APTGV50H60BG Trench & Field Stop IGBT Q1, Q3: VCES = 600V , IC = 50A @ Tc = 80°C Boost chopper CoolMos™ + full bridge NPT & Trench + Field Stop IGBT Power module K K CoolMOS™ Q5: VCES = 600V ; IC = 49A @ Tc = 25°C VBUS2 VBUS1 Q1 Q3 G3 CR3 CR1 G1 CR5 Fast NPT IGBT Q2, Q4: VCES = 600V ; IC = 50A @ Tc = 80°C Application • Solar converter Q 5 D5 OUT1A OUT2A D5 OUT1B OUT2B Features Q4 Q2 G5 G2 SK5 E2 CR2 G4 CR4 E4 S5 S5 0/VBUS Full bridge top switches : Trench + Field Stop IGBT Full bridge bottom switches : FAST NPT IGBT Q5 boost chopper : CoolMOS™ • Q2, Q4 (FAST Non Punch Through (NPT) IGBT) - Switching frequency up to 100 kHz - RBSOA & SCSOA rated - Low tail current • Q1, Q3 (Trench & Field Stop IGBT) - Low voltage drop - Switching frequency up to 20 kHz - RBSOA & SCSOA rated - Low tail current Q5 (CoolMOS™) - Ultra low RDSon - Low Miller capacitance - Ultra low gate charge - Avalanche energy rated • Kelvin emitter for easy drive • Very low stray inductance • High level of integration K Benefits G3 OUT 1B OUT 1A D5 VBUS 2 OUT 2B • • • • OUT 2A D5 G5 SK5 G2 S5 G4 S5 E2 0/VBUS E4 All multiple inputs and outputs must be shorted together OUT1A/OUT1B ; VBUS1/VBUS2 ; K/K ; … Optimized conduction & switching losses Direct mounting to heatsink (isolated package) Low junction to case thermal resistance Solderable terminals both for power and signal for easy PCB mounting • Low profile • Easy paralleling due to positive TC of VCEsat • RoHS Compliant These Devices are sensitive to Electrostatic Discharge. Proper Handing Procedures Should Be Followed. See application note APT0502 on www.microsemi.com www.microsemi.com 1 - 15 September, 2007 VBUS 1 APTGV50H60BG – Rev 0 G1 K APTGV50H60BG All ratings @ Tj = 25°C unless otherwise specified 1. Full bridge top switches 1.1 Top Trench + Field Stop IGBT® characteristics Absolute maximum ratings Symbol VCES IC ICM VGE PD RBSOA Parameter Collector - Emitter Breakdown Voltage TC = 25°C TC = 80°C TC = 25°C Continuous Collector Current Pulsed Collector Current Gate – Emitter Voltage Maximum Power Dissipation Reverse Bias Safe Operating Area TC = 25°C TJ = 150°C Max ratings 600 80 50 100 ±20 176 100A @ 550V Unit V A V W Electrical Characteristics Symbol Characteristic ICES Zero Gate Voltage Collector Current VCE(sat) Collector Emitter Saturation Voltage VGE(th) IGES Gate Threshold Voltage Gate – Emitter Leakage Current Test Conditions VGE = 0V, VCE = 600V Tj = 25°C VGE =15V IC = 50A Tj = 150°C VGE = VCE , IC = 600µA VGE = 20V, VCE = 0V Min Typ 5.0 1.5 1.7 5.8 Min Typ Max Unit 250 1.9 µA 6.5 600 V nA Max Unit V Dynamic Characteristics Cies Coes Cres Input Capacitance Output Capacitance Reverse Transfer Capacitance VGE = 0V VCE = 25V f = 1MHz 3150 200 95 pF Td(on) Tr