ST7LNB0V2Y0 DiSEqC™ 2.1 slave microcontroller for LNBs and switchers Features ■ ■ Clock, reset and supply management – Reduced power consumption. – Safe power on/off management by low voltage detector (LVD). – Internal 8 MHz oscillator SO16 narrow Communication interface – One DiSEqC™ 2.1 communication interface Description ■ Analog interface – 13/18 V voltage detector – 22 kHz tone detector ■ I/O ports – 8 output ports for control of committed and uncommitted switches – 1 output port for standby control Figure 1. The ST7LNB0V2Y0 is an 8-bit microcontroller dedicated to DiSEqC™ slave operation in LNBs and switchers. It is compliant with the DiSEqC™ level 2.1. It also supports backwards compatible mode (13/18 V, 22 kHz tone) and toneburst signalling. Block diagram Internal CLOCK 8 MHz. RC OSC VSS RESET POWER SUPPLY CONTROL 8-BIT CORE ALU ADDRESS AND DATA BUS LVD VDD DiSEqC™ 2.1 22kHz tone Detector DTX DRX 13/18 V Detector OP[8:1] SWITCH PORTS Table 1. SBY Device summary Features Orderable part number: ST7LNB0V2Y0M6 Packages SO16 narrow Peripherals DiSEqC™ 2.1 communication interface, 22 kHz tone detector, 13/18 V detector Operating voltage 4.5 to 5.5 V Temperature range -40 to +85 °C September 2007 Rev 6 1/30 www.st.com 1 Contents ST7LNB0V2Y0 Contents 1 ST7LNB0V2Y0 pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 ST7LNB0V2Y0 implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 ST7LNB0V2Y0 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1 ST7LNB0V2Y0 configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2 ST7LNB0V2Y0 switching output modes . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2.1 Single polarity output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2.2 Decoded output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2.3 Complementary output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4 Supported DiSEqC™ commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5 ST7LNB0V2Y0 configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 6 5.1 Command 0Fh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5.2 Command 0Dh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 6.1 6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.4 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6.5 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6.6 2/30 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 6.5.1 Functional EMS (electromagnetic susceptibility) . . . . . . . . . . . . . . . . . . 18 6.5.2 Electromagnetic Interference (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 6.5.3 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 20 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 6.6.1 General characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 6.6.2 Output driving current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 ST7LNB0V2Y0 6.7 7 8 Control pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 7.3 Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Device configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 8.1 9 Contents Data EEPROM option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3/30 List of tables ST7LNB0V2Y0 List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. 4/30 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 ST7LNB0V2Y0 pin functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Single polarity output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 ST7LNB0V2Y0 DiSEqC™ supported commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Command 0Fh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Command 0Dh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Reply to command 0Dh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 ST7LNB0V2Y0 EEPROM parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Output configuration byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Operating conditions with low voltage detector (LVD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Operating conditions with the DiSEqC™ signalling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Supply current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 General characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Output driving current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Asynchronous RESET pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Pin plastic small outline package, 150-mil width, mechanical data. . . . . . . . . . . . . . . . . . . 