ST7LNB1Y0 DiSEqC™ slave microcontroller for SaTCR based LNBs and switchers Features ■ Clock, reset and supply management – Reduced power consumption – Safe power on/off management by low voltage detector (LVD) – Internal 8 MHz oscillator ■ Communication interface – Two DiSEqCTM communication interfaces – Four I2C communication interfaces ■ I/O ports – 4 output pins for control of a legacy matrix Figure 1. SO16 narrow Description The ST7LNB1Y0 is an 8-bit microcontroller dedicated to DiSEqC slave operation in SaTCR based LNBs (low-noise blocks) and switchers. Block diagram DRX1 8 MHz. RC OSC LVD/AVD POWER SUPPLY VSS RESET CONTROL 8-BIT CORE ALU PARAMETER EEPROM Table 1. ADDRESS AND DATA BUS VDD 13/18 V & 22 kHz Detector DiSEqC Interface Internal CLOCK DRX2 DTX I2C 1 SDA1 SCL1 I2C 2 SDA2 SCL2 I2C 3 / LEGACY MATRIX CONTROL SDA3 / MAT2 SCL3 / MAT1 I2 C 4 / LEGACY MATRIX CONTROL SDA4 / MAT4 SCL4 / MAT3 Device summary Features Part number: ST7LNB1Y0M6 Packages SO16 narrow Peripherals DiSEqC communication interface, 22 kHz tone detector, 13/18 V detector Operating voltage 4.5 to 5.5 V Temperature range -40 to +85 °C July 2007 Rev 8 1/36 www.st.com 1 Contents ST7LNB1Y0 Contents 1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 2.1 SaTCRs mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.1 ST7LNB1Y0 applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 DiSEqC-ST commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.3 4 5 3.2.1 Command signalling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2.2 Look up tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 DiSEqC 1.0 command for legacy support . . . . . . . . . . . . . . . . . . . . . . . . 15 ST7LNB1Y0 configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.1 Command 0Fh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.2 Command 0Dh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.4 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.4.1 5.5 5.6 2/36 Supply current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.5.1 Functional EMS (electromagnetic susceptibility) . . . . . . . . . . . . . . . . . . 25 5.5.2 Electromagnetic Interference (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.5.3 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 26 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ST7LNB1Y0 Contents 5.7 5.6.1 General characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.6.2 Output driving current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Control pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.7.1 6 7 Asynchronous RESET pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6.3 Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3/36 List of tables ST7LNB1Y0 List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. 4/36 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pin functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 SaTCRs implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Application types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 DiSEqC-ST command format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 ODU_SaTCR_Op (5Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 ODU_SaTCR_Inst(5Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 DiSEqC-ST command examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Feeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Local oscillator frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 ST7LNB1Y0 applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Legacy commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Command 0Fh format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Command 0Dh format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Reply frame format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 ST7LNB1Y0 EEPROM parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Truth table for support of 8 RF inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Operating Conditions with Low Voltage Detector (LVD) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Operating conditions with the DiSEqC™ signalling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Supply current characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 General characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Output driving current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Asynchronous RESET pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 SO16 16-pin plastic small outline-150mil width, package mechanical data . . . . . . . . . . . . 32 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Soldering compatibility (wave and reflow soldering process) . . . . . . . . . . . . . . . . . . . . . . . 33 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ST7LNB1Y0 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 SO16 narrow pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 ST7LNB1Y0 in the Twin SaTCR and legacy (standard RF band) application . . . . . . . . . . . 8 ST7LNB1Y0 in the Twin SaTCR application with one input only . . . . . . . . . . . . . . . . . . . . . 9 SaTCR control block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 SaTCR control and legacy (standard RF band) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 SaTCR control and legacy (wide RF band) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Signalling of the DiSEqC-ST command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Typical IDD in RUN vs. fCPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Two typical applications with unused I/O pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Typical IPU vs. VDD with VIN=VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Typical VOL at VDD=5 V (standard). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Typical VOL at VDD=5V (high sink) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Typical VDD-VOH at VDD=5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 SO16 16-pin plastic small outline -150mil width, package outline . . . . . . . . . . . . . . . . . . . 32 5/36 Pin description 1 ST7LNB1Y0 Pin description Figure 2. SO16 narrow pinout VSS VDD RESET DTX DRX1 DRX2 NC NC 1 16 2 15 3 14 4 13 5 12 6 11 7 10 8 9 SCL1 SDA1 SCL2 SDA2 SCL3 / MAT1 SDA3 / MAT2 SCL4 / MAT3 SDA4 / MAT4 1. NC = Not Connected See Table 2 for a description of the pin functions. Table 2. Pin functions Pin number SO16 Function name Function description 1 VSS Ground 2 VDD Power Supply (+5 volts) 3 RESET Reset (active low) input 4 DTX 5 DRX1(1) 6 DRX2 7,8 - 9 SDA4 / MAT4 10 DiSEqC data transmit output DiSEqC-ST(2) and legacy DiSEqC(3) 1.0 data receive input DiSEqC-ST data receive input and DiSEqC- 1.0 with 13 to 18V transition (if a DiSEqC- command is sent before on DRX1) Not used (4) I2C data line 4 / legacy matrix control line 4 SCL4 / MAT3(5) I2C clock line 4 / legacy matrix control line 3 11 SDA3 / MAT2 I2C data line 3 / legacy matrix control line 2 12 SCL3 / MAT1 I2C clock line 3 / legacy matrix control line 1 13 SDA2 I2C data line 2 14 SCL2 I2C clock line 2 15 SDA1 I2C data line 1 16 SCL1 I2C clock line 1 1. If only one input is required by the application, DRX1 must be used by default. 2. DiSEqC-ST: special DiSEqC command set for SaTCRs control (refer to Section 3.2 for more details). 3. DiSEqC 1.0: refer to Section 3.3. 4. Unused pins must be tied to ground. 5. During normal operation this pin must not be pulled-down. 6/36 ST7LNB1Y0 Implementation 2 Implementation 2.1 SaTCRs mapping The ST7LNB1Y0 could communicate through I2C with up to 8 SaTCRs (refer to Table 3). The following hardware implementation of SaTCRs must be respected: Table 3. SaTCRs implementation SaTCR number SaTCR(1) SaTCR address 0 SaTCR1 C8h 1 SaTCR2 CAh 2 SaTCR3 C8h 3 SaTCR4 CAh 4 SaTCR5 C8h 5 SaTCR6 CAh 6 SaTCR7 C8h 7 SaTCR8 / legacy SaTCR (for wide RF band applications) CAh I²C line I2C 1 I2C 2 I2C 3 I2C 4 1. As a convention, SaTCR1 must be associated to the BPF having the lowest center frequency of the application, SaTCR2 to the BPF having the next higher center frequency and so on. 7/36 Implementation 2.2 ST7LNB1Y0 Application example Figure 3 and Figure 4 show example application circuits for the ST7LNB1Y0 with and without legacy signal. Figure 3. ST7LNB1Y0 in the Twin SaTCR and legacy (standard RF band) application OPTIONAL Legacy or RTA-STB input (3) 220 100 nF 330 K VCC BC547 180 F VCC 33 100 nF 100 K 0.01 µF(6) RTA-STB input ST7LNB1Y0 12 K 12 K 12 K 12 K VSS SCL1 VDD SDA1 RESET SCL2 DTX 100 nF 180 pF 330 K SaTCR1 SaTCR2 SDA2 DRX1 SCL3 DRX2 SDA3 NC SCL4 NC SDA4 (5) Legacy matrix control 100 K 1. The divider chain connected to the DRX1 and DRX2 pins must have the following resistance values: 330KΩ and 100 KΩ. 2. Unused I2C lines (14,13) have to be linked to VCC through 12 KΩ resistors. 3. RTA-STB: remote tuning able set-top box (STB supporting SaTCR control). 4. The transistor is optional, it is used for EEPROM parameters bytes reading using DiSEqC. 5. During normal operation this pin must not be pulled-down. 6. When the LVD is enabled (default state), it is mandatory not to connect a pull-up resistor. A 10 nF pull-down capacitor is recommended to filter noise on the reset line. 8/36 ST7LNB1Y0 Figure 4. Implementation ST7LNB1Y0 in the Twin SaTCR application with one input only OPTIONAL RTA-STB input (4) 100 nF 180 pF 330 K 220 BC547 VCC VCC 33 ST7LNB1Y0 100 nF 100 K SaTCR1 SaTCR2 VSS SCL1 VDD SDA1 12 K 12 K 12 K 12 K RESET SCL2 DTX 0.01 µF(7) NC SDA2 DRX1 SCL3 DRX2 SDA3 NC SCL4 NC SDA4 NC NC NC NC (6) 1. NC = Not Connected. 2. The divider chain connected to the DRX1 pins must have the following resistance values: 330 KΩ and 100 KΩ. 3. Unused I2C lines (SCL2,SDA2) have to be linked to VCC through 12 KΩ resistors. 4. RTA-STB: Remote Tuning Able Set Top Box (STB supporting SaTCR control). 5. The transistor is optional, it is used for EEPROM parameters bytes reading using DiSEqC. 6. During normal operation this pin must not be pulled-down. 7. When the LVD is enabled (default state), it is mandatory not to connect a pull-up resistor. A 10 nF pull-down capacitor is recommended to filter noise on the reset line. 9/36 Functional description ST7LNB1Y0 3 Functional description 3.1 ST7LNB1Y0 applications The ST7LNB1Y0 is intended to be used in different LNB switcher applications supporting SaTCRs. Three main types of applications could be distinguished (see Table 4). Table 4. Application types Num Application type Description 0 SaTCR control(1) (see Figure 5) 1 SaTCR and legacy (standard RF band) (see Figure 6) – The ST7LNB1Y0 controls through I2C up to 4 SaTCRs – Control of a legacy matrix using up to 4 pins 2 SaTCR and legacy (wide RF band) (see Figure 7) – Control though I2C of up to 6 SaTCRs + legacy – Control of a dedicated SaTCR for the legacy support – Control through I2C of up to 8 SaTCRs 1. This application could support up to 8 RF feeds. (applications 1 and 2 are limited to 4 RF feeds). An EEPROM parameter will be used for configuring