Td(off) Tf Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time 110 45 200 40 ns Td(on) Tr Td(off) Turn-on Delay Time Rise Time Turn-off Delay Time Inductive Switching (25°C) VGE = ±15V VBus = 300V IC = 50A RG = 8.2Ω Inductive Switching (150°C) VGE = ±15V VBus = 300V IC = 50A RG = 8.2Ω VGE = ±15V Tj = 25°C VBus = 300V Tj = 150°C IC = 50A Tj = 25°C RG = 8.2Ω Tj = 150°C Tf Fall Time Eon Turn-on Switching Energy Eoff Turn-off Switching Energy RthJC Junction to Case Thermal resistance 120 50 250 ns 60 0.3 0.43 1.35 1.75 mJ mJ 0.85 www.microsemi.com °C/W 2 - 15 September, 2007 Test Conditions APTGV50H60BG – Rev 0 Symbol Characteristic APTGV50H60BG 1.2 Top fast diode characteristics Symbol Characteristic VRRM IRM IF VF Min Maximum Reverse Leakage Current VR=600V DC Forward Current Reverse Recovery Time Qrr Reverse Recovery Charge Max IF = 30A VR = 400V di/dt =200A/µs Unit V Tj = 25°C Tj = 125°C 25 500 Tc = 80°C IF = 30A IF = 60A IF = 30A Diode Forward Voltage Typ 600 Maximum Peak Repetitive Reverse Voltage trr RthJC Test Conditions Tj = 125°C 30 1.8 2.1 1.5 Tj = 25°C 25 Tj = 125°C Tj = 25°C 160 35 Tj = 125°C 480 Junction to Case Thermal resistance µA A 2.3 V ns nC 1.2 °C/W 2. Full bridge bottom switches 2.1 Bottom Fast NPT IGBT characteristics Absolute maximum ratings Symbol VCES Parameter Collector - Emitter Breakdown Voltage IC Continuous Collector Current ICM VGE PD Pulsed Collector Current Gate – Emitter Voltage Maximum Power Dissipation RBSOA TC = 25°C Max ratings 600 65 50 230 ±20 250 Tj = 125°C 100A @ 500V TC = 25°C TC = 80°C TC = 25°C Reverse Bias Safe Operating Area Unit V A V W Electrical Characteristics Zero Gate Voltage Collector Current VCE(sat) Collector Emitter Saturation Voltage VGE(th) IGES Gate Threshold Voltage Gate – Emitter Leakage Current Tj = 25°C VGE = 0V VCE = 600V Tj = 125°C Tj = 25°C VGE =15V IC = 50A Tj = 125°C VGE = VCE , IC = 1mA VGE = 20V, VCE = 0V www.microsemi.com Min 1.7 4 Typ 2.0 2.2 Max 250 500 2.45 6 400 Unit µA V V nA September, 2007 ICES Test Conditions 3 - 15 APTGV50H60BG – Rev 0 Symbol Characteristic APTGV50H60BG Dynamic Characteristics Symbol Cies Coes Cres Qg Qge Qgc Td(on) Tr Characteristic Input Capacitance Output Capacitance Reverse Transfer Capacitance Total gate Charge Gate – Emitter Charge Gate – Collector Charge Turn-on Delay Time Rise Time Td(off) Turn-off Delay Time Tf Td(on) Tr Fall Time Turn-on Delay Time Rise Time Td(off) Turn-off Delay Time Tf Fall Time Eon Turn-on Switching Energy Eoff Turn-off Switching Energy RthJC Junction to Case Thermal resistance Test Conditions VGE = 0V VCE = 25V f = 1MHz Min VGE = 15V VBus = 300V IC = 50A Inductive Switching (25°C) VGE = 15V VBus = 400V IC = 50A RG = 2.7Ω Inductive Switching (125°C) VGE = 15V VBus = 400V IC = 50A RG = 2.7Ω