ST7GEME4 Full-speed USB MCU with smartcard firmware and EMV/non-EMV interface Features 24 ■ Clock, reset and supply management – Low voltage reset – Halt power saving mode – PLL for generating 48 MHz USB clock using a 4 MHz crystal ■ USB (Universal Serial Bus) interface – USB 2.0 compliant – CCID V1.0 – Full speed, hubless – Bus-powered, low consumption ■ Serial RS232 interface – Transmission rate: 9.6 Kbps to 115 Kbps – Format: 8-bit, no parity – Auto baud rate – CCID V1.0 on serial TTL link ■ ISO 7816-3 UART interface – 4 Mhz clock generation – Synchronous/Asynchronous protocols (T=0, T=1) – Automatic retry on parity error – Programmable baud rate from 372 to 11.625 clock pulses (D=32/F=372) – Card insertion/removal detection Smartcard power supply – Selectable card VCC: 1.8 V, 3 V, and 5 V Table 1. Device summary ■ 1 VFQFPN24 SO24(9U) – Internal Step-up converter for 5V supplied Smartcards (with a current of up to 55mA) using only two external components. – Programmable smartcard internal voltage regulator (1.8 to 3.0 V) with current overload protection and 4 kV ESD protection (Human Body Model) for all smartcard interface I/Os ■ Development tools – Application note on PCB recommendations and component bill of materials – Full hardware/software kit for performance evaluation Description The ST7GEME4 is an 8-bit microcontroller dedicated to smartcard reading applications. It has been developed to be the core of smartcard readers communicating through a serial or USB link. It is pre-programmed using Gemplus software, and offers a single integrated circuit solution with very few external components. Order codes Features ST7GEME4M1 ST7GEME4U1 Program memory 16K ROM User RAM + USB data buffer (bytes) 512 + 256 Peripherals USB Full-Speed (7 Ep), TBU, Watchdog timer, ISO 7816-3 Interface Operating Supply Package 4.0 to 5.5 V SO24 VFQFPN24 CPU Frequency 4 or 8 MHz Operating temperature 0 to +70 °C September 2007 Rev 2.0 1/28 www.st.com 1 Contents ST7GEME4 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 ST7GEME4 implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4 3.1 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Smartcard interface features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3 EMV versus PC/SC-ISO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.2 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.3 Supply and reset characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.4 Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2/28 4.4.2 Crystal resonator oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.6 Smartcard supply supervisor electrical characteristics . . . . . . . . . . . . . . 19 4.7 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.7.1 Functional EMS (electromagnetic susceptibility) . . . . . . . . . . . . . . . . . . 21 4.7.2 Electromagnetic interference (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.7.3 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 23 Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 24 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.1 6 General timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.5 4.8 5 4.4.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ST7GEME4 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Technical features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Current injection on I/O port and control pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 I/O port pins characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 LED pins characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Low voltage detector and supervisor characteristics (LVDS) . . . . . . . . . . . . . . . . . . . . . . . 16 General timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 External clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Crystal resonator oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Typical crystal resonator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Recommended values for 4 MHz crystal resonator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Smartcard supply supervisor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 USB full speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 24-lead very thin fine pitch quad flat no-lead 5x5mm,0.65mm pitch, mechanical data. . . . 25 24-pin plastic small outline package- 300-mil width, mechanical data . . . . . . . . . . . . . . . . 