the ST7LNB1Y0 for a particular application type (refer to Section 4 for more details on how to program the EEPROM parameter). Figure 5. SaTCR control block diagram SaTCR1 Matrix ST7LNB1Y0 SaTCRx DRX2 DiSEqC-ST DRX1 DiSEqC-ST SaTCR8 Figure 6. SaTCR control and legacy (standard RF band) SaTCR1 SaTCR4 ST7LNB1Y0 DRX2 DiSEqC-ST Matrix MAT[1 to 4] 10/36 DRX1 DiSEqC 1.0 ST7LNB1Y0 Functional description Figure 7. SaTCR control and legacy (wide RF band) SaTCR1 ST7LNB1Y0 Matrix SaTCR6 DRX2 DiSEqC-ST DRX1 DiSEqC 1.0 Legacy SaTCR 3.2 DiSEqC-ST commands To control SaTCR based LNBs and switchers, two new DiSEqC commands are used: ● ODU_SatCR_Op (5Ah): this command is used during LNB or switcher normal operation. ● ODU_SatCR_Inst (5Bh): this command is used only during the LNB or switcher installation. Both commands frames must have the following DiSEqC format: Table 5. DiSEqC-ST command format E0h / E2h(1) DiSEqC Slave address 5Ah /5Bh DATA1 DATA2 1. All commands accept E0h or E2h framing. Whatever the command, if E2h framing is used, then the MCU sends at least the response E4h (refer to Section 4.2). Different subcommands are defined, depending on the data bytes which are sent (refer to Table 6 and Table 7). Table 6. ODU_SaTCR_Op (5Ah) DATA1 Sub-command 7 6 5 ODU_ChangeChannel SaTCR(1) ODU_PowerOff SaTCR 4:2 1 0 Feed(2) Tun[9](3) Tun[8] 0 DATA2 Command Description Tun[7:0] This command is used for the channel selection. 00h This command is used to put a SaTCR in low power mode. 1. SaTCR: SaTCR number [0 to 7] (refer to Table 3). 2. Feed: matrix RF input [0 to 7] (refer to Table 9). 3. Tun[9:0]: tuning word. 11/36 Functional description Table 7. ST7LNB1Y0 ODU_SaTCR_Inst(5Bh) DATA1 Sub-command DATA2 Command Description AppliNum(2) This command is sent by an RTA-STB in order to determine the ST7LNB1Y0 application number. 7 6 5 4 3 2 1 0 ODU_Config(1) SaTCR 0 0 0 0 1 ODU_Lofreq(3) SaTCR 0 0 0 1 0 LOfreqNum(4) ODU_SaTCRxSignalOn xx 00 xxh This command is sent by the RTA-STB in order to determine the L.O frequencies present in the LNB. When receiving this command the ST7LNB1Y0 commands all the SaTCRs to send a tone in order to indicate their respective BPF center frequencies. 1. ODU_Config: When receiving this command the ST7LNB1Y0 checks if the Polonium indicated in data1 corresponds to the ST7LNB1Y0 application number, if it is the case the ST7LNB1Y0 commands SaTCR indicated in data1 to send a tone having as frequency F = FbpfSaTCR else F = FbpfSaTCR + 20 MHz. 2. AppliNum: application number [1 to FFh] (refer toTable 11). 3. ODU_Lofreq: When receiving this command the ST7LNB1Y0 checks if the LOfreqNum indicated in data1 corresponds to the one of the L.Os present in the application, if it is the case the ST7LNB1Y0 commands SaTCR indicated in data1 to send a tone having as frequency F = FbpfSaTCR else F = FbpfSaTCR + 20 MHz. 4. LofreqNum: Local oscillator table entry number [1 to FFh] (refer to Table 10). Table 8. DiSEqC-ST command examples LNB DiSEqC Frame Description ODU_Config E0 00 5B 01 02 The STB asks if the application number is 2, the reply tone is expected from SaTCR1. ODU_Lofreq E0 10 5B 42 04 The STB asks if the LO frequency number 4 is present on the LNB, the reply tone is expected from SaTCR3. ODU_Change_Channel E0 00 5A 24 55 The STB asks for a channel_change on SaTCR2 with a Tuning = 055h from matrix RF input = Feed1. 3.2.1 Command signalling In order to be detected, the DiSEqC-ST commands must be sent after a voltage change from 13 to 18 V. A delay time, t, between 4 ms and 24 ms must be respected before sending the DiSEqC-ST commands (see Figure 8). Figure 8. Signalling of the DiSEqC-ST command 18 V DiSEqC-ST Frame 13 V 24 ms ≥ t ≥ 4 ms 12/36 ~ 1ms ST7LNB1Y0 3.2.2 Functional description Look up tables Feeds(1) Table 9. RF input Feed Band Polarization Satellite 0 Low Vertical A 1 High Vertical A 2 Low Horizontal A 3 High Horizontal A 4 Low Vertical B 5 High Vertical B 6 Low Horizontal B 7 High Horizontal B 1. Applications supporting legacy are limited to one satellite only (satellite A). Table 10. Local oscillator frequencies LofreqNum (hex) Standard RF band Local oscillator frequency 00 none 01 Not Known 02 9.750 GHz 03 10.000 GHz 04 10.600 GHz 05 10.750 GHz 06 11.000 GHz 07 11.250 GHz 08 11.475 GHz 09 20.250 GHz 0A 5.150 GHz 0B 1.585 GHz 0C 13.850 GHz 0D not allocated 0E not allocated 0F not allocated 13/36 Functional description Table 10. ST7LNB1Y0 Local oscillator frequencies (continued) LofreqNum (hex) Local oscillator frequency 10 none (switcher) 11 10.000 GHz 12 10.200 GHz 13 13.250 GHz 14 13.450 GHz 15 to 1F not allocated Wide RF band Table 11. ST7LNB1Y0 applications Application number Application (AppliNum) 01 Single SatCR and legacy (standard RF band) 02 Twin SatCR (standard RF band) 03 Twin SatCR and legacy (standard RF band) 04 Quad SatCR (standard RF band) 05 Double Twin SatCR (standard RF band) 06 Twin SatCR (wide RF band) 07 Twin SatCR and legacy (wide RF band) 08 Quad SatCR (wide RF band) 09 8 SatCR (standard RF band) 0Ah 6 SatCR (standard RF band) 0Bh Quad SatCR and legacy (standard RF band) 0Ch to FFh TBD(1) 1. TBD stands for to be defined. 