VGE = 15V Tj = 125°C VBus = 400V IC = 50A Tj = 125°C RG = 2.7Ω Typ 2200 323 200 166 20 100 40 9 Max Unit pF nC ns 120 12 42 10 ns 130 21 0.5 mJ 1 0.5 °C/W Max Unit 2.2 Bottom diode characteristics Symbol Characteristic IF VF VR=600V DC Forward Current Diode Forward Voltage trr Reverse Recovery Time Qrr Reverse Recovery Charge RthJC 600 Maximum Peak Repetitive Reverse Voltage Maximum Reverse Leakage Current Typ Tc = 80°C IF = 30A IF = 60A IF = 30A IF = 30A VR = 400V di/dt =200A/µs Junction to Case Thermal resistance V Tj = 25°C Tj = 125°C 25 500 Tj = 125°C 30 1.8 2.1 1.5 Tj = 25°C 25 Tj = 125°C Tj = 25°C 160 35 Tj = 125°C 480 µA A 2.3 V ns nC 1.2 °C/W September, 2007 IRM Min www.microsemi.com 4 - 15 APTGV50H60BG – Rev 0 VRRM Test Conditions APTGV50H60BG 3. Boost chopper switch 3.1 CoolMOS™ characteristics Absolute maximum ratings Symbol VDSS ID IDM VGS RDSon PD IAR EAR EAS Parameter Drain - Source Breakdown Voltage Tc = 25°C Tc = 80°C Continuous Drain Current Pulsed Drain current Gate - Source Voltage Drain - Source ON Resistance Maximum Power Dissipation Avalanche current (repetitive and non repetitive) Repetitive Avalanche Energy Single Pulse Avalanche Energy Tc = 25°C Max ratings 600 49 38 130 ±20 45 290 15 3 1900 Unit V A V mΩ W A mJ Electrical Characteristics Symbol Characteristic IDSS RDS(on) VGS(th) IGSS Zero Gate Voltage Drain Current Drain – Source on Resistance Gate Threshold Voltage Gate – Source Leakage Current Test Conditions VGS = 0V,VDS = 600V VGS = 0V,VDS = 600V Min Typ Tj = 25°C Tj = 125°C VGS = 10V, ID = 24.5A VGS = VDS, ID = 3mA VGS = ±20 V, VDS = 0V 2.1 40 3 Max 250 500 45 3.9 100 Unit Max Unit µA mΩ V nA Dynamic Characteristics Total gate Charge Qgs Gate – Source Charge Qgd Gate – Drain Charge Td(on) Turn-on Delay Time Tr Td(off) Rise Time Turn-off Delay Time Tf Fall Time Eon Turn-on Switching Energy Eoff Turn-off Switching Energy Eon Turn-on Switching Energy Eoff Turn-off Switching Energy RthJC Junction to Case Thermal resistance VGS = 10V VBus = 300V ID = 49A Inductive Switching (125°C) VGS = 10V VBus = 400V ID = 49A RG = 4.7Ω Inductive switching @ 25°C VGS = 10V ; VBus = 400V ID = 49A ; RG = 4.7Ω Inductive switching @ 125°C VGS = 10V ; VBus = 400V ID = 49A ; RG = 4.7Ω Min Typ 7.2 0.29 nF 150 nC 34 51 21 30 ns 100 45 675 µJ 520 1100 µJ 635 0.5 www.microsemi.com °C/W 5 - 15 September, 2007 Qg Test Conditions VGS = 0V ; VDS = 25V f = 1MHz APTGV50H60BG – Rev 0 Symbol Characteristic Input Capacitance Ciss Coss Output Capacitance APTGV50H60BG 3.2 Chopper diode characteristics Symbol Characteristic VRRM IRM IF VF Maximum Reverse Leakage Current Min Diode Forward Voltage Reverse Recovery Time Qrr Reverse Recovery Charge Typ Max 600 VR=600V DC Forward Current trr RthJC Test Conditions