26 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3/28 List of figures ST7GEME4 List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. 4/28 ST7GEME4 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 24-lead VFQFPN package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 24-pin SO package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Smartcard interface reference application - 24-pin SO package . . . . . . . . . . . . . . . . . . . . . 9 Typical application with an external clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Typical application with a crystal resonator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 USB data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 24-lead very thin fine pitch quad flat no-lead 5x5 mm 0.65 mm pitch, package outline . . . 25 24-pin plastic small outline package- 300-mil width, package outline. . . . . . . . . . . . . . . . . 26 ST7GEME4 1 Introduction Introduction The ST7GEME4 device is a member of the ST7 microcontroller family designed for USB applications. All devices are based on a common industry-standard 8-bit core, featuring an enhanced instruction set. The ST7GEME4 is factory-programmed ROM devices and as such are not reprogrammable. It operates at a 4 MHz external oscillator frequency. Under software control, all devices can be placed in Halt mode, reducing power consumption when the application is in idle or stand-by state. The enhanced instruction set and addressing modes of the ST7 offer both power and flexibility to software developers, enabling the design of highly efficient and compact application code. In addition to standard 8-bit data management, all ST7 microcontrollers feature true bit manipulation, 8x8 unsigned multiplication and indirect addressing modes. The ST7GEME4 includes an ST7 Core, up to 16 Kbytes of program memory, up to 512 bytes of user RAM and the following on-chip peripherals: ● USB full speed interface with 7 endpoints, programmable in/out configuration and embedded 3.3 V voltage regulator and transceivers (no external components are needed). ● ISO 7816-3 UART interface with programmable baud rate from 372 clock pulses up to 11.625 clock pulses ● Smartcard supply block able to provide programmable supply voltage and I/O voltage levels to the smartcards ● Low voltage reset ensuring proper power-on or power-off of the device (selectable by option) ● 8-bit timer (TBU) 5/28 Introduction ST7GEME4 Figure 1. ST7GEME4 block diagram OSCIN 4MHz OSCILLATOR OSCOUT PORT A PA[1:0] PLL 48 MHz DIVIDER USBDP USBDM USBVCC USB 8-BIT TIMER PA6 CONTROL VPP 8-BIT CORE ALU ADDRESS AND DATA BUS USB DATA BUFFER (256 bytes) 8 MHz or 4 MHz LED LED0 ISO 7816 UART SUPPLY MANAGER DIODE SELF DC/DC CONVERTER CRDC4 RAM (512 Bytes) 6/28 CRDDET CRDIO LVD PROGRAM MEMORY (16K Bytes) CRDVCC CRDC8 3V/1.8V Vreg CRDRST CRDCLK ST7GEME4 Pin description DIODE SELF VDD 24 23 22 21 20 2 17 DP CRDCLK 3 16 DM C4 4 15 LED0 CRDIO 5 14 PA6 C8 6 13 VPP 9 10 11 USBVCC 12 OSCOUT 8 OSCIN CRDRST NC 19 18 ICCCLK/WAKUP2 1 ICCDATA/WAKUP2/ CRDVCC 7 Figure 3. VDDA GNDA 24-lead VFQFPN package pinout GND Figure 2. CRDDET 2 Pin description 24-pin SO package pinout DIODE GNDA GND CRDVCC CRDRST CRDCLK C4 CRDIO C8 CRDDET ICCDATA/WAKUP2/ ICCCLK/WAKUP2/P 1 2 3 4 5 6 7 8 9 10 11 12 24 23 22 21 20 19 18 17 16 15 14 13 SELF VDD VDDA USBVcc DP DM LED0 PA6 VPP OSCOUT OSCIN NC 7/28 Pin description ST7GEME4 Legend / Abbreviations Type: I = input, O = output, S = supply ● In/Output level: CT = CMOS 0.3VDD/0.7VDD with input trigger ● Output level: HS = 10mA high sink (on N-buffer only) ● Port and control configuration: – Input: float = floating, wpu = weak pull-up, int = interrupt, ana = analog – Output: OD = open drain, PP = push-pull Pin description Port / Control Main function (after reset) CT X X Smartcard reset 3 6 CRDCLK O CT X X Smartcard clock 4 7 C4 O CT X X Smartcard C4 5 8 CRDIO I/O 6 9 C8 O 7 10 CRDDET I CT CT C X X PP int Output OD O Input wpu CRDRST Output 5 Input 2 Pin name Type SO24 Level VFQFPN24 Pin number VCARD supplied Table 2. ● X X Alternate function Smartcard I/O X X Smartcard C8 Smartcard detection T 8 11 PA0/WAKUP2/ ICCDATA I/O CT X X X X Port A0 Interrupt, In-circuit communication data input 9 12 PA1/WAKUP2/ ICCCLK I/O CT X X X X Port A1 Interrupt, In-circuit communication clock input 11 14 OSCIN C Input/output oscillator pins. These pins connect a 4 MHz parallel-resonant crystal, or an external source to the