14/36 ST7LNB1Y0 3.3 Functional description DiSEqC 1.0 command for legacy support The DiSEqC 1.0 commands for the control of the legacy are the following: ● 00h: this command is used to restore the backwards compatibility. ● 38h: this command is used to write to port group command. For application supporting the legacy (except for application 1), the backwards signalling (13/18 V, 22 kHz tone) is recognized until a valid DiSEqC 1.0 command is detected. The following table presents the truth table for the legacy commands: Table 12. Legacy commands Command 38h Equivalent backwards E0 xx 38 F0 Selected feed Band Polarity Satellite 13v / 0 kHz 0 Low Vertical A E0 xx 38 F1 13v / 22 kHz 1 High Vertical A E0 xx 38 F2 18v / 0 kHz 2 Low Horizontal A E0 xx 38 F3 18v / 22 kHz 3 High Horizontal A signalling 15/36 ST7LNB1Y0 configuration 4 ST7LNB1Y0 ST7LNB1Y0 configuration To configure the ST7LNB1Y0 for the required target application, a dedicated DiSEqC command is implemented. This configuration is stored in the ST7LNB1Y0 embedded EEPROM location. 4.1 Command 0Fh ST7LNB1Y0 devices are shipped to customers with a default parameter value. These parameters can be updated using a dedicated 0Fh DiSEqC command. This command has the following format where “data” is the parameter value to be programmed at the “index” location as shown in Table 16. Note: The special command E0 xx 0F FF FF protects the EEPROM data from any subsequent write access (where xx is the corresponding DiSEqC slave address). Table 13. Command 0Fh format DiSEqC slave address E0h 4.2 0Fh index data Command 0Dh For reading a parameter inside the EEPROM a dedicated 0Dh command has been added. The command format is described in Table 14, where “index” is the address of the byte to be read from EEPROM. Table 14. Command 0Dh format DiSEqC slave address E2h(1) 0Dh(2) index 1. E2h framing (and E4h response) is supported from version 1.1 of the LNB1 software (previously, the command 0Dh was implemented with E0h framing and the data response was without E4h framing). 2. After the Command 0Dh, there is a delay of 10ms before getting the reply frame. The format of the reply frame is given in Table 15, format where “data” is the byte read from EEPROM. Table 15. Reply frame format E4h data Timings The time required to update a byte parameter (write and read operation) is 130 ms, while the time required to update all parameters is about 3.5 s. 16/36 ST7LNB1Y0 Table 16. ST7LNB1Y0 configuration ST7LNB1Y0 EEPROM parameters Index Parameter Description Default value 00 Slave Address DiSEqC slave address(1) 11h 01 SaTCR1 BPF (lsb) 5Dh 02 SaTCR1 BPF (msb) 02h 03 SaTCR2 BPF (lsb) C6h 04 SaTCR2BPF (msb) 02h 05 SaTCR3 BPF (lsb) 48h 06 SaTCR3 BPF (msb) 07 SaTCR4 BPF (lsb) FCh 08 SaTCR4 BPF (msb) 03h 09 SaTCR5 BPF (lsb) FFh 0A SaTCR5BPF (msb) FFh 0B SaTCR6 BPF (lsb) FFh 0C SaTCR6 BPF (msb) FFh 0D SaTCR7 BPF(lsb) / legacy SaTCR Low band (msb) FFh 0E SaTCR7 BPF(msb) / legacy SaTCR Low band (lsb) 0F SaTCR8 BPF(lsb) / legacy SaTCR High band (msb) FFh 10 SaTCR8 BPF(msb) / legacy SaTCR High band (lsb) FFh 11 Applitype Application type number (refer to Table 4) 00h 12 AppliNum Application number (refer to Table 11) 04h 13 High L.O freq Number refer to Table 10 04h 14 Low L.O freq Number refer to Table 10 02h (2) (3) 03h FFh 17/36 ST7LNB1Y0 configuration Table 16. Index ST7LNB1Y0 ST7LNB1Y0 EEPROM parameters (continued) Parameter Description Default value 15 16 ACh SaTCR1 matrix truth table 35h 59h 17 18 SaTCR2 matrix truth table 6Ah 19 1A 56h SaTCR3 matrix truth table 9Ah 1B 1C 95h SaTCR4 matrix truth table (4) FFh 1D 1E SaTCR5 matrix truth table FFh 1F 20 FFh SaTCR6 matrix truth table FFh 21 22 FFh SaTCR7 matrix truth table FFh 23 24 25 A6h FFh SaTCR8 matrix truth table / legacy matrix SaTCRs GAIN(5) 26 FFh SaTCRs 1 to 4 Gain FFh SaTCRs 5 to 8 Gain FFh (6) 04h 27 SaTCRs number 28 Tuning step size (unit= 1MHz) 04h 29 Software Version Number 14h 2A / 2B RESERVED(7) 1. Besides the address defined in the EEPROM at index 00h, addresses 10h and 00h are recognized also as valid addresses. 2. SaTCRX BPF = BPFX center frequency (MHz) / 2. 3. When an application supports the wide RF band only one local oscillator with a frequency FLO is present in the LNB. In this case the selection of the high or the low band for the legacy output is performed by a dedicated SaTCR. Two parameters are needed for the band selection: - The tuning word for the low band selection = [(FLO (MHz) - FLow (MHz))/ 4] - 350: where FLow corresponds to the Low LO frequency. - The tuning word for the high band selection = [(FLO (MHz) - FHigh (MHz))/4] - 350: where FHigh corresponds to the High band LO frequency. Example: in a wide band application with FLO= 13250 MHz, for emulating a low band local oscillator at 9750 MHz, index 0Dh and index 0Eh must be loaded with the decimal value D = dec [0D:0E] = round ((13250-9750)/4) - 350 = 525. 4. Matrix truth table for SaTCRx or legacy: - If 4 RF inputs are implemented then the matrix truth table has the following coding on 2 bytes: “aaaabbbb ccccdddd” where: aaaa= selection of Feed1 on SaTCRx, aaaa = [MAT4, MAT3, MAT2, MAT1] bbbb= selection of Feed0 on SaTCRx, bbbb = [MAT4, MAT3, MAT2, MAT1] cccc = selection of Feed3 on SaTCRx, cccc = [MAT4, MAT3, MAT2, MAT1] dddd= selection of Feed2 on SaTCRx,dddd = [MAT4, MAT3, MAT2, MAT1] - If 8RF inputs are implemented then the truth table given in Table 17 is used. 18/36 ST7LNB1Y0 ST7LNB1Y0 configuration 5. In order to enable the support of 8 RF inputs: the value ‘0000h’ has to be programmed in index 15h and 16h. SaTCRs gain value: it has the following format on two bytes: “AaBbCcDd EeFfGgHh” where Aa= gain for SaTCR1, Bb = gain for SaTCR2, Cc= gain for SaTCR3, Dd=gain for SaTCR4, Ee= gain for SaTCR5, Ff= gain for SaTCR6, Gg= gain for SaTCR7, Hh=gain for SaTCR8 or legacy SaTCR. Upper case letters and upper case letters indicate LNA and IF gain, respectively. 