25 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Soldering compatibility (wave and reflow soldering process) . . . . . . . . . . . . . . . . . . . . . . . 26 Description of data EEPROM option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ST7LNB0V2Y0 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 SO16 narrow pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 ST7LNB0V2Y0 typical application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Typical IDD in Run vs. fCPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Two typical applications with unused I/O pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Typical IPU vs. VDD with VIN=VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Typical VOL at VDD=5 V (standard). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Typical VOL at VDD=5 V (high-sink) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Typical VDD-VOH at VDD=5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Pin plastic small outline package, 150-mil width, package outline . . . . . . . . . . . . . . . . . . . 25 Option list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5/30 ST7LNB0V2Y0 pin description 1 ST7LNB0V2Y0 ST7LNB0V2Y0 pin description Figure 2. SO16 narrow pinout VSS VDD RESET DRX OP5 OP6 OP7 OP8 1 16 2 15 3 14 4 13 5 12 6 11 7 10 8 9 NC(1) NC(1) DTX SBY OP1 OP2 OP3 OP4 1. NC = not connected See Table 2 for a description of the pin functions. Table 2. ST7LNB0V2Y0 pin functions Pin number Function name 1 Vss Ground 2 VDD Power Supply (+5 volts) 3 RESET Reset (active low) input 4 DRX Receive input 5 OP5 Output 5 (uncommitted port) 6 OP6 Output 6 (uncommitted port) 7 OP7 Output 7 (uncommitted port) 8 OP8 Output 8 (uncommitted port) 9 OP4 Output 4 (SO B/A) 10 (1) OP3 Function description Output 3 (SB/SA) 11 OP2 Output 2 (H/V) 12 OP1 Output 1 (Hi/Lo) 13 SBY Standby 14 DTX DiSEqC™ data transmit output 15,16 - Not used(2) 1. During normal operation this pin must be pulled-up internally or externally to avoid entering ICC mode unexpectedly during a reset. Using an external pull-up of 10 kΩ is mandatory in noisy environment. In the final application, a reset will put the pin back in input pull-up configuration even if it was configured as an output. 2. Unused pins must be tied to ground. 6/30 ST7LNB0V2Y0 2 ST7LNB0V2Y0 implementation ST7LNB0V2Y0 implementation Figure 3 shows a typical application circuit for the ST7LNB0V2Y0. Figure 3. ST7LNB0V2Y0 typical application circuit OPTIONAL 4.7K (4) F-CONNECTOR 2N2222 ST7LNB0V2Y0 180pF 10n 330K 100K VSS NC VDD NC RESET DTX LNB / SWITCHER CONTROL (Uncommitted SW) DRX SBY OP5 OP1 OP6 OP2 OP7 OP3 OP8 OP4 SBY LNB / SWITCHER CONTROL (Committed SW) 1. The divider chain connected to the DRX pin must have the following resistance values: 330KΩ and 100KΩ. 2. The reset circuitry linked to the RESET pin is optional. In fact the ST7LNB0V2Y0 has an internal voltage level detector (LVD) which generates a static reset when the VDD supply is below a threshold voltage of 4.1 V. 3. The DiSEqC signalling must have a tone frequency of 2 2kHz (±20%) and an amplitude exceeding 150 mV peak to peak. 4. When the LVD is enabled (default state), it is mandatory not to connect a pull-up resistor. A 10 nF pulldown capacitor is recommended to filter noise on the reset line. 7/30 ST7LNB0V2Y0 functional description ST7LNB0V2Y0 3 ST7LNB0V2Y0 functional description 3.1 ST7LNB0V2Y0 configuration Unlike the original slave microcontroller described in the Eutelsat DiSEqC slave microcontroller specifications version 1.0, the ST7LNB0V2Y0 does not scan the control pins in order to determine the slave configuration. Instead all configuration parameters must be programmed for each specific application, and an option list (see Section 8: Device configuration) must be filled-in to program the necessary options at the manufacturing stage. The slave configuration parameters are the following: 3.2 ● The DiSEqC™ slave address: 11h for an LNB, and 15h for a switcher ● The local oscillator frequency table entry numbers ● The DiSEqC™ configuration byte (refer to page 15 of DiSEqC slave microcontroller specifications) ● The output mode (see next paragraph) ● 22 kHz tone use in backwards compatible mode (SB/SA or Hi/Lo switching) ● Standby pin use ST7LNB0V2Y0 switching output modes The ST7LNB0V2Y0 has 8 pins, OP1 to OP 8 available to provide ‘TTL’ logic