on-chip oscillator. T 12 15 OSCOUT CT 13 16 VPP S 14 17 PA6 I Must be held low in normal operating mode. C PA6 T 15 18 LED0 O 16 19 DM I/O CT USB Data Minus line 17 20 DP I/O CT USB Data Plus line 18 21 USBVCC O 19 22 VDDA S Power Supply voltage 4-5.5 V 20 23 VDD S Power Supply voltage 4-5.5 V 21 24 SELF O CT An external inductance must be connected to these pins for the step up converter 22 1 DIODE S CT An external diode must be connected to this pin for the step up converter 8/28 HS CT X Constant current output 3.3 V output for USB ST7GEME4 3 GND S 1 4 CDRVCC O Main function (after reset) PP 24 Output OD S Input int GNDA Port / Control wpu 2 Pin name Output 23 Type SO24 Level VFQFPN24 Pin number VCARD supplied Pin description (continued) Input Table 2. Pin description Alternate function Ground Figure 4. CT X Smartcard supply pin Smartcard interface reference application - 24-pin SO package VDD C1 L1 D1 C3 C4 C5 C6 SELF DIODE VDD GNDA VDDA GND CRDVCC USBVcc DP CRDRST DM CRDCLK LED0 C4 CRDIO PA6 C8 VPP CRDDET OSCOUT PA0 OSCIN NC PA1 VDD C2 R LED D+ DVDD CL1 CL2 1. Mandatory values for the external components: C1 = 4.7 µF; C2 = 100 nF. C1 and C2 must be located close to the chip (refer to Section 4.4.2.). C3 = 1 nF; C4 = 4.7 µF ESR 0.5 Ω. C5 : 470 pF; C6 : 100 pF; R : 1.5kΩ; L1 : 10 µH, 2 Ω; Crystal 4.0 MHz; Impedance max100 Ω D1: BAT42 SHOTTKY. 9/28 ST7GEME4 implementation 3 ST7GEME4 ST7GEME4 implementation The ST7GEME4 has been developed to offer a complete ready-to-use firmware solution which allows fast development and rapid time-to-market of smartcard reader applications. It offers a single IC solution and simplifies the integration of smartcard interfaces into electronic devices such as computers, POS terminals, mobile phones, PDAs, home routers, and set-top boxes. Pre-programmed with communication software from our partner GEMPLUS, the ST7GEME4 is a complete firmware solution controlling the communication between ISO 7816 1-2-3-4 cards and a host system. An evaluation kit and reference design with a complete bill of materials and PCB recommendations are available. The ST7GEME4 complies with EMVCo/EMV2000 standards. Software support and engineering expertise in system integration and PCB design are available as additional services. 3.1 Functionality The core functionality of ST7GEME4 resides in its pre-programmed software embedded in ROM memory. GemCoreTM technology manages the communication protocol to/from the host computer and the external card. Basic features and compliance are described in the features section and in Table 3 on page 11. A dedicated analog block provides smartcard power supplies 1.8 V, 3 V, and 5 V necessary to interface with different card voltages available on the market. Voltages are selected by software. External LEDs can also be directly connected to dedicated I/Os. A dedicated UART interface provides an ISO 7816 communication port for connection with the smartcard connector. A full-speed USB interface port allows external connection to a host computer. An optional RS232 connection is also available on dedicated I/Os. 3.2 Smartcard interface features The ST7GEME4 firmware includes the following features: ● Compatibility with asynchronous cards ● Compatibility with T=0 and T=1 protocols ● Compatibility with EMV and PC/SC modes. ● Compatibility with ISO 7816-3 and 4 and ability to supply the cards with 5V, 3V or 1.8V (class A, B or C cards, respectively) ● Resume/wake-up mode upon smartcard insertion/removal Further details on smartcard management can be found in "Gemcore USB Pro reference manual" from Gemplus. The reader is able to communicate with smartcards up to the maximum baud rate allowed, namely 344 086 bps (TA1=16) for a clock frequency of 4 MHz. Because the size of the smartcard buffer is 261 bytes, care must be taken not to exceed this size during APDU exchanges when the protocol in use is T=1. 