6. SaTCRs number does not include the legacy SaTCR for the wide RF band applications. 7. RESERVED bytes: do not write to this location. Table 17. Truth table for support of 8 RF inputs Feed MAT1 MAT2 MAT3 MAT4 0 0 0 0 0 1 1 0 0 0 2 0 1 0 0 3 1 1 0 0 4 0 0 1 0 5 1 0 1 0 6 0 1 1 0 7 1 1 1 0 19/36 Electrical characteristics ST7LNB1Y0 5 Electrical characteristics 5.1 Parameter conditions Unless otherwise specified, all voltages are referred to VSS. 5.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3Σ). 5.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 5 V for the 4.5 V ≤ VDD ≤ 5.5 V voltage range. They are given only as design guidelines and are not tested. 5.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 5.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 9. Figure 9. Pin loading conditions ST7 PIN CL 20/36 ST7LNB1Y0 5.1.5 Electrical characteristics Pin input voltage The input voltage measurement on a pin of the device is described in Figure 10. Figure 10. Pin input voltage ST7 PIN VIN 5.2 Absolute maximum ratings Stresses above those listed as “absolute maximum ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 18. Voltage characteristics Symbol Ratings Maximum value VDD - VSS Supply voltage 7.0 VIN Input voltage on any pin(1)(2) VSS−0.3 to VDD+0.3 VESD(HBM) Electrostatic discharge voltage (Human Body Model) Unit V see Section 5.5.3: Absolute maximum ratings (electrical sensitivity) 1. Directly connecting the I/O pins to VDD or VSS could damage the device if an unexpected change of the I/O configuration occurs (for example, due to a corrupted program counter). To guarantee safe operation, this connection has to be done through a pull-up or pull-down resistor (typical: 10kΩ for I/Os). Unused I/O pins must be tied in the same way to VDD or VSS according to their reset configuration. 2. When the current limitation is not possible, the VIN absolute maximum rating must be respected, otherwise refer to IINJ(PIN) specification. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. 21/36 Electrical characteristics Table 19. ST7LNB1Y0 Current characteristics Symbol Ratings Maximum value IVDD Total current into VDD power lines (source)(1) 100 IVSS (1) 100 Total current out of VSS ground lines (sink) IIO IINJ(PIN)(2)(3) ΣIINJ(PIN)(2) Output current sunk by any standard I/O and control pin 25 Output current sunk by any high sink I/O pin 50 Output current source by any I/Os and control pin − 25 Injected current on RESET pin ±5 Injected current on any other pin (4)(5) Total injected current (sum of all I/O and control pins)(4) Unit mA ±5 ± 20 1. All power (VDD) and ground (VSS) lines must always be connected to the external supply. 2. When the current limitation is not possible, the VIN absolute maximum rating must be respected, otherwise refer to IINJ(PIN) specification. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. 3. Negative injection disturbs the analog performance of the device. In particular, it induces leakage currents throughout the device including the analog inputs. To avoid undesirable effects on the analog functions, care must be taken: - Analog input pins must have a negative injection less than 0.8 mA (assuming that the impedance of the analog voltage is lower than the specified limits) - Pure digital pins must have a negative injection less than 1.6 mA. In addition, it is recommended to inject the current as far as possible from the analog input pins. 4. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterization with ΣIINJ(PIN) maximum current injection on four I/O port pins of the device. 5. True open drain I/O port pins do not accept positive injection. Table 20. Symbol Ratings Value Unit TSTG Storage temperature range −65 to +150 °C TJ 22/36 Thermal characteristics Maximum junction temperature (see Section 6.2: Thermal characteristics) ST7LNB1Y0 5.3 Electrical characteristics Operating conditions Table 21. General operating conditions Symbol Parameter VDD TA Table 22. Conditions Min Max Unit Supply voltage 4.5 5.5 V Ambient temperature −40 +85 °C Unit Operating Conditions with Low Voltage Detector (LVD) Symbol Parameter VIT+(LVD) Conditions Min Typ Max Reset release threshold (VDD rise) 4.00 4.25 4.50 VIT−(LVD) Reset generation threshold (VDD fall) 3.80 Vhys LVD voltage threshold hysteresis VtPOR VDD rise time rate(1) tg(VDD) Filtered glitch delay on VDD V VIT+(LVD)−VIT−(LVD) 4.10 4.30 200 20 Not detected by the LVD IDD(LVD) LVD/AVD current consumption mV 20000 µs/V 150 ns 200 µA 1. Not tested in production. The VDD rise time rate condition is needed to ensure a correct device power-on and LVD reset. When the VDD slope is outside these values, the LVD may not ensure a proper reset of the MCU. Table 23. Operating conditions with the DiSEqC™ signalling Symbol Parameter fDiSEqC Conditions Min Typ Max Unit DiSEqC tone frequency 17.6 22 26.4 kHz VDiSEqC DiSEqC tone voltage 100(1) 650 mVPP VBackward 13/18 volt backward compatibility voltage threshold(2) 15 V 1. The MCU is able to detect a DiSEqC signal with an amplitude from 100mV. However it is advised to ensure a DiSEqC amplitude of at least 150 to 200mV to improve robustness against noise. 