levels to operate switches. The switches can be are used to select various signal conditions and sources (for example horizontal polarization, or satellite position). As listed in Table 2, the committed output port is composed of OP1 to OP4 and the uncommitted output port is composed of OP5 to OP8. Depending on the application hardware, the switching control pins OP1 to OP8 may be operated differently. Three possible output modes can be configured: 3.2.1 Single polarity output mode In this mode each pin can be controlled individually as described in Table 3: Table 3. Single polarity output mode Function name 8/30 Function description OP4 SO B/A OP3 SB/SA OP2 Hor/Ver OP1 Hi/Lo OP5 SW5 OP6 SW6 OP7 SW7 OP8 SW8 ST7LNB0V2Y0 3.2.2 ST7LNB0V2Y0 functional description Decoded output mode This mode offers the possibility to demultiplex three adjacent committed or uncommitted control lines (Hi/Lo, SB/SA and SOB/A) in order to have a 1 of 8 demux on the output port OP1 to OP8. For more details refer to page 10 of DiSEqC™ slave microcontroller specifications. It is also possible to have a 1 of 4 demux by decoding only 2 control lines, SB/SA and SO B/A for controlling a 1 of 4 switcher for example. 3.2.3 Complementary output mode In this mode the state of the uncommitted switching output port pins is the complementary of the state of the committed output ports pins. For more details refer to page 14 of DiSEqC™ slave microcontroller specifications. 9/30 Supported DiSEqC™ commands 4 Supported DiSEqC™ commands Table 4. 10/30 ST7LNB0V2Y0 ST7LNB0V2Y0 DiSEqC™ supported commands Command number (Hex byte) Command name 00h RESET 01h clr RESET Clear the RESET flag 02h STANDBY Switch peripheral power off 03h Power on Switch peripheral power supply off 04h Set Cont Set contention flag 05h Contend Return address only if contention flag is set 06h Clr Cont Clear contention flag 07h Address Return address unless contention flag is set 08h Move C Change address only if contention flag is set 09h Move Change address unless contention flag is set 10h STATUS 11h Config 14h Group 0 Read switching state (committed port) 15h Group 1 Read switching state (uncommitted port) 20h Set Lo Select the low Local oscillator frequency 21h Set VR Select the vertical polarization 22h Set Pos A Select satellite position A 23h Set SO A Select switch Option A 24h Set Hi Select the Hi local oscillator frequency 25h Set HL Select the Horizontal polarization 26h Set Pos B Select satellite position B 27h Set SO B Select the switch Option B 28h Set S1 A Select switch S1 input A 29h Set S2 A Select switch S2 input A 2Ah Set S3 A Select switch S3 input A 2Bh Set S4 A Select switch S4 input A 2Ch Set S1 B Select switch S1 input B 2Dh Set S2 B Select switch S2 input B 2Eh Set S3 B Select switch S3 input B 2Fh Set S4B Select switch S4 input B 38h Write N0 Write to port group 0 (committed switches) 39h Write N1 Write to port group 1 (uncommitted switches) Command function Reset DiSEqC™ microcontroller Read STATUS register Read Configuration register ST7LNB0V2Y0 Supported DiSEqC™ commands Table 4. Note: ST7LNB0V2Y0 DiSEqC™ supported commands (continued) Command number (Hex byte) Command name 51h LO 52h LO Lo Read Lo L.O frequency table entry number 53h LO Hi Read Hi L.O frequency table entry number Command function Read current L.O frequency table entry number After a power-on, the ST7LNB0V2Y0 responds to backwards compatible signalling (13/18 V, 22 kHz, tone burst) until a valid DiSEqC frame is detected. A RESET command must be sent in order to return to backwards compatible mode. 11/30 ST7LNB0V2Y0 configuration 5 ST7LNB0V2Y0 ST7LNB0V2Y0 configuration A dedicated DiSEqC command is implemented to configure the ST7LNB0V2Y0 to the required target application. This configuration is stored in the ST7LNB0V2Y0 embedded EEPROM location. 5.1 Command 0Fh ST7LNB0V2Y0 devices are shipped to customers with a default parameter value. These parameters can be updated using a dedicated 0Fh DiSEqC command. The format of this command is described in Table 5 where “data” is the parameter value to be programmed at the “index” location as shown in Table 8. Table 5. Command 0Fh DiSEqC Slave address E0h 0Fh index data Note: The special command E0 xx 0F FF FF protects the EEPROM data from any subsequent write access (where xx is the corresponding DiSEqC Slave address). 