Maximum Peak Repetitive Reverse Voltage IF = 60A VR = 400V di/dt =200A/µs V Tj = 25°C Tj = 125°C 25 500 Tc = 80°C IF = 60A IF = 120A IF = 60A Unit Tj = 125°C 60 1.7 2 1.4 Tj = 25°C 70 Tj = 125°C Tj = 25°C 140 100 Tj = 125°C 690 Junction to Case Thermal resistance µA A 2.3 V ns nC 0.85 °C/W Max Unit V 4. Package characteristics Symbol Characteristic VISOL RMS Isolation Voltage, any terminal to case t =1 min, I isol<1mA, 50/60Hz TJ Operating junction temperature range TSTG Storage Temperature Range TC Operating Case Temperature Torque Mounting torque To heatsink M5 Wt Package Weight * Tj=175°C for Trench & Field Stop IGBT Min 2500 -40 -40 -40 2.5 Typ 150* 125 100 4.7 160 °C N.m g See application note APT0501 - Mounting Instructions for SP4 Power Modules on www.microsemi.com www.microsemi.com 6 - 15 APTGV50H60BG – Rev 0 September, 2007 5. SP4 Package outline (dimensions in mm) APTGV50H60BG 6. Full bridge top switches curves 6.1 Top Trench + Field Stop IGBT typical performance curves Output Characteristics (VGE=15V) 100 80 TJ = 150°C TJ=125°C VGE=13V TJ=150°C 60 60 VGE=15V 40 40 20 20 TJ=25°C 0 0 0.5 1 1.5 VCE (V) VGE=9V 0 2 2.5 0 3 3.5 60 E (mJ) IC (A) 2.5 40 1 1.5 2 VCE (V) 2.5 VCE = 300V VGE = 15V RG = 8.2Ω TJ = 150°C 3 TJ=25°C 80 0.5 3 3.5 Energy losses vs Collector Current Transfert Characteristics 100 VGE=19V 80 IC (A) IC (A) Output Characteristics 100 TJ=25°C TJ=125°C Eoff 2 1.5 1 TJ=150°C 20 TJ=25°C 0 0 5 6 7 Eon 0.5 8 9 10 11 0 12 20 40 Switching Energy Losses vs Gate Resistance 80 100 Reverse Bias Safe Operating Area 3 125 2.5 Eoff 100 IC (A) 2 E (mJ) 60 IC (A) VGE (V) 1.5 0.5 50 VCE = 300V VGE =15V IC = 50A TJ = 150°C 1 Eon 75 VGE=15V TJ=150°C RG=8.2Ω 25 0 0 5 15 25 35 45 55 Gate Resistance (ohms) 65 0 100 200 300 400 VCE (V) 500 600 700 maximum Effective Transient Thermal Impedance, Junction to Case vs Pulse Duration 0.8 0.6 0.9 0.7 0.2 September, 2007 0.5 0.4 0.3 0.1 0.05 0 0.00001 Single Pulse 0.0001 0.001 0.01 0.1 1 10 Rectangular Pulse Duration in Seconds www.microsemi.com 7 - 15 APTGV50H60BG – Rev 0 Thermal Impedance (°C/W) 1 APTGV50H60BG 6.2 Top Fast diode typical performance curves Forw ard Current vs Forw ard Voltage IF, Forward Current (A) 120 100 80 T J=125°C 60 40 T J=25°C 20 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 V F, Anode to Cathode Voltage (V) Maxim um Effective Transient Therm al Im pedance, Junction to Case vs Pulse Duration 1.2 1 0.8 0.9 0.7 0.5 0.6 0.2 0 0.00001 0.3 0.1 0.05 Single Pulse 0.0001 0.001 0.01 0.1 1 10 Rectangular Pulse Duration (Seconds) September, 2007 0.4 www.microsemi.com 8 - 15 APTGV50H60BG – Rev 0 Thermal Impedance (°C/W) 1.4 APTGV50H60BG 7. Full bridge bottom switches curves 7.1 Bottom fast NPT IGBT typical performance curves Output characteristics (VGE=15V) Output Characteristics (VGE=10V) 150 250µs Pulse Test < 0.5% Duty cycle Ic, Collector Current (A) TJ=25°C 100 TJ=125°C 50 0 250µs Pulse Test < 0.5% Duty cycle 100 TJ=25°C 50 TJ=125°C 0 0 1 2 3 4 0 VCE, Collector to Emitter Voltage (V) 1 2 3 VCE, Collector to Emitter Voltage (V) Transfer Characteristics 250µs Pulse Test < 0.5% Duty cycle 125 100 75 50 TJ=125°C 25 TJ=25°C 0 1 2 3 4 5 6 7 8 9 VGE, Gate to Emitter Voltage (V) TJ = 25°C 250µs Pulse Test < 0.5% Duty cycle 7 6 Ic=100A 5 4 3 Ic=50A 2 1 Ic=25A 0 6 8 10 12 14 14 VCE=300V 12 VCE=480V 10 8 6 4 2 0 0 50 75 100 125 150 175 200 On state Voltage vs Junction Temperature 4 3.5 Ic=100A 3 Ic=50A 2.5 2 1.5 Ic=25A 250µs Pulse Test < 0.5% Duty cycle VGE = 15V 1 0.5 0 16 25 VGE, Gate to Emitter Voltage (V) Breakdown Voltage vs Junction Temp. 50 75 100 TJ, Junction Temperature (°C) 125 DC Collector Current vs Case Temperature 70 1.10 1.00 0.90 0.80 25 50 75 100 125 TJ, Junction Temperature (°C) 60 50 September, 2007 1.20 Ic, DC Collector Current (A) Collector to Emitter Breakdown Voltage (Normalized) 25 Gate Charge (nC) On state Voltage vs Gate to Emitter Volt. 8 VCE=120V IC = 50A TJ = 25°C 16 10 VCE, Collector to Emitter Voltage (V) 0 VCE, Collector to Emitter Voltage (V) Gate Charge 18 VGE, Gate to Emitter Voltage (V) Ic, Collector Current (A) 150 4 40 30 20 10 0 25 50 75 100 125 150 TC, Case Temperature (°C) www.microsemi.com 9 - 15 APTGV50H60BG – Rev 0 Ic, Collector Current (A) 150 APTGV50H60BG Turn-Off Delay Time vs Collector Current td(off), Turn-Off Delay Time (ns) VGE = 15V 50 40 Tj = 125°C VCE = 400V RG = 2.7Ω 30 20 0 25 50 75 100 125 175 150 VGE=15V, TJ=125°C 125 100 75 50 150 0 ICE, Collector to Emitter Current (A) Current Rise Time vs Collector Current VCE = 400V RG = 2.7Ω tf, Fall Time (ns) tr, Rise Time (ns) VGE=15V, TJ=125°C 125 150 40 TJ = 125°C 30 20 TJ = 25°C 0 0 0 25 50 75 100 125 ICE, Collector to Emitter Current (A) 0 150 Turn-On Energy Loss vs Collector Current TJ=125°C, VGE=15V VCE = 400V RG = 2.7Ω 1.5 Eoff, Turn-off Energy Loss (mJ) 2 Eon, Turn-On Energy Loss (mJ) 100 10 10 1 0.5 0 0 25 50 75 100 125 2.5 25 50 75 100 125 ICE, Collector to Emitter Current (A) 150 Turn-Off Energy Loss vs Collector Current VCE = 400V VGE = 15V RG = 2.7Ω 2 TJ = 125°C 1.5 1 0.5 0 150 0 ICE, Collector to Emitter Current (A) 25 50 75 100 125 150 ICE, Collector to Emitter Current (A) Switching Energy Losses vs Gate Resistance Reverse Bias Safe Operating Area 3 120 Eon, 50A 2 1.5 Eoff, 50A 1 0.5 100 80 September, 2007 VCE = 400V VGE = 15V TJ= 125°C 2.5 IC, Collector Current (A) Switching Energy Losses (mJ) 75 VCE = 400V, VGE = 15V, RG = 2.7Ω 50 40 20 50 Current Fall Time vs Collector Current 60 30 25 ICE, Collector to Emitter Current (A) 60 50 