2. In backwards compatible mode, bus DC voltage is compared with 15 V, if it exceeds this voltage then it is considered as 18 V, otherwise it is considered as 13 V. 23/36 Electrical characteristics 5.4 ST7LNB1Y0 Supply current characteristics The following current consumption specified for the ST7 functional operating modes over temperature range does not take into account the clock source current consumption. To get the total device consumption, the two current values must be added. 5.4.1 Supply current TA = −0 to +125 °C unless otherwise specified Table 24. Supply current characteristics Symbol Parameter Conditions Supply current in RUN mode(1) IDD Typ Max 4.50 7 VDD = 5.5 V, fCPU=8 MHz Supply current for LNB or switcher applications(2) Unit mA 20 1. 1. CPU running with memory access, all I/O pins in input mode with a static value at VDD or VSS (no load), all peripherals in reset state; clock input (CLKIN) driven by external square wave, LVD disabled. 2. 2. Data based on typical ST7LNB0 LNB or switcher application software running. Idd (mA) Figure 11. Typical IDD in RUN vs. fCPU 5.0 4.0 3.0 2.0 1.0 0.0 8MHz 4MHz 1MHz 2.4 2.7 3.7 4.5 Vdd (V) 24/36 5 5.5 ST7LNB1Y0 5.5 Electrical characteristics EMC characteristics Susceptibility tests are performed on a sample basis during product characterization. 5.5.1 Functional EMS (electromagnetic susceptibility) Based on a simple running application on the product (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs). ● ESD: Electrostatic Discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 1000-4-2 standard. ● FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and VSS through a 100pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 1000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709. Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. ● Software recommendations The software flowchart must include the management of runaway conditions such as: ● – Corrupted program counter – Unexpected reset – Critical Data corruption (control registers...) Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the RESET pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Table 25. EMS characteristics Symbol Parameter Conditions Level/ Class VFESD Voltage limits to be applied on any I/O pin to induce a functional disturbance VDD=5 V, TA=+25 °C, fOSC=8 MHz conforms to IEC 1000-4-2 2B VFFTB Fast transient voltage burst limits to be applied through 100pF on VDD and VDD pins to induce a functional disturbance VDD=5 V, TA=+25 °C, fOSC=8 MHz conforms to IEC 1000-4-4 3B 25/36 Electrical characteristics 5.5.2 ST7LNB1Y0 Electromagnetic Interference (EMI) Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm SAE J 1752/3 which specifies the board and the loading of each pin. Table 26. Symbol SEMI EMI characteristics(1) Parameter Peak level Conditions VDD=5V, TA=+25°C, SO16 package, conforming to SAE J 1752/3 Monitored Frequency Band Max vs. [fOSC/fCPU] Unit 1/4 MHz 1/8 MHz 0.1 MHz to 30 MHz 8 14 30 MHz to 130 MHz 27 32 130 MHz to 1 GHz 26 28 SAE EMI Level 3.5 4 dBµV - 1. Data based on characterization results, not tested in production. 5.5.3 Absolute maximum ratings (electrical sensitivity) Based on three different tests (ESD, LU and DLU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181. Electrostatic Discharge (ESD) Electrostatic Discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test conforms to the JESD22-A114A/A115A standard. Table 27. Absolute maximum ratings(1) Symbol Ratings Conditions Maximum value 1) Unit VESD(HBM) Electrostatic discharge voltage (Human Body Model) TA=+25 °C 4000 V 1. Data based on characterization results, not tested in production. 26/36 ST7LNB1Y0 Electrical characteristics Static and Dynamic latch-up ● LU: 3 complementary static tests are required on 10 parts to assess the latch-up performance. A supply overvoltage (applied to each power supply pin) and a current injection (applied to each input, output and configurable I/O pin) are performed on each sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181. ● DLU: Electrostatic discharges (one positive then one negative test) are applied to each pin of 3 samples when the micro is running to assess the latch-up performance in dynamic mode. Power supplies are set to the typical values, the oscillator is connected as near as possible to the pins of the micro and the component is put in reset mode. This test conforms to the IEC1000-4-2 and SAEJ1752/3 standards. For more details, refer to the application note AN1181. Table 28. Electrical sensitivities(1) Symbol Parameter Conditions Class 1) LU Static latch-up class TA=+25°C A DLU Dynamic latch-up class VDD=5.5 V, fOSC=4 MHz, TA=+25 °C A 1. 1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to Class A it exceeds the JEDEC standard. B Class strictly covers all the JEDEC criteria (international standard). 27/36 Electrical characteristics ST7LNB1Y0 5.6 I/O port pin characteristics 5.6.1 General characteristics Subject to general operating conditions for VDD, fOSC, and TA unless otherwise specified. Table 29. General characteristics Symbol Parameter Conditions Min Typ Max VIL Input low level voltage VIH Input high level voltage Vhys Schmitt trigger voltage hysteresis(1) IL Input leakage current VSS≤VIN≤VDD ±1 IS Static current consumption(2) Floating input mode 200 RPU Weak pull-up equivalent resistor(3) VIN=VSS, VDD=5 V CIO I/O pin capacitance tf(IO)out Output high to low level fall time(1) tr(IO)out Output low to high level rise time(1) 0.3VDD Unit V 0.7VDD 400 mV µA 50 120 250 5 kΩ pF 25 CL=50 pF Between 10% and 90% ns 25 1. Data based on characterization results, not tested in production. 