MICROSEMI APTGV50H60BG

APTGV50H60BG
Trench & Field Stop IGBT Q1, Q3:
VCES = 600V , IC = 50A @ Tc = 80°C
Boost chopper CoolMos™
+ full bridge
NPT & Trench + Field Stop IGBT
Power module
K
K
CoolMOS™ Q5:
VCES = 600V ; IC = 49A @ Tc = 25°C
VBUS2
VBUS1
Q1
Q3
G3
CR3
CR1
G1
CR5
Fast NPT IGBT Q2, Q4:
VCES = 600V ; IC = 50A @ Tc = 80°C
Application
• Solar converter
Q
5
D5
OUT1A
OUT2A
D5
OUT1B
OUT2B
Features
Q4
Q2
G5
G2
SK5
E2
CR2
G4
CR4
E4
S5 S5
0/VBUS
Full bridge top switches : Trench + Field Stop IGBT
Full bridge bottom switches : FAST NPT IGBT
Q5 boost chopper : CoolMOS™
• Q2, Q4 (FAST Non Punch Through (NPT) IGBT)
- Switching frequency up to 100 kHz
- RBSOA & SCSOA rated
- Low tail current
• Q1, Q3 (Trench & Field Stop IGBT)
- Low voltage drop
- Switching frequency up to 20 kHz
- RBSOA & SCSOA rated
- Low tail current
Q5 (CoolMOS™)
- Ultra low RDSon
- Low Miller capacitance
- Ultra low gate charge
- Avalanche energy rated
• Kelvin emitter for easy drive
• Very low stray inductance
• High level of integration
K
Benefits
G3
OUT 1B
OUT 1A
D5
VBUS 2
OUT 2B
•
•
•
•
OUT 2A
D5
G5
SK5
G2
S5
G4
S5
E2 0/VBUS
E4
All multiple inputs and outputs must be shorted together
OUT1A/OUT1B ; VBUS1/VBUS2 ; K/K ; …
Optimized conduction & switching losses
Direct mounting to heatsink (isolated package)
Low junction to case thermal resistance
Solderable terminals both for power and signal
for easy PCB mounting
• Low profile
• Easy paralleling due to positive TC of VCEsat
• RoHS Compliant
These Devices are sensitive to Electrostatic Discharge. Proper Handing Procedures Should Be Followed. See application note
APT0502 on www.microsemi.com
www.microsemi.com
1 - 15
September, 2007
VBUS 1
APTGV50H60BG – Rev 0
G1
K
APTGV50H60BG
All ratings @ Tj = 25°C unless otherwise specified
1. Full bridge top switches
1.1 Top Trench + Field Stop IGBT® characteristics
Absolute maximum ratings
Symbol
VCES
IC
ICM
VGE
PD
RBSOA
Parameter
Collector - Emitter Breakdown Voltage
TC = 25°C
TC = 80°C
TC = 25°C
Continuous Collector Current
Pulsed Collector Current
Gate – Emitter Voltage
Maximum Power Dissipation
Reverse Bias Safe Operating Area
TC = 25°C
TJ = 150°C
Max ratings
600
80
50
100
±20
176
100A @ 550V
Unit
V
A
V
W
Electrical Characteristics
Symbol Characteristic
ICES
Zero Gate Voltage Collector Current
VCE(sat)
Collector Emitter Saturation Voltage
VGE(th)
IGES
Gate Threshold Voltage
Gate – Emitter Leakage Current
Test Conditions
VGE = 0V, VCE = 600V
Tj = 25°C
VGE =15V
IC = 50A
Tj = 150°C
VGE = VCE , IC = 600µA
VGE = 20V, VCE = 0V
Min
Typ
5.0
1.5
1.7
5.8
Min
Typ
Max
Unit
250
1.9
µA
6.5
600
V
nA
Max
Unit
V
Dynamic Characteristics
Cies
Coes
Cres
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
VGE = 0V
VCE = 25V
f = 1MHz
3150
200
95
pF
Td(on)
Tr