VGE=15V, TJ=25°C VCE = 400V RG = 2.7Ω 60 40 20 Eon, 50A 0 0 0 5 10 15 20 Gate Resistance (Ohms) 25 0 200 400 600 VCE, Collector to Emitter Voltage (V) www.microsemi.com 10 - 15 APTGV50H60BG – Rev 0 td(on), Turn-On Delay Time (ns) Turn-On Delay Time vs Collector Current 60 APTGV50H60BG Capacitance vs Collector to Emitter Voltage Operating Frequency vs Collector Current Fmax, Operating Frequency (kHz) C, Capacitance (pF) 10000 Cies 1000 Coes Cres 100 0 10 20 30 40 240 VCE = 400V D = 50% RG = 2.7Ω TJ = 125°C TC= 75°C 200 160 120 80 ZCS ZVS hard switching 40 0 0 50 20 VCE, Collector to Emitter Voltage (V) 40 60 80 100 IC, Collector Current (A) Maximum Effective Transient Thermal Impedance, Junction to Case vs Pulse Duration Thermal Impedance (°C/W) 0.6 0.5 0.9 0.4 0.7 0.3 0.5 0.2 0.3 0.1 0.1 0.05 Single Pulse 0 0.00001 0.0001 0.001 0.01 0.1 Rectangular Pulse Duration (Seconds) 1 10 7.2 Bottom diode typical performance curves Forw ard Current vs Forw ard Voltage IF, Forward Current (A) 120 100 80 T J=125°C 60 40 T J=25°C 20 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 V F, Anode to Cathode Voltage (V) Maxim um Effective Transient Therm al Im pedance, Junction to Case vs Pulse Duration 1 0.8 0.9 0.7 September, 2007 1.2 0.5 0.6 0.4 0.2 0 0.00001 0.3 0.1 0.05 Single Pulse 0.0001 0.001 0.01 0.1 1 10 Rectangular Pulse Duration (Seconds) www.microsemi.com 11 - 15 APTGV50H60BG – Rev 0 Thermal Impedance (°C/W) 1.4 APTGV50H60BG 8. Boost chopper switch curves 8.1 CoolMOS™ typical performance curves Maximum Effective Transient Thermal Impedance, Junction to Case vs Pulse Duration Thermal Impedance (°C/W) 0.6 0.5 0.9 0.4 0.7 0.3 0.5 0.2 0.3 0.1 0.1 Single Pulse 0.05 0 0.00001 0.0001 0.001 0.01 0.1 1 10 rectangular Pulse Duration (Seconds) Transfert Characteristics Low Voltage Output Characteristics 140 360 VGS=15&10V 6.5V 280 ID, Drain Current (A) 6V 240 200 5.5V 160 120 5V 80 4.5V 40 4V 0 100 80 60 40 TJ=125°C 20 TJ=25°C 0 0 5 10 15 20 VDS, Drain to Source Voltage (V) 25 0 Normalized to VGS=10V @ 50A 1.25 1.2 VGS=10V 1.15 1.1 1 2 3 4 5 6 VGS, Gate to Source Voltage (V) 7 DC Drain Current vs Case Temperature 50 RDS(on) vs Drain Current 1.3 VGS=20V 1.05 1 0.95 ID, DC Drain Current (A) 0.9 40 30 20 10 0 0 20 40 60 80 100 120 140 ID, Drain Current (A) www.microsemi.com 25 50 75 100 125 TC, Case Temperature (°C) 150 September, 2007 RDS(on) Drain to Source ON Resistance VDS > ID(on)xRDS(on)MAX 250µs pulse test @ < 0.5 duty cycle 120 12 - 15 APTGV50H60BG – Rev 0 ID, Drain Current (A) 320 1.1 1.0 0.9 0.8 25 50 75 100 125 150 ON resistance vs Temperature 3.0 2.0 1.5 1.0 0.5 0.0 25 TJ, Junction Temperature (°C) 1000 1.0 ID, Drain Current (A) VGS(TH), Threshold Voltage (Normalized) 50 75 100 125 150 TJ, Junction Temperature (°C) Maximum Safe Operating Area Threshold Voltage vs Temperature 1.1 0.9 0.8 0.7 limited by RDSon 100 100 µs 1 ms Single pulse TJ=150°C TC=25°C 10 0.6 10 ms 1 25 50 75 100 125 150 1 Coss Ciss 1000 Crss 100 10 1000 10 20 30 40 50 VDS, Drain to Source Voltage (V) 12 ID=50A TJ=25°C 10 VDS=120V VDS=300V 8 VDS=480V 6 4 2 0 0 20 40 60 80 100 120 140 160 Gate Charge (nC) September, 2007 0 100 Gate Charge vs Gate to Source Voltage VGS, Gate to Source Voltage (V) Capacitance vs Drain to Source Voltage 100000 10000 10 VDS, Drain to Source Voltage (V) TC, Case Temperature (°C) C, Capacitance (pF) VGS=10V ID= 50A 2.5 www.microsemi.com 13 - 15 APTGV50H60BG – Rev 0 BVDSS, Drain to Source Breakdown Voltage (Normalized) Breakdown Voltage vs Temperature 1.2 RDS(on), Drain to Source ON resistance (Normalized) APTGV50H60BG APTGV50H60BG Delay Times vs Current 140 Rise and Fall times vs Current 70 100 VDS=400V RG=5Ω TJ=125°C L=100µH 80 60 40 VDS=400V RG=5Ω TJ=125°C L=100µH 60 td(off) tr and tf (ns) td(on) 20 50 tf 40 30 tr 20 10 0 0 0 10 20 30 40 50 60 70 80 0 10 20 ID, Drain Current (A) 1.6 Switching Energy (mJ) Switching Energy (mJ) VDS=400V RG=5Ω TJ=125°C L=100µH Eon 1.2 Eoff 0.8 0.4 VDS=400V ID=50A TJ=125°C L=100µH 2 1.5 50 60 70 80 Eoff Eon 1 0.5 0 0 0 10 20 30 40 50 60 ID, Drain Current (A) 70 80 0 ZVS 200 ZCS 150 VDS=400V D=50% RG=5Ω TJ=125°C TC=75°C 100 hard switching 50 IDR, Reverse Drain Current (A) Operating Frequency vs Drain Current 250 0 20 30 40 50 10 15 20 25 30 35 40 45 50 ID, Drain Current (A) Source to Drain Diode Forward Voltage 1000 TJ=150°C 100 TJ=25°C 10 1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 VSD, Source to Drain Voltage (V) September, 2007 5 10 Gate Resistance (Ohms) 300 Frequency (kHz) 40 Switching Energy vs Gate Resistance 2.5 Switching Energy vs Current 2 30 ID, Drain Current (A) www.microsemi.com 14 - 15 APTGV50H60BG – Rev 0 td(on) and td(off) (ns) 120 APTGV50H60BG 8.2 Chopper diode typical performance curves Forw ard Current vs Forw ard Voltage IF, Forward Current (A) 200 160 T J=125°C 120 80 T J=25°C 40 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 V F, Anode to Cathode Voltage (V) Maxim um Effective Transient Therm al Im pedance, Junction to Case vs Pulse Duration Thermal Impedance (°C/W) 0.9 0.8 0.7 0.6 0.5 0.9 0.7 0.5 0.4 0.3 0.2 0.1 0 0.00001 0.3 0.1 0.05 Single Pulse 0.0001 0.001 0.01 0.1 1 10 Microsemi reserves the right to change, without notice, the specifications and information contained herein Microsemi's products are covered by one or more of U.S patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. U.S and Foreign patents pending. All Rights Reserved. www.microsemi.com 15 - 15 APTGV50H60BG – Rev 0 September, 2007 Rectangular Pulse Duration (Seconds)