conditions
Inverse diode
VF = VEC IF = 450 A
VGE = 0 V
chip
VF0
Ms
10
terminal-chip
nH
0.3
mΩ
Ts = 125 °C
0.5
mΩ
to heat sink (M4)
to terminals (M6)
Mt
15
Ts = 25 °C
2.5
4
Nm
3
5
Nm
Nm
w
1100
g
Temperature sensor
R100
TSensor = 100 °C (R25 = 5 kΩ)
339
Ω
B100/125
R(T) = R100exp[B100/125(1/T-1/373)];
T[K];
4096
K
Typical Applications
• Automotive inverter
• High reliability AC inverter wind
• High reliability AC inverter drives
GD
2
Rev. 2 – 26.08.2009
© by SEMIKRON
SKiM459GD12E4
Fig. 1: Typ. output characteristic, inclusive RCC'+ EE'
Fig. 2: Rated current vs. temperature IC = f (TC)
Fig. 3: Typ. turn-on /-off energy = f (IC)
Fig. 4: Typ. turn-on /-off energy = f (RG)
Fig. 5: Typ. transfer characteristic
Fig. 6: Typ. gate charge characteristic
© by SEMIKRON
Rev. 2 – 26.08.2009
3
SKiM459GD12E4
Fig. 7: Typ. switching times vs. IC
Fig. 8: Typ. switching times vs. gate resistor RG
Fig. 9: Typ. transient thermal impedance
Fig. 10: Typ. CAL diode forward charact., incl. RCC'+EE'
Fig. 11: Typ. CAL diode peak reverse recovery current
Fig. 12: Typ. CAL diode recovery charge
4
Rev. 2 – 26.08.2009
© by SEMIKRON
SKiM459GD12E4
SKIM® 93
GD
This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX
This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied
is made regarding delivery, performance or suitability.
© by SEMIKRON
Rev. 2 – 26.08.2009
5