Td(off)
Tf
Turn-on Delay Time
Rise Time
Turn-off Delay Time
Fall Time
110
45
200
40
ns
Td(on)
Tr
Td(off)
Turn-on Delay Time
Rise Time
Turn-off Delay Time
Inductive Switching (25°C)
VGE = ±15V
VBus = 300V
IC = 50A
RG = 8.2Ω
Inductive Switching (150°C)
VGE = ±15V
VBus = 300V
IC = 50A
RG = 8.2Ω
VGE = ±15V
Tj = 25°C
VBus = 300V
Tj = 150°C
IC = 50A
Tj = 25°C
RG = 8.2Ω
Tj = 150°C
Tf
Fall Time
Eon
Turn-on Switching Energy
Eoff
Turn-off Switching Energy
RthJC
Junction to Case Thermal resistance
120
50
250
ns
60
0.3
0.43
1.35
1.75
mJ
mJ
0.85
www.microsemi.com
°C/W
2 - 15
September, 2007
Test Conditions
APTGV50H60BG – Rev 0
Symbol Characteristic
APTGV50H60BG
1.2 Top fast diode characteristics
Symbol Characteristic
VRRM
IRM
IF
VF
Min
Maximum Reverse Leakage Current
VR=600V
DC Forward Current
Reverse Recovery Time
Qrr
Reverse Recovery Charge
Max
IF = 30A
VR = 400V
di/dt =200A/µs
Unit
V
Tj = 25°C
Tj = 125°C
25
500
Tc = 80°C
IF = 30A
IF = 60A
IF = 30A
Diode Forward Voltage
Typ
600
Maximum Peak Repetitive Reverse Voltage
trr
RthJC
Test Conditions
Tj = 125°C
30
1.8
2.1
1.5
Tj = 25°C
25
Tj = 125°C
Tj = 25°C
160
35
Tj = 125°C
480
Junction to Case Thermal resistance
µA
A
2.3
V
ns
nC
1.2
°C/W
2. Full bridge bottom switches
2.1 Bottom Fast NPT IGBT characteristics
Absolute maximum ratings
Symbol
VCES
Parameter
Collector - Emitter Breakdown Voltage
IC
Continuous Collector Current
ICM
VGE
PD
Pulsed Collector Current
Gate – Emitter Voltage
Maximum Power Dissipation
RBSOA
TC = 25°C
Max ratings
600
65
50
230
±20
250
Tj = 125°C
100A @ 500V
TC = 25°C
TC = 80°C
TC = 25°C
Reverse Bias Safe Operating Area
Unit
V
A
V
W
Electrical Characteristics
Zero Gate Voltage Collector Current
VCE(sat)
Collector Emitter Saturation Voltage
VGE(th)
IGES
Gate Threshold Voltage
Gate – Emitter Leakage Current
Tj = 25°C
VGE = 0V
VCE = 600V
Tj = 125°C
Tj = 25°C
VGE =15V
IC = 50A
Tj = 125°C
VGE = VCE , IC = 1mA
VGE = 20V, VCE = 0V
www.microsemi.com
Min
1.7
4
Typ
2.0
2.2
Max
250
500
2.45
6
400
Unit
µA
V
V
nA
September, 2007
ICES
Test Conditions
3 - 15
APTGV50H60BG – Rev 0
Symbol Characteristic
APTGV50H60BG
Dynamic Characteristics
Symbol
Cies
Coes
Cres
Qg
Qge
Qgc
Td(on)
Tr
Characteristic
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Total gate Charge
Gate – Emitter Charge
Gate – Collector Charge
Turn-on Delay Time
Rise Time
Td(off)
Turn-off Delay Time
Tf
Td(on)
Tr
Fall Time
Turn-on Delay Time
Rise Time
Td(off)
Turn-off Delay Time
Tf
Fall Time
Eon
Turn-on Switching Energy
Eoff
Turn-off Switching Energy
RthJC
Junction to Case Thermal resistance
Test Conditions
VGE = 0V
VCE = 25V
f = 1MHz
Min
VGE = 15V
VBus = 300V
IC = 50A
Inductive Switching (25°C)
VGE = 15V
VBus = 400V
IC = 50A
RG = 2.7Ω
Inductive Switching (125°C)
VGE = 15V
VBus = 400V
IC = 50A