5.2 Command 0Dh A dedicated 0Dh command has been added to read a parameter located in EEPROM. The format of this command is described in Table 6 where “index” is the address of the byte to be read in EEPROM area. Table 6. Command 0Dh E2h DiSEqC Slave address 0Dh index The format of the reply frame is given in Table 7 where “data” is the byte read from EEPROM: Table 7. Reply to command 0Dh E4h 12/30 data ST7LNB0V2Y0 ST7LNB0V2Y0 configuration Timings The time required to update a byte parameter (write followed by read operation) is 130 ms; whereas the time required to update all the parameters is about 3.5 s. : Table 8. ST7LNB0V2Y0 EEPROM parameters index Parameter Description Default Value 00 slave address DiSEqC slave address (00 to FFh)(1) 14h 01 L.O frequencies (2) 00h 02 Output configuration See Table 9 0Ah Serial / version number user can enter a value:0000h to FFFFh 03 1Bh, see note 4 04 FFh 1. Besides the address defined in the EEPROM at index 00h, addresses 10h and 00h are recognized also as valid addresses. 2. L.O frequencies: Local oscillator table entry numbers. - High nibble: High L.O frequency - Low nibble: Low L.O frequency Table 9. Output configuration byte(1) Bit number Bit description Value 0 22 kHz use [1:4] Decoded mode selection 5 Complementary mode selection 0: mode not selected 1: mode selected 6 2 lines decoded mode selection 0: mode not selected 1: mode selected 7 Not used 0: High/Low switching 1: SB/SA switching 0: mode not selected [1 to 8]: decoded mode number 0 1. If neither the Decoded mode nor the Complementary mode is set then the Single polarity mode is selected by default. 13/30 Electrical characteristics ST7LNB0V2Y0 6 Electrical characteristics 6.1 Parameter conditions Unless otherwise specified, all voltages are referred to VSS. 6.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA=25 °C and TA=TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3Σ). 6.1.2 Typical values Unless otherwise specified, typical data are based on TA=25 °C, VDD=5 V for the 4.5 V≤VDD≤5.5 V voltage range. They are given only as design guidelines and are not tested. 6.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 6.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 4. Figure 4. Pin loading conditions ST7 PIN CL 14/30 ST7LNB0V2Y0 6.1.5 Electrical characteristics Pin input voltage The input voltage measurement on a pin of the device is described in Figure 5. Figure 5. Pin input voltage ST7 PIN VIN 6.2 Absolute maximum ratings Stresses above those listed as “absolute maximum ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 10. Voltage characteristics Symbol VDD - VSS VIN Ratings Supply voltage Input voltage on any pin(1)(2) VESD(HBM) Electrostatic discharge voltage (Human Body Model) VESD(MM) Electrostatic discharge voltage (Machine Model) Maximum value Unit 7.0 V VSS-0.3 to VDD+0.3 see Section 6.5.3 on page 20 1. Directly connecting the I/O pins to VDD or VSS could damage the device if an unexpected change of the I/O configuration occurs (for example, due to a corrupted program counter). To guarantee safe operation, this connection has to be done through a pull-up or pull-down resistor (typical: 10kΩ for I/Os). Unused I/O pins must be tied in the same way to VDD or VSS according to their reset configuration. 2. When the current limitation is not possible, the VIN absolute maximum rating must be respected, otherwise refer to IINJ(PIN) specification. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. 15/30 Electrical characteristics ST7LNB0V2Y0 Table 11. Current characteristics Symbol Maximum value Ratings IVDD Total current into VDD power lines (source)(1) 100 IVSS (1) 100 Total current out of VSS ground lines (sink) IIO 25 Output current sunk by any high sink I/O pin 50 mA IINJ(PIN)(2)(3) ΣIINJ(PIN) Output current sunk by any standard I/O and control pin Unit 2) Output current source by any I/Os and control pin - 25 Injected current on RESET pin ±5 Injected current on any other pin(4)(5) Total injected current (sum of all I/O and control ±5 pins)(4) ± 20 1. All power (VDD) and ground (VSS) lines must always be connected to the external supply. 2. When the current limitation is not possible, the VIN absolute maximum rating must be respected, otherwise refer to IINJ(PIN) specification. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. 