10/28 ST7GEME4 3.3 ST7GEME4 implementation EMV versus PC/SC-ISO mode The ST7GEME4 supports two operating modes: ● An EMV mode, based on the EMV4.1 specifications ● A PC/SC-ISO mode which allows to manage of a smartcard according to the PC/SC and ISO 7816-3 standards The default mode is PC/SC, however, the reader can switch between EMV and PC/SC-ISO modes. GemCore2000 is a utility in charge of managing the switching between the two modes. When the utility is activated, the reader attempts EMV mode management whenever a smartcard is inserted. If reading is successful, PC/SC mode will not be available. Caution: The activation of the GemCore2000 utility must be done before any card command. Any activation of the GemCore2000 utility is not recommended unless the reader is reset. The EMV mode fails if: ● The smartcard has not sent an EMV-compliant answer to reset (ATR) ● Negotiation of the buffer size with a T=1 card has failed Using PC/SC-ISO mode with GemCore2000 The reader switches to PC/SC mode after the application or the driver has sent the appropriate dedicated command to the reader (with a proprietary Escape command). In this case, the reader remains in PC/SC mode as long as the card remains in the reader. Whenever the EMV mode fails, the smartcard is powered off. After the host application has sent the PC/SC switch (proprietary) Escape command, the application must send a new Card Power On command. When the reader deals with an EMV card, the data exchanged between the reader and the host consists of short APDU messages. When the card is not EMV-compliant and the reader is set to PC/SC-ISO mode, the reader exchanges TPDU messages with the host. Restriction: character level and the extended APDU are not implemented in ST7GEME4 solution. Table 3. Technical features Features Supported smartcards Smartcard electrical interface Description Characteristics Asynchronous – Microprocessor cards – T=0, T=1 protocols – Transmission rate: 2 Kbps to 344 Kbps Synchronous – Through a comprehensive API Smartcard power supply – 5V/55mA and 3V/50mA and 1.8V/20mA – Short circuit current limitation – Power up/power down control sequences Smartcard management – Card insertion/extraction detection ESD protection on card I/O – 4 kV Human Body Model 11/28 ST7GEME4 implementation Table 3. ST7GEME4 Technical features (continued) USB and serial versions Drivers Microsoft Windows 2000/XP/Server 2003 Microsoft Windows CE 4.1/4.2/5.0 Linux Red Hat/SUSE/Debian Microsoft Windows XP 64-bit on AMD64 and EMT64 – Microsoft Windows Server 2003 64-bit – Mac OS 10.3/10.4 Compliance with class drivers – Microsoft Windows 2000/XP/Server 2003 – Microsoft Windows Vista (beta version) – Mac OS 10.3/10.4 USB interface USB 2.0 compliant – CCID V1.0 – Full speed, hubless – Bus powered, low consumption Serial host interface Serial asynchronous link – Transmission rate: 9.6 Kbps to 115 Kbps – Format: 8-bit, no parity – Auto baud rate Communication protocol – CCID V1.0 on serial TTL link Temperature range – Operating range: 0 to +70°C – Storage: -65 to +150°C Environmental standard – RoHS compliant Other features 12/28 – – – – ST7GEME4 Electrical characteristics 4 Electrical characteristics 4.1 Absolute maximum ratings The ST7GEME4 contains circuitry to protect the inputs against damage due to high static voltages. However it is advisable to take normal precautions to avoid applying any voltage higher than the specified maximum rated voltages. For proper operation it is recommended that VI and VO be higher than VSS and lower than VDD. Reliability is enhanced if unused inputs are connected to an appropriate logic voltage level (VDD or VSS). Power considerations The average chip-junction temperature, TJ, in Celsius can be obtained by the following equation: T J = T A + PD × RthJA where: TA = Ambient temperature RthJA = Package thermal resistance (junction-to ambient) PD = PINT + PPORT PINT = IDD x VDD (chip internal power) PPORT = Port power dissipation determined by the user Stresses above those listed as “absolute maximum ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions is not implied. Exposure to maximum rating for extended periods may affect device reliability. Table 4. Absolute maximum ratings Symbol VDD - VSS Ratings Supply voltage Value Unit 6.0 V Input voltage VSS - 0.3 to VDD + 0.3 V VOUT Output voltage VSS - 0.3 to VDD + 0.3 V ESD ESD susceptibility 2000 V ESDCard ESD susceptibility for card pads 4000 V IVDD_i Total current into VDD_i (source) 250 IVSS_i Total current out of VSS_i (sink) 250 VIN Warning: mA Direct connection to VDD or VSS of the I/O pins could damage the device in case of program counter corruption (due to unwanted change of the I/O configuration). To guarantee safe conditions, this connection has to be done through a typical 10kΩ pull-up or pull-down resistor. 