RG = 2.7Ω
VGE = 15V
Tj = 125°C
VBus = 400V
IC = 50A
Tj = 125°C
RG = 2.7Ω
Typ
2200
323
200
166
20
100
40
9
Max
Unit
pF
nC
ns
120
12
42
10
ns
130
21
0.5
mJ
1
0.5
°C/W
Max
Unit
2.2 Bottom diode characteristics
Symbol Characteristic
IF
VF
VR=600V
DC Forward Current
Diode Forward Voltage
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
RthJC
600
Maximum Peak Repetitive Reverse Voltage
Maximum Reverse Leakage Current
Typ
Tc = 80°C
IF = 30A
IF = 60A
IF = 30A
IF = 30A
VR = 400V
di/dt =200A/µs
Junction to Case Thermal resistance
V
Tj = 25°C
Tj = 125°C
25
500
Tj = 125°C
30
1.8
2.1
1.5
Tj = 25°C
25
Tj = 125°C
Tj = 25°C
160
35
Tj = 125°C
480
µA
A
2.3
V
ns
nC
1.2
°C/W
September, 2007
IRM
Min
www.microsemi.com
4 - 15
APTGV50H60BG – Rev 0
VRRM
Test Conditions
APTGV50H60BG
3. Boost chopper switch
3.1 CoolMOS™ characteristics
Absolute maximum ratings
Symbol
VDSS
ID
IDM
VGS
RDSon
PD
IAR
EAR
EAS
Parameter
Drain - Source Breakdown Voltage
Tc = 25°C
Tc = 80°C
Continuous Drain Current
Pulsed Drain current
Gate - Source Voltage
Drain - Source ON Resistance
Maximum Power Dissipation
Avalanche current (repetitive and non repetitive)
Repetitive Avalanche Energy
Single Pulse Avalanche Energy
Tc = 25°C
Max ratings
600
49
38
130
±20
45
290
15
3
1900
Unit
V
A
V
mΩ
W
A
mJ
Electrical Characteristics
Symbol Characteristic
IDSS
RDS(on)
VGS(th)
IGSS
Zero Gate Voltage Drain Current
Drain – Source on Resistance
Gate Threshold Voltage
Gate – Source Leakage Current
Test Conditions
VGS = 0V,VDS = 600V
VGS = 0V,VDS = 600V
Min
Typ
Tj = 25°C
Tj = 125°C
VGS = 10V, ID = 24.5A
VGS = VDS, ID = 3mA
VGS = ±20 V, VDS = 0V
2.1
40
3
Max
250
500
45
3.9
100
Unit
Max
Unit
µA
mΩ
V
nA
Dynamic Characteristics
Total gate Charge
Qgs
Gate – Source Charge
Qgd
Gate – Drain Charge
Td(on)
Turn-on Delay Time
Tr
Td(off)
Rise Time
Turn-off Delay Time
Tf
Fall Time
Eon
Turn-on Switching Energy
Eoff
Turn-off Switching Energy
Eon
Turn-on Switching Energy
Eoff
Turn-off Switching Energy
RthJC
Junction to Case Thermal resistance
VGS = 10V
VBus = 300V
ID = 49A
Inductive Switching (125°C)
VGS = 10V
VBus = 400V
ID = 49A
RG = 4.7Ω
Inductive switching @ 25°C
VGS = 10V ; VBus = 400V
ID = 49A ; RG = 4.7Ω
Inductive switching @ 125°C
VGS = 10V ; VBus = 400V
ID = 49A ; RG = 4.7Ω
Min
Typ
7.2
0.29
nF
150
nC
34
51
21
30
ns
100
45
675
µJ
520
1100
µJ
635
0.5
www.microsemi.com
°C/W
5 - 15
September, 2007
Qg
Test Conditions
VGS = 0V ; VDS = 25V
f = 1MHz
APTGV50H60BG – Rev 0
Symbol Characteristic
Input Capacitance
Ciss
Coss
Output Capacitance
APTGV50H60BG
3.2 Chopper diode characteristics
Symbol Characteristic
VRRM
IRM
IF
VF
Maximum Reverse Leakage Current
Min
Diode Forward Voltage
Reverse Recovery Time
Qrr
Reverse Recovery Charge
Typ
Max
600
VR=600V
DC Forward Current
trr
RthJC