3. Negative injection disturbs the analog performance of the device. In particular, it induces leakage currents throughout the device including the analog inputs. To avoid undesirable effects on the analog functions, care must be taken: - Analog input pins must have a negative injection less than 0.8 mA (assuming that the impedance of the analog voltage is lower than the specified limits) - Pure digital pins must have a negative injection less than 1.6 mA. In addition, it is recommended to inject the current as far as possible from the analog input pins. 4. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterization with ΣIINJ(PIN) maximum current injection on four I/O port pins of the device. 5. True open drain I/O port pins do not accept positive injection. Table 12. Thermal characteristics Symbol TSTG TJ 16/30 Ratings Storage temperature range Value Unit -65 to +150 °C Maximum junction temperature (see Section 7.2: Thermal characteristics) ST7LNB0V2Y0 6.3 Electrical characteristics Operating conditions Table 13. Symbol VDD TA Table 14. Symbol General operating conditions Parameter Conditions Min Max Unit Supply voltage 4.5 5.5 V Ambient temperature -40 +85 °C Max Unit Operating conditions with low voltage detector (LVD) Parameter Conditions Min VIT+(LVD) Reset release threshold (VDD rise) 4.00 VIT-(LVD) Reset generation threshold (VDD fall) 3.80 Vhys LVD voltage threshold hysteresis VtPOR VDD rise time rate(1) tg(VDD) Filtered glitch delay on VDD IDD(LVD) LVD/AVD current consumption Typ 4.25 4.50 V VIT+(LVD)-VIT-(LVD) 4.10 4.30 200 20 mV 20000 Not detected by the LVD 150 200 µs/V ns µA 1. Not tested in production. The VDD rise time rate condition is needed to ensure a correct device power-on and LVD reset. When the VDD slope is outside these values, the LVD may not ensure a proper reset of the MCU. Table 15. Symbol Operating conditions with the DiSEqC™ signalling Parameter Conditions Min Typ Max Unit 26.4 kHz fDiSEqC DiSEqC™ tone frequency 17.6 22 VDiSEqC DiSEqC™ tone voltage 150 650 mVPP 15 V 13/18 volt backward VBackward compatibility voltage threshold(1) 1. In backwards compatible mode, bus DC voltage is compared with 15 V. If it exceeds this voltage then it is considered as 18 V else it is considered as 13 V. 17/30 Electrical characteristics 6.4 ST7LNB0V2Y0 Supply current characteristics The following current consumption specified for the ST7 functional operating modes over temperature range does not take into account the clock source current consumption. To get the total device consumption, the two current values must be added. Table 16. Symbol Supply current(1) Parameter Conditions Supply current in Run mode(2) IDD VDD=5.5V, fCPU=8MHz Supply current for LNB or switcher applications(3) Typ Max 4.50 7 Unit mA 20 1. TA = -40 to +125 °C unless otherwise specified. 2. CPU running with memory access, all I/O pins in input mode with a static value at VDD or VSS (no load), all peripherals in reset state; clock input (CLKIN) driven by external square wave, LVD disabled. 3. Data based on typical ST7LNB0V2Y0 LNB or switcher application software running. Figure 6. Typical IDD in Run vs. fCPU 8MHz 5.0 4MHz Idd (mA) 4.0 1MHz 3.0 2.0 1.0 0.0 2.4 2.7 3.7 4.5 5 5.5 Vdd (V) 6.5 EMC characteristics Susceptibility tests are performed on a sample basis during product characterization. 6.5.1 Functional EMS (electromagnetic susceptibility) Based on a simple running application on the product (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs). ● ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 1000-4-2 standard. ● FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and VSS through a 100pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 1000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709. 18/30 ST7LNB0V2Y0 Electrical characteristics Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. ● Software recommendations: The software flowchart must include the management of runaway conditions such as: ● – Corrupted program counter – Unexpected reset – Critical Data corruption (control registers...) Prequalification trials: Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the RESET pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Table 17. EMS characteristics Symbol 6.5.2 Parameter Level/ Class Conditions VFESD Voltage limits to be applied on any I/O pin to VDD=5 V, TA=+25 °C, fOSC=8 MHz induce a functional disturbance conforms to IEC 1000-4-2 2B VFFTB Fast transient voltage burst limits to be VDD=5 V, TA=+25 °C, fOSC=8 MHz applied through 100 pF on VDD and VDD pins conforms to IEC 1000-4-4 to induce a functional disturbance 3B Electromagnetic Interference (EMI) Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm SAE J 1752/3 which specifies the board and the loading of each pin. Table 18. Symbol SEMI EMI characteristics(1) Parameter Peak level Conditions VDD=5 V, TA=+25 °C, SO16 package, conforming to SAE J 1752/3 Monitored frequency band Max vs. [fOSC/fCPU] 1/4MHz 1/8MHz 0.1 MHz to 30 MHz 8 14 30 MHz to 130 MHz 27 32 130 MHz to 1 GHz 26 28 SAE EMI Level 3.5 4 Unit dBµV - 1. Data based on characterization results, not tested in production. 