2. Configuration not recommended, all unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor (see Figure 12). Data based on design simulation and/or technology characteristics, not tested in production. 3. The RPU pull-up equivalent resistor is based on a resistive transistor (corresponding IPU current characteristics described in Figure 13). Figure 12. Two typical applications with unused I/O pin VDD ST7XXX 10 kΩ 10 kΩ UNUSED I/O PORT 1. Only external pull-up allowed on ICCCLK pin. 28/36 UNUSED I/O PORT ST7XXX ST7LNB1Y0 Electrical characteristics Figure 13. Typical IPU vs. VDD with VIN=VSS 90 T a= 1 40°C 80 T a= 9 5°C 70 T a= 2 5°C T a = -4 5 ° C Ip u (u A ) 60 50 40 30 20 10 0 2 5.6.2 2 .5 3 3 .5 4 4 .5 V d d (V ) 5 5 .5 6 Output driving current Subject to general operating conditions for VDD, fCPU, and TA unless otherwise specified. Symbol VOL(1) VOH(2) Output driving current characteristics Parameter Conditions Output low level voltage for a standard I/O pin when 8 pins are sunk at same time (see Figure 14) Output low level voltage for a high sink I/O pin when 4 pins are sunk at same time (see Figure 15) Output high level voltage for an I/O pin when 4 pins are sourced at same time (see Figure 16) VDD=5V Table 30. Min Max IIO=+5 mA 1.0 IIO=+2 mA 0.4 IIO=+20 mA 1.3 IIO=+8 mA 0.75 Unit V IIO=-5 mA VDD−1.5 IIO=-2 mA VDD−0.8 1. The IIO current sunk must always respect the absolute maximum rating specified in Table 19 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. 2. The IIO current sourced must always respect the absolute maximum rating specified in Table 19 and the sum of IIO (I/O ports and control pins) must not exceed IVDD. True open drain I/O pins does not have VOH. 29/36 Electrical characteristics ST7LNB1Y0 Figure 14. Typical VOL at VDD=5 V (standard) 0.80 0.70 VOL at VDD=5V 0.60 -45°C 0°C 25°C 90°C 130°C 0.50 0.40 0.30 0.20 0.10 0.00 0.01 1 2 3 4 5 lio (mA) Figure 15. Typical VOL at VDD=5V (high sink) 2.50 Vol (V) at VDD=5V (HS) 2.00 -45 0°C 25°C 90°C 130°C 1.50 1.00 0.50 0.00 6 7 8 9 10 15 20 25 30 35 40 lio (mA) Figure 16. Typical VDD-VOH at VDD=5 V 2.00 VDD-VOH at VDD=5V 1.80 1.60 1.40 -45°C 0°C 25°C 90°C 130°C 1.20 1.00 0.80 0.60 0.40 0.20 0.00 -0.01 -1 -2 -3 lio (mA) 30/36 -4 -5 ST7LNB1Y0 Electrical characteristics 5.7 Control pin characteristics 5.7.1 Asynchronous RESET pin Table 31. Asynchronous RESET pin characteristics(1)(2)(3) Symbol Parameter VIL Input low level voltage VIH Input high level voltage Vhys Schmitt trigger voltage hysteresis(4) VOL Output low level voltage(5) RON Pull-up equivalent resistor(4)(6) VDD=5V tw(RSTL)out Generated reset pulse duration Internal reset sources th(RSTL)in tg(RSTL)in External reset pulse hold Filtered glitch Conditions Min Typ Max Unit 0.3VDD V 0.7VDD 1 VDD=5 V time(7) duration(8) V IIO=+5mA 0.5 1.0 IIO=+2mA 0.2 0.4 40 80 V 20 kΩ µs 30 µs 20 200 ns 1. The output of the external reset circuit must have an open-drain output to drive the ST7 reset pad. Otherwise the device can be damaged when the ST7 generates an internal reset (LVD or watchdog). 2. Whatever the reset source is (internal or external), the user must ensure that the level on the RESET pin can go below the VIL max. level specified in Section 5.7.1 on page 31. Otherwise the reset will not be taken into account internally. 3. Because the reset circuit is designed to allow the internal RESET to be output in the RESET pin, the user must ensure that the current sunk on the RESET pin (by an external pull-up for example) is less than the absolute maximum value specified for IINJ(RESET) in Section Table 19. on page 22. 4. Data based on characterization results, not tested in production. 5. The IIO current sunk must always respect the absolute maximum rating specified in Table 19 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. 6. The RON pull-up equivalent resistor is based on a resistive transistor. Specified for voltage on RESET pin between VILmax and VDD. 7. To guarantee the reset of the device, a minimum pulse has to be applied to the RESET pin. All short pulses applied on RESET pin with a duration below th(RSTL)in can be ignored. 8. The reset network protects the device against parasitic resets. 31/36 Package characteristics ST7LNB1Y0 6 Package characteristics 6.1 Package mechanical data Figure 17. SO16 16-pin plastic small outline -150mil width, package outline L 45× A1 A α e B A1 C H D 16 9 1 8 E 0016020 Table 32. SO16 16-pin plastic small outline-150mil width, package mechanical data mm inches Dim. Min Typ Max Min Max A 1.35 1.75 0.053 0.069 A1 0.10 0.25 0.004 0.010 B 0.33 0.51 0.013 0.020 C 0.19 0.25 0.007 0.010 D 9.80 10.00 0.386 0.394 E 3.80 4.00 0.150 0.157 e 1.27 0.050 H 5.80 6.20 0.228 0.244 α 0° 8° 0° 8° L 0.40 1.27 0.016 0.050 Number of Pins N 32/36 Typ 16 ST7LNB1Y0 Package characteristics 6.2 Thermal characteristics Table 33. Thermal characteristics Symbol Ratings RthJA Package thermal resistance (junction to ambient) TJmax Maximum junction temperature(1) Power PDmax dissipation(2) SO16 SO16 Value Unit 85 °C/W 150 °C 300 mW 1. The maximum chip-junction temperature is based on technology characteristics. 2. The maximum power dissipation is obtained from the formula PD = (TJ -TA) / RthJA. The power dissipation of an application can be defined by the user with the formula: PD=PINT+PPORT where PINT is the chip internal power (IDDxVDD) and PPORT is the port power dissipation depending on the ports used in the application. 