13/28 Electrical characteristics Table 5. ST7GEME4 Thermal characteristics Symbol Value Unit VFQFPN24 42 °C/W SO24 80 °C/W RthJA Package thermal resistance TJmax Max. junction temperature 150 °C TSTG Storage temperature range -65 to +150 °C VFQFPN24 600 mW SO24 500 mW PDmax 4.2 Ratings Power dissipation Recommended operating conditions Table 6. Symbol General operating conditions Parameter VDD Supply voltage fOSC External clock source TA Conditions Min Typ 4.0 Max Unit 5.5 V 4 Ambient temperature range 0 MHz 70 °C Operating conditions are given for TA = 0 to +70 °C unless otherwise specified. Table 7. Symbol Current injection on I/O port and control pins(1) Parameter Conditions Min Typ Max Unit VEXTERNAL>VDD (Standard I/Os) IINJ+ Total positive injected current(2)(3) IINJ- Total negative injected current VEXTERNAL<VSS (4)(5) VEXTERNAL<VSS VEXTERNAL>VCRDVCC (Smartcard I/Os) Digital pins Analog pins 20 mA 20 mA 1. When several inputs are submitted to a current injection, the maximum injected current is the sum of the positive (resp. negative) currents (instantaneous values). 2. Positive injection. The IINJ+ is done through protection diodes insulated from the substrate of the die. 3. For SmartCard I/Os, VCRDVCC has to be considered. 4. The negative injected current, IINJ-, passes through protection diodes which are NOT INSULATED from the substrate of the die. The drawback is a small leakage (few µA) induced inside the die when a negative injection is performed. This leakage is tolerated by the digital structure. The effect depends on the pin which is submitted to the injection. Of course, external digital signals applied to the component must have a maximum impedance close to 50kΩ. 5. Location of the negative current injection: Pure digital pins can tolerate 1.6mA. In addition, the best choice is to inject the current as far as possible from the analog input pins. 14/28 ST7GEME4 Electrical characteristics Table 8 characteristics are measured at TA=0 to +70oC, and VDD-VSS=5.5V unless otherwise specified. Table 8. Symbol Current consumption(1) Parameter Supply current in RUN mode IDD Conditions (2) Min Typ. Max Unit 10 15 mA fOSC = 4MHz External ILOAD = 0mA Supply current in suspend mode (USB transceiver enabled) Supply current in Halt mode 500 µA External ILOAD = 0mA (USB transceiver disabled) 50 100 1. All I/O pins are in input mode with a static value at VDD or VSS; clock input (OSCIN) driven by external square wave. 2. CPU running with memory access, all I/O pins in input mode with a static value at VDD or VSS; clock input (OSCIN) driven by external square wave. Table 9 characteristics are measured at TA=0 to +70oC. Voltage are referred to VSS unless otherwise specified. Table 9. Symbol I/O port pins characteristics Parameter Conditions VIL Input low level voltage VDD=5V VIH Input high level voltage VDD=5V VHYS Schmidt trigger voltage hysteresis(1) VOL VOH IL Output low level voltage for Standard I/O port pins Output high level voltage Input leakage current Min Typ Max 0.3VDD mV I=-5mA 1.3 I=-2mA 0.4 1 µA kΩ RPU Pull-up equivalent resistor 50 90 170 tOHL Output high to low level fall time for high sink I/O port pins (Port D)(2) 6 8 13 tOHL Output high to low level fall time for standard I/O port pins (Port A, B or C)(2) tOLH Output L-H rise time (Port D)(2) 7 tOLH Output L-H rise time for standard I/O port pins (Port A, B or C)(2) 19 External interrupt pulse time 1 tITEXT V VDD0.8 VSS<VPIN<VDD Cl=50pF V 0.7VDD 400 I=3mA Unit 18 23 9 ns 14 28 tCPU 1. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested. 2. Guaranteed by design, not tested in production. 15/28 Electrical characteristics Table 10. Symbol 4.3 ST7GEME4 LED pins characteristics Parameter Conditions Min ILsink Low current VPAD > VDD-2.4 2 ILsink High current VPAD > VDD-2.4 for ROM 5 Typ Max Unit 4 mA 6 8.4 Supply and reset characteristics Table 11 characteristics are measured at T = 0 to +70 oC, VDD - VSS = 5.5 V unless otherwise specified. Table 11. Symbol Low voltage detector and supervisor characteristics (LVDS) Parameter VIT+ Reset release threshold (VDD rising) VIT- Reset generation threshold (VDD falling) Vhys Hysteresis VIT+ - VIT-(1) VtPOR VDD rise time rate Conditions Min 3.3 1) Typ Max Unit 3.7 3.9 V 3.5 V 200 mV 20 ms/V 1. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested. 4.4 Clock and timing characteristics 4.4.1 General timings Table 12 characteristics are measured at T = 0 to +70 oC unless otherwise specified. Table 12. General timings Symbol Parameter tc(INST) Instruction cycle time tv(IT) Conditions fCPU=4 MHz Interrupt reaction time(2) tv(IT) = ∆tc(INST) + 10(3) fCPU=4 MHz Min Typ(1) Max Unit 2 3 12 tCPU 500 750 3000 ns 10 22 tCPU 2.5 5.5 µs 1. Data based on typical application software. 