Test Conditions
Maximum Peak Repetitive Reverse Voltage
IF = 60A
VR = 400V
di/dt =200A/µs
V
Tj = 25°C
Tj = 125°C
25
500
Tc = 80°C
IF = 60A
IF = 120A
IF = 60A
Unit
Tj = 125°C
60
1.7
2
1.4
Tj = 25°C
70
Tj = 125°C
Tj = 25°C
140
100
Tj = 125°C
690
Junction to Case Thermal resistance
µA
A
2.3
V
ns
nC
0.85
°C/W
Max
Unit
V
4. Package characteristics
Symbol Characteristic
VISOL RMS Isolation Voltage, any terminal to case t =1 min, I isol<1mA, 50/60Hz
TJ
Operating junction temperature range
TSTG
Storage Temperature Range
TC
Operating Case Temperature
Torque Mounting torque
To heatsink
M5
Wt
Package Weight
* Tj=175°C for Trench & Field Stop IGBT
Min
2500
-40
-40
-40
2.5
Typ
150*
125
100
4.7
160
°C
N.m
g
See application note APT0501 - Mounting Instructions for SP4 Power Modules on www.microsemi.com
www.microsemi.com
6 - 15
APTGV50H60BG – Rev 0
September, 2007
5. SP4 Package outline (dimensions in mm)
APTGV50H60BG
6. Full bridge top switches curves
6.1 Top Trench + Field Stop IGBT typical performance curves
Output Characteristics (VGE=15V)
100
80
TJ = 150°C
TJ=125°C
VGE=13V
TJ=150°C
60
60
VGE=15V
40
40
20
20
TJ=25°C
0
0
0.5
1
1.5
VCE (V)
VGE=9V
0
2
2.5
0
3
3.5
60
E (mJ)
IC (A)
2.5
40
1
1.5
2
VCE (V)
2.5
VCE = 300V
VGE = 15V
RG = 8.2Ω
TJ = 150°C
3
TJ=25°C
80
0.5
3
3.5
Energy losses vs Collector Current
Transfert Characteristics
100
VGE=19V
80
IC (A)
IC (A)
Output Characteristics
100
TJ=25°C
TJ=125°C
Eoff
2
1.5
1
TJ=150°C
20
TJ=25°C
0
0
5
6
7
Eon
0.5
8
9
10
11
0
12
20
40
Switching Energy Losses vs Gate Resistance
80
100
Reverse Bias Safe Operating Area
3
125
2.5
Eoff
100
IC (A)
2
E (mJ)
60
IC (A)
VGE (V)
1.5
0.5
50
VCE = 300V
VGE =15V
IC = 50A
TJ = 150°C
1
Eon
75
VGE=15V
TJ=150°C
RG=8.2Ω
25
0
0
5
15
25
35
45
55
Gate Resistance (ohms)
65
0
100
200
300 400
VCE (V)
500
600
700
maximum Effective Transient Thermal Impedance, Junction to Case vs Pulse Duration
0.8
0.6
0.9
0.7
0.2
September, 2007
0.5
0.4
0.3
0.1
0.05
0
0.00001
Single Pulse
0.0001
0.001
0.01
0.1
1
10
Rectangular Pulse Duration in Seconds
www.microsemi.com
7 - 15
APTGV50H60BG – Rev 0
Thermal Impedance (°C/W)
1
APTGV50H60BG
6.2 Top Fast diode typical performance curves
Forw ard Current vs Forw ard Voltage
IF, Forward Current (A)
120
100
80
T J=125°C
60
40
T J=25°C
20
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
V F, Anode to Cathode Voltage (V)
Maxim um Effective Transient Therm al Im pedance, Junction to Case vs Pulse Duration
1.2
1
0.8
0.9
0.7
0.5
0.6
0.2
0
0.00001
0.3
0.1
0.05
Single Pulse
0.0001
0.001
0.01
0.1
1
10
Rectangular Pulse Duration (Seconds)
September, 2007
0.4
www.microsemi.com
8 - 15
APTGV50H60BG – Rev 0
Thermal Impedance (°C/W)
1.4
APTGV50H60BG
7. Full bridge bottom switches curves
7.1 Bottom fast NPT IGBT typical performance curves