6.3 Soldering information In order to meet environmental requirements, ST offers the ST7LNB1Y0 in ECOPACK® package. The package have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at www.st.com, together with specific technical application notes covering the main technical aspects related to lead-free conversion (AN2033, AN2034, AN2035, AN2036). Backward and forward compatibility The main difference between Pb and Pb-free soldering process is the temperature range. ● ECOPACK LQFP, SDIP, SO and QFN20 packages are fully compatible with Lead (Pb) containing soldering process (see application note AN2034) ● TQFP, SDIP and SO Pb-packages are compatible with Lead-free soldering process, nevertheless it's the customer's duty to verify that the Pb-packages maximum temperature (mentioned on the Inner box label) is compatible with their Lead-free soldering temperature. Table 34. Soldering compatibility (wave and reflow soldering process) Package Plating material devices Pb solder paste Pb-free solder paste SDIP & PDIP Sn (pure Tin) Yes Yes (1) QFN Sn (pure Tin) Yes Yes(1) LQFP and SO NiPdAu (Nickel-palladium-Gold) Yes Yes(1) 1. Assemblers must verify that the Pb-package maximum temperature (mentioned on the Inner box label) is compatible with their Lead-free soldering process. 33/36 Package characteristics ST7LNB1Y0 ST7LNB1Y0 DiSEqC™ SLAVE MICROCONTROLLER OPTION LIST (Last update: July 2007) Customer Address Contact Phone No ................................................................. ................................................................. ................................................................. ................................................................. ................................................................. - Package (tick one box) ST7LNB1Y0M6 - SO16 narrow (16 pin) [ ] - EEPROM Parameters (any modified default settings [DEF] should be written in the Custom boxes [CUST]) INDEX PARAMETER DEF CUST INDEX PARAMETER DEF CUST 00 Slave Address 11h [ h] 11 Applitype 00h [ h] 01 SaTCR1 BPF (lsb) 5Dh [ h] 12 AppliNum 04h [ h] 02 SaTCR1 BPF (msb) 02h [ h] 13 High L.O freq Number 04h [ h] 03 SaTCR2 BPF (lsb) C6h [ h] 14 Low L.O freq Number 02h [ h] 04 SaTCR2BPF (msb) 02h [ h] 15 SaTCR1 matrix truth table ACh [ h] 16 35h [ h] 05 SaTCR3 BPF (lsb) 48h [ h] 17 SaTCR2 matrix truth table 59h [ h] 06 SaTCR3 BPF (msb) 03h [ h] 18 6Ah [ h] 07 SaTCR4 BPF (lsb) FCh [ h] 19 SaTCR3 matrix truth table 56h [ h] 1A 9Ah [ h] 08 SaTCR4 BPF (msb) 03h [ h] 1B SaTCR4 matrix truth table 95h [ h] 09 SaTCR5 BPF (lsb) FFh [ h] 1C A6h [ h] 0A SaTCR5BPF (msb) FFh [ h] 1D SaTCR5 matrix truth table FFh [ h] 1E FFh [ h] 0B SaTCR6 BPF (lsb) FFh [ h] 1F SaTCR6 matrix truth table FFh [ h] 0C SaTCR6 BPF (msb) FFh [ h] 20 FFh [ h] 0D SaTCR7 BPF(lsb)/Legacy 21 SaTCR7 matrix truth table FFh [ h] SaTCR Low band(msb) FFh [ h] 22 FFh [ h] 0E SaTCR7 BPF(msb)/Legacy 23 SaTCR8 matrix truth table/ FFh [ h] SaTCR Low band (lsb) FFh [ h] 24 Legacy matrix FFh [ h] 0F SaTCR8 BPF(lsb)/Legacy 25 SaTCRs GAIN FFh [ h] SaTCR High band (msb)FFh [ h] 26 FFh [ h] 10 SaTCR8 BPF(msb)/Legacy 27 SaTCRs number 04h [ h] SaTCR High band (lsb) FFh [ h] (Please refer to Table 16 in the datasheet for full descriptions and notes of EEPROM Parameters) Customer Notes Signature Date ................................................................. ................................................................. ................................................................. ................................................................. ................................................................. ................................................................. Please download the latest version of this option list from: http://www.st.com/mcu > downloads > ST7 microcontrollers > Option list 34/36 ST7LNB1Y0 7 Revision history Revision history Table 35. Document revision history Date Revision 29-Sep-2004 2.0 First release on st.com 10-Nov-2004 3.0 Note added, Section 4.1: Command 0Fh E2h and E4h framing added for Command 0Dh, Section 4.2: Command 0Dh 06-Dec-2004 4.0 Changed note 6 and Figure 3 Removed note on page 9. Changed Table 16: ST7LNB1Y0 EEPROM parameters 28-Jun-2005 5.0 Changed note 4 in Section 1: Pin description Changed note 5 in Figure 3 Added note 1 to Section 3.2: DiSEqC-ST commands Changed timing in Figure 8: Signalling of the DiSEqC-ST command Changed Table 11: ST7LNB1Y0 applications (added application for 0A and 0B) Added frequencies in wide band part in Table 10: Local oscillator frequencies Changed parameters in Table 16: ST7LNB1Y0 EEPROM parameters 12-Oct-2005 6.0 Changed package name to SO16 NARROW 7.0 Modified notes for Table 23: Operating conditions with the DiSEqC™ signalling related to DiSEqC signal detection levels Capacitors changed from 100pF to 180pF in Figure 3: ST7LNB1Y0 in the Twin SaTCR and legacy (standard RF band) application 8.0 Document reformatted. QFN20 package removed Root part number changed from ST7LBN1 to ST7LNB1Y0. Note 1 removed below Table 30: Output driving current characteristics. Additional figure added for single-input application of Twin SaTCR application, Figure 4: ST7LNB1Y0 in the Twin SaTCR application with one input only. Thermal characteristics (Section 6.2) and Soldering information (Section 6.3) updated Option list updated and reformatted. ECOPACK package description updated in Section 6.3: Soldering information. 31-Jan-2006 19-July-2007 Description of Changes 35/36 ST7LNB1Y0 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2007 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 36/36