2. Time measured between interrupt event and interrupt vector fetch. ∆tc(INST) is the number of tCPU cycles needed to finish the current instruction execution. 3. ∆tINST is the number of tCPU to finish the current instruction execution. 16/28 ST7GEME4 Electrical characteristics Table 13. External clock source Symbol Parameter Conditions VOSCINH OSCIN input pin high level voltage VOSCINL OSCIN input pin low level voltage IL Typ Max 0.7VDD VDD VSS 0.3VDD Unit V see Figure 5 tw(OSCINH) OSCIN high or low time(1) tw(OSCINL) tr(OSCIN) tf(OSCIN) Min 15 ns OSCIN rise or fall time(1) 15 VSS≤VIN≤VDD OSCx Input leakage current ±1 µA 1. Data based on design simulation and/or technology characteristics, not tested in production. Figure 5. Typical application with an external clock source 90% VOSCINH 10% VOSCINL tr(OSCIN) tf(OSCIN) tw(OSCINH) tw(OSCINL) OSCOUT fOSC EXTERNAL CLOCK SOURCE OSCIN IL ST7XXX 17/28 Electrical characteristics 4.4.2 ST7GEME4 Crystal resonator oscillators The ST7 internal clock is supplied with one Crystal resonator oscillator. All the information given in this paragraph are based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and start-up stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...). Table 14. Crystal resonator oscillator characteristics Symbol Parameter Conditions Oscillator Frequency(1) fOSC Feedback resistor CL1 CL2 Recommended load capacitances versus equivalent serial resistance of the crystal resonator (RS) OSCOUT driving current Typ MP: Medium power oscillator RF i2 Min Max Unit 4 MHz 90 150 kΩ (MP oscillator) 22 56 pF VDD=5V, VIN=VSS (MP oscillator) 1.5 3.5 mA See Table 16 1. The oscillator selection can be optimized in terms of supply current using an high quality resonator with small RS value. Refer to crystal resonator manufacturer for more details. Table 15. Typical crystal resonator characteristics Crystal Oscillator MP Reference JAUCH SS3-400-3030/30 Freq. Characteristic(1) CL1 [pF] CL2 [pF] tSU(osc) [ms](2) 4 MHz ∆fOSC=[±30ppm25°C,±30ppm∆Ta], Typ. RS=60Ω 33 33 7~10 1. Resonator characteristics given by the crystal resonator manufacturer. 2. tSU(OSC) is the typical oscillator start-up time measured between VDD=2.8 V and the fetch of the first instruction (with a quick VDD ramp-up from 0 to 5 V (<50 µs). Table 16. Recommended values for 4 MHz crystal resonator Symbol Min Typ Max Unit RSMAX(1) 20 25 70 Ω COSCIN 56 47 22 pF COSCOUT 56 47 22 1. RSMAX is the equivalent serial resistor of the crystal (see crystal specification). 18/28 ST7GEME4 Electrical characteristics Figure 6. Typical application with a crystal resonator WHEN RESONATOR WITH INTEGRATED CAPACITORS i2 fOSC CL1 OSCIN RESONATOR CL2 4.5 RF OSCOUT ST7XXX Memory characteristics Subject to general operating conditions for VDD, fOSC, and TA unless otherwise specified. Table 17. RAM and hardware registers Symbol VRM Parameter Data retention Conditions mode(1) Min Halt mode (or Reset) Typ Max 2 Unit V 1. Minimum VDD supply voltage without losing data stored in RAM (in Halt mode or under Reset) or in hardware registers (only in Halt mode). Not tested in production. 4.6 Smartcard supply supervisor electrical characteristics Table 18 characteristics are measured at TA = 0 to +70 oC, 4.0 V < VDD - VSS < 5.5 V unless otherwise specified. Table 18. Symbol Smartcard supply supervisor characteristics Parameter Conditions Min Typ Max Unit 4.6 5.00 5.4 V 5 V regulator output (for IEC 7816-3 Class A Cards) VCRDVCC SmartCard power supply voltage ISC SmartCard supply current 55 mA IOVDET Current overload detection 120(1) mA tIDET Detection time on current overload 1400(1) µs tOFF VCRDVCC turn-off time CLOADmax ≤ 4.7µF 750 µs tON VCRDVCC turn-on time CLOADmax ≤ 4.7µF 500 µs 4.76(1) V 100 mA VCRDVCC IVDD 170(1) VCARD above minimum supply voltage VDD supply current 150 4.52(1) (2) 19/28 Electrical characteristics Table 18. ST7GEME4 Smartcard supply supervisor characteristics (continued) Symbol Parameter Conditions Min Typ Max Unit 3.3 V 50 mA 3 V regulator output (for IEC 7816-3 Class B Cards) VCRDVCC SmartCard power supply voltage ISC SmartCard supply current 2.7 (1) IOVDET Current overload detection tIDET Detection time on current overload tOFF VCRDVCC turn-off time CLOADmax ≤ 4.7µF tON