Output characteristics (VGE=15V)
Output Characteristics (VGE=10V)
150
250µs Pulse Test
< 0.5% Duty cycle
Ic, Collector Current (A)
TJ=25°C
100
TJ=125°C
50
0
250µs Pulse Test
< 0.5% Duty cycle
100
TJ=25°C
50
TJ=125°C
0
0
1
2
3
4
0
VCE, Collector to Emitter Voltage (V)
1
2
3
VCE, Collector to Emitter Voltage (V)
Transfer Characteristics
250µs Pulse Test
< 0.5% Duty cycle
125
100
75
50
TJ=125°C
25
TJ=25°C
0
1
2
3
4
5
6
7
8
9
VGE, Gate to Emitter Voltage (V)
TJ = 25°C
250µs Pulse Test
< 0.5% Duty cycle
7
6
Ic=100A
5
4
3
Ic=50A
2
1
Ic=25A
0
6
8
10
12
14
14
VCE=300V
12
VCE=480V
10
8
6
4
2
0
0
50
75
100 125 150 175 200
On state Voltage vs Junction Temperature
4
3.5
Ic=100A
3
Ic=50A
2.5
2
1.5
Ic=25A
250µs Pulse Test
< 0.5% Duty cycle
VGE = 15V
1
0.5
0
16
25
VGE, Gate to Emitter Voltage (V)
Breakdown Voltage vs Junction Temp.
50
75
100
TJ, Junction Temperature (°C)
125
DC Collector Current vs Case Temperature
70
1.10
1.00
0.90
0.80
25
50
75
100
125
TJ, Junction Temperature (°C)
60
50
September, 2007
1.20
Ic, DC Collector Current (A)
Collector to Emitter Breakdown
Voltage (Normalized)
25
Gate Charge (nC)
On state Voltage vs Gate to Emitter Volt.
8
VCE=120V
IC = 50A
TJ = 25°C
16
10
VCE, Collector to Emitter Voltage (V)
0
VCE, Collector to Emitter Voltage (V)
Gate Charge
18
VGE, Gate to Emitter Voltage (V)
Ic, Collector Current (A)
150
4
40
30
20
10
0
25
50
75
100
125
150
TC, Case Temperature (°C)
www.microsemi.com
9 - 15
APTGV50H60BG – Rev 0
Ic, Collector Current (A)
150
APTGV50H60BG
Turn-Off Delay Time vs Collector Current
td(off), Turn-Off Delay Time (ns)
VGE = 15V
50
40
Tj = 125°C
VCE = 400V
RG = 2.7Ω
30
20
0
25
50
75
100
125
175
150
VGE=15V,
TJ=125°C
125
100
75
50
150
0
ICE, Collector to Emitter Current (A)
Current Rise Time vs Collector Current
VCE = 400V
RG = 2.7Ω
tf, Fall Time (ns)
tr, Rise Time (ns)
VGE=15V,
TJ=125°C
125
150
40
TJ = 125°C
30
20
TJ = 25°C
0
0
0
25
50
75
100
125
ICE, Collector to Emitter Current (A)
0
150
Turn-On Energy Loss vs Collector Current
TJ=125°C,
VGE=15V
VCE = 400V
RG = 2.7Ω
1.5
Eoff, Turn-off Energy Loss (mJ)
2
Eon, Turn-On Energy Loss (mJ)
100
10
10
1
0.5
0
0
25
50
75
100
125
2.5
25
50
75
100
125
ICE, Collector to Emitter Current (A)
150
Turn-Off Energy Loss vs Collector Current
VCE = 400V
VGE = 15V
RG = 2.7Ω
2
TJ = 125°C
1.5
1
0.5
0
150
0
ICE, Collector to Emitter Current (A)
25
50
75
100
125
150
ICE, Collector to Emitter Current (A)
Switching Energy Losses vs Gate Resistance
Reverse Bias Safe Operating Area
3
120
Eon, 50A
2
1.5
Eoff, 50A
1
0.5
100
80
September, 2007
VCE = 400V
VGE = 15V
TJ= 125°C
2.5
IC, Collector Current (A)
Switching Energy Losses (mJ)
75
VCE = 400V, VGE = 15V, RG = 2.7Ω
50
40
20
50
Current Fall Time vs Collector Current
60
30
25
ICE, Collector to Emitter Current (A)