19/30 Electrical characteristics 6.5.3 ST7LNB0V2Y0 Absolute maximum ratings (electrical sensitivity) Based on three different tests (ESD, LU and DLU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181. Electrostatic discharge (ESD) Electrostatic Discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test conforms to the JESD22-A114A/A115A standard. Table 19. Symbol VESD(HBM) Absolute maximum ratings Ratings Electrostatic discharge voltage (human body model) Conditions TA=+25 °C Maximum value(1) Unit 4000 V 1. Data based on characterization results, not tested in production. Static and dynamic latch-up ● LU: 3 complementary static tests are required on 10 parts to assess the latch-up performance. A supply overvoltage (applied to each power supply pin) and a current injection (applied to each input, output and configurable I/O pin) are performed on each sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181. ● DLU: Electrostatic discharges (one positive then one negative test) are applied to each pin of 3 samples when the micro is running to assess the latch-up performance in dynamic mode. Power supplies are set to the typical values, the oscillator is connected as near as possible to the pins of the micro and the component is put in reset mode. This test conforms to the IEC1000-4-2 and SAEJ1752/3 standards. For more details, refer to the application note AN1181. I/O PORT PIN CHARACTERISTICS Table 20. Symbol LU DLU Electrical sensitivities Parameter Static latch-up class Dynamic latch-up class Conditions Class(1) TA=+25 °C A VDD=5.5 V, fOSC=4 MHz, TA=+25 °C A 1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to Class A it exceeds the JEDEC standard. B Class strictly covers all the JEDEC criteria (international standard). 6.6 I/O port characteristics 6.6.1 General characteristics Subject to general operating conditions for VDD, fOSC, and TA unless otherwise specified. 20/30 ST7LNB0V2Y0 Electrical characteristics Table 21. General characteristics Symbo l Parameter Conditions VIL Input low level voltage VIH Input high level voltage Vhys Schmitt trigger voltage hysteresis(1) IL Input leakage current IS Min Typ Max 0.3VDD Unit V 0.7VDD 400 Static current consumption RPU Weak pull-up equivalent resistor(3) CIO I/O pin capacitance (2) mV VSS ≤ VIN ≤ VDD ±1 Floating input mode 200 VIN = VSS, VDD = 5 V 50 120 250 5 tf(IO)out Output high to low level fall time(1) tr(IO)out Output low to high level rise time(1) µA kΩ pF 25 CL = 50 pF Between 10% and 90% ns 25 1. Data based on characterization results, not tested in production. 2. Configuration not recommended, all unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor (see Figure 7). Data based on design simulation and/or technology characteristics, not tested in production. 3. The RPU pull-up equivalent resistor is based on a resistive transistor (corresponding IPU current characteristics described in Figure 8). Figure 7. Two typical applications with unused I/O pin VDD 10 kΩ ST7LNB0V2Y0 UNUSED I/O PORT 10 kΩ UNUSED I/O PORT Typical IPU vs. VDD with VIN=VSS 90 T a= 1 40°C 80 T a= 9 5°C 70 T a= 2 5°C T a = -4 5 ° C 60 Ip u (u A ) Figure 8. ST7LNB0V2Y0 50 40 30 20 10 0 2 2 .5 3 3 .5 4 4 .5 V d d (V ) 5 5 .5 6 21/30 Electrical characteristics 6.6.2 ST7LNB0V2Y0 Output driving current Subject to general operating conditions for VDD, fCPU, and TA unless otherwise specified. Output driving current characteristics Symbol VOL(1) VOH(2) Parameter Conditions Output low level voltage for a standard I/O pin when 8 pins are sunk at same time (see Figure 9) VDD=5V Table 22. Output low level voltage for a high sink I/O pin when 4 pins are sunk at same time (see Figure 10) Output high level voltage for an I/O pin when 4 pins are sourced at same time (see Figure 11) Min Max IIO=+5 mA 1.0 IIO=+2 mA 0.4 IIO=+20 mA 1.3 IIO=+8 mA 0.75 Unit V IIO=-5 