VCRDVCC turn-on time CLOADmax ≤ 4.7µF 170(1) 150 100 mA 1400(1) µs 750 µs 500 µs 1.95 V 1.8V regulator output (for IEC 7816-3 Class C Cards) VCRDVCC SmartCard power supply voltage ISC SmartCard supply current 20 mA IOVDET Current overload detection 100(1) mA tIDET Detection time on current overload 1400(1) µs tOFF VCRDVCC turn-off time CLOADmax ≤ 4.7µF 750 µs tON VCRDVCC turn-on time CLOADmax ≤ 4.7µF 150 500 µs - 0.4(3) V - - V 1.65 170(1) Smartcard CLKPin VOL Output low level voltage I = -50 µA VOH Output high level voltage TOHL Output high to low fall time(1) TOLH FVAR FDUTY I = 50 µA (1) Output low to high rise time Frequency Duty VCRDVCC -0.5(3) Cl = 30 pF - 20 ns Cl = 30 pF - 20 ns - 1 % 45 55 % variation(1) cycle(1) POL Signal low perturbation(1) -0.25 0.4 V POH Signal high perturbation(1) VCRDVCC-0.5 VCRDVCC +0.25 V ISGND Short-circuit to ground(1) 15 mA Smartcard I/O Pin VIL Input low level voltage - - 0.5(3) V VIH Input high level voltage 0.6VCRDVCC(3) - - V - 0.4(3) V - VCRDVCC(3) V - 10 µA 24 30 kΩ VOL VOH IL IRPU 20/28 Output low Level Voltage Output high level voltage Input leakage current(1) Pull-up equivalent resistance I = -0.5 mA I = 20 µA VSS<VIN<VSC_PWR VIN=VSS 0.8VCRDVCC -10 (3) ST7GEME4 Table 18. Electrical characteristics Smartcard supply supervisor characteristics (continued) Symbol Parameter Conditions Min Typ Max Unit TOHL Output high to low fall time Cl = 30 pF - 0.8 µs TOLH Output low to high rise time(1) Cl = 30 pF - 0.8 µs ISGND (1) Short-circuit to ground (1) 15 mA Smartcard RST C4 and C8 Pin VOL Output low Level Voltage I = -0.5 mA - - 0.4 (3) V VOH Output high level voltage I = 20 µA VCRDVCC-0.5(3) - VCRDVCC(3) V Cl = 30 pF - 0.8 µs Cl = 30 pF - 0.8 µs TOHL TOLH ISGND (1) Output high to low fall time Output low to high rise Short-circuit to time(1) ground(1) 15 mA 1. Guaranteed by design. 2. VDD = 4.75 V, Card consumption = 55mA, CRDCLK frequency = 4MHz, LED with a 3mA current, USB in reception mode and CPU in WFI mode. 3. Data based on characterization results, not tested in production. 4.7 EMC characteristics Susceptibility tests are performed on a sample basis during product characterization. 4.7.1 Functional EMS (electromagnetic susceptibility) Based on a simple running application on the product (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs). ● ESD: electrostatic discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 1000-4-2 standard. ● FTB: a burst of fast transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 1000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709. Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. 21/28 Electrical characteristics ST7GEME4 Software recommendations The software flowchart must include the management of runaway conditions such as: ● Corrupted program counter ● Unexpected reset ● Critical Data corruption (control registers...) Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the RESET pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Table 19. EMS characteristics Symbol 4.7.2 Parameter Level/ Class Conditions VFESD Voltage limits to be applied on any I/O pin to VDD=5 V, TA=+25 °C, fOSC=8 MHz induce a functional disturbance conforms to IEC 1000-4-2 2B VFFTB Fast transient voltage burst limits to be VDD=5 V, TA=+25 °C, fOSC=8 MHz applied through 100 pF on VDD and VDD pins conforms to IEC 1000-4-4 to induce a functional disturbance 4B Electromagnetic interference (EMI) Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm SAE J 1752/3 which specifies the board and the loading of each pin. Table 20. Symbol EMI characteristics Parameter Conditions Monitored frequency band Max vs. [fOSC/fCPU](1) Unit 4/8 MHz 4/4 MHz 0.1 MHz to 30 MHz SEMI Peak level 30 MHz to VDD=5 V, TA=+25 °C, 130 MHz conforming to SAE J 1752/3 130 MHz to 1 GHz SAE EMI Level 1. Data based on characterization results, not tested in production. 