60
50
VGE=15V,
TJ=25°C
VCE = 400V
RG = 2.7Ω
60
40
20
Eon, 50A
0
0
0
5
10
15
20
Gate Resistance (Ohms)
25
0
200
400
600
VCE, Collector to Emitter Voltage (V)
www.microsemi.com
10 - 15
APTGV50H60BG – Rev 0
td(on), Turn-On Delay Time (ns)
Turn-On Delay Time vs Collector Current
60
APTGV50H60BG
Capacitance vs Collector to Emitter Voltage
Operating Frequency vs Collector Current
Fmax, Operating Frequency (kHz)
C, Capacitance (pF)
10000
Cies
1000
Coes
Cres
100
0
10
20
30
40
240
VCE = 400V
D = 50%
RG = 2.7Ω
TJ = 125°C
TC= 75°C
200
160
120
80
ZCS
ZVS
hard
switching
40
0
0
50
20
VCE, Collector to Emitter Voltage (V)
40
60
80
100
IC, Collector Current (A)
Maximum Effective Transient Thermal Impedance, Junction to Case vs Pulse Duration
Thermal Impedance (°C/W)
0.6
0.5
0.9
0.4
0.7
0.3
0.5
0.2
0.3
0.1
0.1
0.05
Single Pulse
0
0.00001
0.0001
0.001
0.01
0.1
Rectangular Pulse Duration (Seconds)
1
10
7.2 Bottom diode typical performance curves
Forw ard Current vs Forw ard Voltage
IF, Forward Current (A)
120
100
80
T J=125°C
60
40
T J=25°C
20
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
V F, Anode to Cathode Voltage (V)
Maxim um Effective Transient Therm al Im pedance, Junction to Case vs Pulse Duration
1
0.8
0.9
0.7
September, 2007
1.2
0.5
0.6
0.4
0.2
0
0.00001
0.3
0.1
0.05
Single Pulse
0.0001
0.001
0.01
0.1
1
10
Rectangular Pulse Duration (Seconds)
www.microsemi.com
11 - 15
APTGV50H60BG – Rev 0
Thermal Impedance (°C/W)
1.4
APTGV50H60BG
8. Boost chopper switch curves
8.1 CoolMOS™ typical performance curves
Maximum Effective Transient Thermal Impedance, Junction to Case vs Pulse Duration
Thermal Impedance (°C/W)
0.6
0.5
0.9
0.4
0.7
0.3
0.5
0.2
0.3
0.1
0.1
Single Pulse
0.05
0
0.00001
0.0001
0.001
0.01
0.1
1
10
rectangular Pulse Duration (Seconds)
Transfert Characteristics
Low Voltage Output Characteristics
140
360
VGS=15&10V
6.5V
280
ID, Drain Current (A)
6V
240
200
5.5V
160
120
5V
80
4.5V
40
4V
0
100
80
60
40
TJ=125°C
20
TJ=25°C
0
0
5
10
15
20
VDS, Drain to Source Voltage (V)
25
0
Normalized to
VGS=10V @ 50A
1.25
1.2
VGS=10V
1.15
1.1
1
2
3
4
5
6
VGS, Gate to Source Voltage (V)
7
DC Drain Current vs Case Temperature
50
RDS(on) vs Drain Current
1.3
VGS=20V
1.05
1
0.95
ID, DC Drain Current (A)
0.9
40
30
20
10
0
0
20
40
60
80
100 120 140
ID, Drain Current (A)
www.microsemi.com
25
50
75
100
125
TC, Case Temperature (°C)
150
September, 2007
RDS(on) Drain to Source ON Resistance
VDS > ID(on)xRDS(on)MAX
250µs pulse test @ < 0.5 duty cycle
120
12 - 15
APTGV50H60BG – Rev 0
ID, Drain Current (A)
320
1.1
1.0
0.9
0.8
25
50
75
100
125
150
ON resistance vs Temperature
3.0
2.0
1.5
1.0
0.5
0.0
25
TJ, Junction Temperature (°C)
1000
1.0
ID, Drain Current (A)
VGS(TH), Threshold Voltage
(Normalized)
50
75
100
125
150