mA VDD-1.5 IIO=-2 mA VDD-0.8 1. The IIO current sunk must always respect the absolute maximum rating specified in Section Table 11. and the sum of IIO (I/O ports and control pins) must not exceed IVSS. 2. The IIO current sourced must always respect the absolute maximum rating specified in Section Table 11. and the sum of IIO (I/O ports and control pins) must not exceed IVDD. True open drain I/O pins does not have VOH. Figure 9. Typical VOL at VDD=5 V (standard) 0.80 VOL at VDD=5V 0.70 0.60 -45°C 0°C 25°C 90°C 130°C 0.50 0.40 0.30 0.20 0.10 0.00 0.01 1 2 3 4 5 lio (mA) Figure 10. Typical VOL at VDD=5 V (high-sink) 2.50 Vol (V) at VDD=5V (HS) 2.00 -45 0°C 25°C 90°C 130°C 1.50 1.00 0.50 0.00 6 7 8 9 10 15 lio (mA) 22/30 20 25 30 35 40 ST7LNB0V2Y0 Electrical characteristics Figure 11. Typical VDD-VOH at VDD=5 V 2.00 VDD-VOH at VDD=5V 1.80 1.60 1.40 -45°C 0°C 25°C 90°C 130°C 1.20 1.00 0.80 0.60 0.40 0.20 0.00 -0.01 -1 -2 -3 -4 -5 lio (mA) 23/30 Electrical characteristics ST7LNB0V2Y0 6.7 Control pin characteristics Table 23. Asynchronous RESET pin(1)(2)(3) Symbol Parameter Conditions VIL Input low level voltage VIH Input high level voltage Vhys Schmitt trigger voltage hysteresis(4) VOL Output low level voltage(5) RON Pull-up equivalent resistor (6)(4) External reset pulse hold tg(RSTL)in duration(8) Filtered glitch Typ Max Unit 0.3VDD V 0.7VDD tw(RSTL)out Generated reset pulse duration th(RSTL)in Min 1 VDD=5 V IIO=+5 mA 0.5 1.0 IIO=+2 mA 0.2 0.4 40 80 VDD=5 V V 20 Internal reset sources time(7) V kΩ 30 µs µs 20 200 ns 1. The output of the external reset circuit must have an open-drain output to drive the ST7 reset pad. Otherwise the device can be damaged when the ST7 generates an internal reset (LVD or watchdog). 2. Whatever the reset source is (internal or external), the user must ensure that the level on the RESET pin can go below the VIL max. level specified in Section Table 23. on page 24. Otherwise the reset will not be taken into account internally. 3. Because the reset circuit is designed to allow the internal RESET to be output in the RESET pin, the user must ensure that the current sunk on the RESET pin (by an external pull-up for example) is less than the absolute maximum value specified for IINJ(RESET) in Section Table 11. on page 16. 4. Data based on characterization results, not tested in production. 5. The IIO current sunk must always respect the absolute maximum rating specified in Section Table 11. and the sum of IIO (I/O ports and control pins) must not exceed IVSS. 6. The RON pull-up equivalent resistor is based on a resistive transistor. Specified for voltage on RESET pin between VILmax and VDD 7. 4. To guarantee the reset of the device, a minimum pulse has to be applied to the RESET pin. All short pulses applied on RESET pin with a duration below th(RSTL)in can be ignored. 8. The reset network protects the device against parasitic resets. 24/30 ST7LNB0V2Y0 Package characteristics 7 Package characteristics 7.1 Package mechanical data Figure 12. Pin plastic small outline package, 150-mil width, package outline L 45× A1 A α e B A1 C H D 16 9 1 8 E 0016020 Table 24. Pin plastic small outline package, 150-mil width, mechanical data mm inches Dim. Min Typ Max Min Typ Max A 1.35 1.75 0.053 0.069 A1 0.10 0.25 0.004 0.010 B 0.33 0.51 0.013 0.020 C 0.19 0.25 0.007 0.010 D 9.80 10.00 0.386 0.394 E 3.80 4.00 0.150 0.157 e 1.27 0.050 H 5.80 6.20 0.228 0.244 α 0° 8° 0° 8° L 0.40 1.27 0.016 0.050 Number of pins N 16 25/30 Package characteristics 7.2 ST7LNB0V2Y0 Thermal characteristics Table 25. Thermal characteristics Symbol Ratings Value Unit RthJA Package thermal resistance (junction to ambient) 85 °C/W TJmax Maximum junction temperature(1) 150 °C 300 mW PDmax Power dissipation (2) 1. The maximum chip-junction temperature is based on technology characteristics. 2. The maximum power dissipation is obtained from the formula PD = (TJ -TA) / RthJA. The power dissipation of an application can be defined by the user with the formula: PD=PINT+PPORT where PINT is the chip internal power (IDDxVDD) and PPORT is the port power dissipation depending on the ports used in the application. 