22/28 19 18 32 27 31 26 4 3.5 dBµ V - ST7GEME4 4.7.3 Electrical characteristics Absolute maximum ratings (electrical sensitivity) Based on three different tests (ESD, LU and DLU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). The Human Body Model is simulated. This test conforms to the JESD22-A114A standard. Table 21. Symbol VESD(HBM) Absolute maximum ratings Ratings Electrostatic discharge voltage (Human Body Model) Conditions TA=+25 °C Maximum value(1) Unit 2000 V 1. Data based on characterization results, not tested in production. Static and dynamic latch-up ● LU: 3 complementary static tests are required on 10 parts to assess the latch-up performance. A supply overvoltage (applied to each power supply pin) and a current injection (applied to each input, output and configurable I/O pin) are performed on each sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181. ● DLU: Electrostatic discharges (one positive then one negative test) are applied to each pin of 3 samples when the micro is running to assess the latch-up performance in dynamic mode. Power supplies are set to the typical values, the oscillator is connected as near as possible to the pins of the micro and the component is put in reset mode. This test conforms to the IEC1000-4-2 and SAEJ1752/3 standards. For more details, refer to the application note AN1181. Table 22. Symbol LU DLU Electrical sensitivities Parameter Static latch-up class Dynamic latch-up class Conditions Class(1) TA=+25 °C A VDD=5.5 V, fOSC=4 MHz, TA=+25 °C A 1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to Class A it exceeds the JEDEC standard. B Class strictly covers all the JEDEC criteria (international standard). 23/28 Electrical characteristics 4.8 ST7GEME4 Communication interface characteristics USB DC electrical characteristics(1) Table 23. Parameter Symbol Conditions Min. Max. Unit Differential input sensitivity VDI I(D+, D-) 0.2 Differential common mode range VCM Includes VDI range 0.8 2.5 V Single ended receiver threshold VSE 1.3 2.0 V 0.3 V Input Levels V Output levels Static output low VOL RL of 1.5 kΩ to 3.6 V Static Output high VOH RL of 15 kΩ to VSS 2.8 3.6 V USBVCC: voltage level USBV VDD=5 V 3.00 3.60 V 1. RL is the load connected on the USB drivers. All the voltages are measured from the local ground potential. Figure 7. USB data signal rise and fall time Differential Data Lines Crossover points VCRS VSS tr tf Table 24. USB full speed electrical characteristics Parameter Symbol Conditions Min Max Unit tr CL = 50 pF(1) 4 20 ns Fall time tf (1) 4 20 ns Rise/ fall time matching trfm 90 110 % Output signal crossover Voltage VCRS 1.3 2.0 V Driver characteristics: Rise time CL = 50 pF tr/tf 1. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to Chapter 7 (Electrical) of the USB specification (version 1.1). 24/28 ST7GEME4 Package characteristics 5 Package characteristics 5.1 Package mechanical data Figure 8. 24-lead very thin fine pitch quad flat no-lead 5x5 mm 0.65 mm pitch, package outline D C e 24 19 1 b E2 E e 18 13 L 6 12 7 b A1 L A D2 Table 25. 24-lead very thin fine pitch quad flat no-lead 5x5mm,0.65mm pitch, mechanical data inches(1) mm Dim. A Min Typ Max Min Typ Max 0.80 0.90 1.00 0.031 0.035 0.039 0.02 0.05 0.001 0.002 0.30 0.35 0.012 0.014 A1 b 0.25 D D2 5.00 3.50 E E2 ddd 3.60 0.197 3.70 0.138 5.00 3.50 e L 0.010 3.60 0.45 0.146 0.197 3.70 0.138 0.65 0.35 0.142 0.142 0.146 0.026 0.55 0.014 0.08 0.018 0.022 0.003 Number of pins N 24 1. Values in inches are converted from mm and rounded to 3 decimal digits. 25/28 Package characteristics Figure 9. ST7GEME4 24-pin plastic small outline package- 300-mil width, package outline D 12 1 h x 45˚ C E 13 H 28 A B A1 e ddd A1 α L 9U_ME Table 26. 24-pin plastic small outline package- 300-mil width, mechanical data mm inches Dim. Min Typ Max Min Max A 2.35 2.65 0.093 0.104 A1 0.10 0.30 0.004 0.012 B 0.33 0.51 0.013 0.020 C 0.23 0.32 0.009 0.020 D 15.20 15.60 0.599 0.619 E 7.40 7.60 0.291 0.299 e 1.27 0.050 H 10.00 10.65 0.394 0.419 h 0.25 0.75 0.010 0.030 α 0° 8° 0° 8° L 0.40 1.27 0.016 0.050 ddd 0.10 0.004 Number of pins N 26/28 Typ 24 ST7GEME4 6 Revision history Revision history Table 27. Document revision history Date Revision 01-Aug-06 0.1 10-May-2007 1 Root part number changed from ST7GEM to ST7GEME4. 2 Document reformatted. Modified Figure 1 title. USB host interface replaced by USB interface in Section 1: Introduction and Table 3: Technical features. Updated Figure 9: 24-pin plastic small outline package- 300-mil width, package outline. ddd tolerance and maximum values in inched added in Table 26: 24-pin plastic small outline package- 300-mil width, mechanical data. QFN24 package renamed VFQFPN24. Figure 8: 24-lead very thin fine pitch quad flat no-lead 5x5 mm 0.65 mm pitch, package outline updated to remove A2 and A3 dimensions. 21-Sep-2007 Changes Initial release 27/28 ST7GEME4 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2007 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 28/28