TJ, Junction Temperature (°C)
Maximum Safe Operating Area
Threshold Voltage vs Temperature
1.1
0.9
0.8
0.7
limited by RDSon
100
100 µs
1 ms
Single pulse
TJ=150°C
TC=25°C
10
0.6
10 ms
1
25
50
75
100
125
150
1
Coss
Ciss
1000
Crss
100
10
1000
10
20
30
40
50
VDS, Drain to Source Voltage (V)
12
ID=50A
TJ=25°C
10
VDS=120V
VDS=300V
8
VDS=480V
6
4
2
0
0
20
40
60 80 100 120 140 160
Gate Charge (nC)
September, 2007
0
100
Gate Charge vs Gate to Source Voltage
VGS, Gate to Source Voltage (V)
Capacitance vs Drain to Source Voltage
100000
10000
10
VDS, Drain to Source Voltage (V)
TC, Case Temperature (°C)
C, Capacitance (pF)
VGS=10V
ID= 50A
2.5
www.microsemi.com
13 - 15
APTGV50H60BG – Rev 0
BVDSS, Drain to Source Breakdown
Voltage (Normalized)
Breakdown Voltage vs Temperature
1.2
RDS(on), Drain to Source ON resistance
(Normalized)
APTGV50H60BG
APTGV50H60BG
Delay Times vs Current
140
Rise and Fall times vs Current
70
100
VDS=400V
RG=5Ω
TJ=125°C
L=100µH
80
60
40
VDS=400V
RG=5Ω
TJ=125°C
L=100µH
60
td(off)
tr and tf (ns)
td(on)
20
50
tf
40
30
tr
20
10
0
0
0
10
20 30 40 50
60 70 80
0
10
20
ID, Drain Current (A)
1.6
Switching Energy (mJ)
Switching Energy (mJ)
VDS=400V
RG=5Ω
TJ=125°C
L=100µH
Eon
1.2
Eoff
0.8
0.4
VDS=400V
ID=50A
TJ=125°C
L=100µH
2
1.5
50
60
70
80
Eoff
Eon
1
0.5
0
0
0
10
20 30 40 50 60
ID, Drain Current (A)
70
80
0
ZVS
200
ZCS
150
VDS=400V
D=50%
RG=5Ω
TJ=125°C
TC=75°C
100
hard
switching
50
IDR, Reverse Drain Current (A)
Operating Frequency vs Drain Current
250
0
20
30
40
50
10 15 20 25 30 35 40 45 50
ID, Drain Current (A)
Source to Drain Diode Forward Voltage
1000
TJ=150°C
100
TJ=25°C
10
1
0.3
0.5
0.7
0.9
1.1
1.3
1.5
VSD, Source to Drain Voltage (V)
September, 2007
5
10
Gate Resistance (Ohms)
300
Frequency (kHz)
40
Switching Energy vs Gate Resistance
2.5
Switching Energy vs Current
2
30
ID, Drain Current (A)
www.microsemi.com
14 - 15
APTGV50H60BG – Rev 0
td(on) and td(off) (ns)
120
APTGV50H60BG
8.2 Chopper diode typical performance curves
Forw ard Current vs Forw ard Voltage
IF, Forward Current (A)
200
160
T J=125°C
120
80
T J=25°C
40
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
V F, Anode to Cathode Voltage (V)
Maxim um Effective Transient Therm al Im pedance, Junction to Case vs Pulse Duration
Thermal Impedance (°C/W)
0.9
0.8
0.7
0.6
0.5
0.9
0.7
0.5
0.4
0.3
0.2
0.1
0
0.00001
0.3
0.1
0.05
Single Pulse
0.0001
0.001
0.01
0.1
1
10
Microsemi reserves the right to change, without notice, the specifications and information contained herein
Microsemi's products are covered by one or more of U.S patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. U.S and Foreign patents pending. All Rights Reserved.
www.microsemi.com
15 - 15
APTGV50H60BG – Rev 0
September, 2007
Rectangular Pulse Duration (Seconds)