7.3 Soldering information In order to meet environmental requirements, ST offers the ST7LNB0V2Y0 in ECOPACK® package. The package have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at www.st.com, together with specific technical application notes covering the main technical aspects related to lead-free conversion (AN2033, AN2034, AN2035, AN2036). Backward and forward compatibility The main difference between Pb and Pb-free soldering process is the temperature range. ● ECOPACK LQFP, SDIP, SO and QFN20 packages are fully compatible with Lead (Pb) containing soldering process (see application note AN2034) ● TQFP, SDIP and SO Pb-packages are compatible with Lead-free soldering process, nevertheless it's the customer's duty to verify that the Pb-packages maximum temperature (mentioned on the Inner box label) is compatible with their Lead-free soldering temperature. ) Table 26. Soldering compatibility (wave and reflow soldering process) Package Plating material devices Pb solder paste Pb-free solder paste SDIP & PDIP Sn (pure Tin) Yes Yes(1) QFN Sn (pure Tin) Yes Yes(1) LQFP and SO NiPdAu (Nickel-palladium-Gold) Yes Yes(1) 1. Assemblers must verify that the Pb-package maximum temperature (mentioned on the Inner box label) is compatible with their Lead-free soldering process. 26/30 ST7LNB0V2Y0 Device configuration 8 Device configuration 8.1 Data EEPROM option bytes Table 27. Description of data EEPROM option bytes Byte name Description Address FAM Device Family Address (11h:LNB; 15h: switcher) 1002h LOFREQ Local Oscillator Frequency Table Entry Numbers 1003h PARAM Output Mode and 22 kHz Tone Use (Hi/Lo or SB/SA) 1004h FAM option byte: Device Family Address 11h: Normal LNB 15h: Normal Switcher LOFREQ option byte Local Oscillator Frequency Table Entry Number This byte indicates the value of a LNB local oscillator: Note: ● Lowest Nibble = Lo Local Oscillator Frequency Table Entry Number ● Highest Nibble = Hi Local Oscillator Frequency Table Entry Number See Table 2 on page 8 of the Eutelsat DisEqC slave microcontroller specifications version 1.0. PARAM option byte: Output Mode and 22 kHz Tone Use (Hi/Lo or SB/SA) ● Bit 7:8 = Not used ● Bit 6 = Decoded Mode With Only Two Lines (the lowest line of a selection group is kept low) 0: Decoded mode with only two lines not selected 1: Decoded mode with only two lines selected ● Bit 5 = Complementary Mode Selection 0: Complementary Mode not selected 1: Complementary Mode selected ● Bit 4:1 = Decoded Mode Number 0: Decoded Mode not selected 1 to 8: Decoded Mode Number (refer to table 5a on page 11 of the Eutelsat DisEqC slave microcontroller speculations version 1.0. ● Bit 0 = 22 kHz Tone Use 0: 22 kHz tone use for Hi/Lo switching in backwards compatible mode 1: 22 kHz tone use for SB/SA switching in backwards compatible mode Note: If neither a decoded mode nor a complementary output mode is selected, the output mode is the sinGle polarity output mode (refer to Table 3: Single polarity output mode). 27/30 Device configuration ST7LNB0V2Y0 Figure 13. Option list 67/1%9<'L6(T&6/$9(0,&52&21752//(5237,21/,67 /DVWXSGDWH$XJXVW &XVWRPHU $GGUHVV &RQWDFW 3KRQH1R ± 3DFNDJHWLFNRQHER[ _ 67/1%9<0 _621$552:SLQ ± )DPLO\DGGUHVVWLFNRQHER[ _ 1RUPDO/1%K _ >@ 1RUPDO6ZLWFKHUK _ >@ _ ± %DFNZDUGV&RPSDWLEOHN+]WRQHXVDJHWLFNRQHER[ _ +L/RVZLWFKLQJ _ >@ 6%6$VZLWFKLQJ _ >@ _ ± /RFDORVFLOODWRUIUHTXHQFLHVWDEOHHQWU\QXPEHU _ +L/2WDEOHHQWU\QXPEHU_ >@ /R/2WDEOHHQWU\QXPEHU_ >@ _ ± 6ZLWFKLQJRXWSXWW\SHWLFNRUILOORQHER[ _ 6LQJOHSRODULW\RXWSXW_ >@ 'HFRGHGPRGHRXWSXW _ >@ LQGLFDWHWKHPRGHQXPEHU_ &RPSOHPHQWDU\RXWSXW _ >@ _ &RPPHQWV 1RWHV 'DWH6LJQDWXUH 3OHDVHGRZQORDGWKHODWHVWYHUVLRQRIWKLVRSWLRQOLVWIURPZZZVWFRP 28/30 ST7LNB0V2Y0 9 Revision history Revision history Table 28. Date Document revision history Revision Changes 1.0 Initial release Sep-04 2.0 First release on st.com Dec-04 3.0 Changed note 4 and added “optional” in Figure 3 Section Figure 3.: ST7LNB0V2Y0 typical application circuit on page 7 Added default values in Table 8: ST7LNB0V2Y0 EEPROM parameters 12-Oct-05 4.0 Changed package name to SO16 NARROW 03-Jan-06 5.0 Product code changed to ST7LNB0V2Y0 to reflect upgrade in firmware. 6.0 Document reformatted. Root part number ST7LNB0 changed to ST7LNB0V2Y0. Capacitor changed from 2.2 nF to 180 pF in Figure 3: ST7LNB0V2Y0 typical application circuit. Updated Note 1 below Table 15: Operating conditions with the DiSEqC™ signalling. ECOPACK package description updated in Section 7.3: Soldering information. Removed note 3 below Table 22: Output driving current characteristics. 20-Sep-07 29/30 ST7LNB0V2Y0 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2007 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 30/30