MICROSEMI APTCV50H60T3G

APTCV50H60T3G
Trench & Field Stop® IGBT Q1, Q3:
VCES = 600V ; IC = 50A @ Tc = 80°C
Full - Bridge
NPT & Trench + Field Stop® IGBT
Power module
13
CoolMOS™ Q2, Q4:
VCES = 600V ; IC = 49A @ Tc = 25°C
14
Application
Q1
Q3
CR1
• Solar converter
CR3
18
11
19
10
22
7
23
8
Q2
Q4
26
4
27
3
29
31
30
32
NTC
Features
• Q2, Q4 CoolMOS™
- Ultra low RDSon
- Low Miller capacitance
- Ultra low gate charge
- Avalanche energy rated
• Q1, Q3 Trench & Field Stop IGBT®
- Low voltage drop
- Switching frequency up to 20 kHz
- RBSOA & SCSOA rated
- Low tail current
16
15
•
•
•
•
Top switches : Trench + Field Stop IGBT®
Bottom switches : CoolMOS™
28 27 26 25
20 19 18
23 22
29
16
30
15
31
14
32
13
2
3
4
7
8
10 11 12
Benefits
•
•
•
•
Optimized conduction & switching losses
Direct mounting to heatsink (isolated package)
Low junction to case thermal resistance
Solderable terminals both for power and signal
for easy PCB mounting
• Low profile
• Easy paralleling due to positive TC of VCEsat
• RoHS Compliant
These Devices are sensitive to Electrostatic Discharge. Proper Handing Procedures Should Be Followed. See application note
APT0502 on www.microsemi.com
www.microsemi.com
1-9
APTCV50H60T3G – Rev 0
June, 2007
All multiple inputs and outputs must be shorted together
13/14 ; 15/16 ; 26/27 ; 31/32
Kelvin emitter for easy drive
Very low stray inductance
High level of integration
Internal thermistor for temperature monitoring
APTCV50H60T3G
All ratings @ Tj = 25°C unless otherwise specified
1. Top switches
1.1 Top Trench + Field Stop IGBT® characteristics
Absolute maximum ratings
Symbol
VCES
IC
ICM
VGE
PD
RBSOA
Parameter
Collector - Emitter Breakdown Voltage
TC = 25°C
TC = 80°C
TC = 25°C
Continuous Collector Current
Pulsed Collector Current
Gate – Emitter Voltage
Maximum Power Dissipation
Reverse Bias Safe Operating Area
TC = 25°C
TJ = 150°C
Max ratings
600
80
50
100
±20
176
100A @ 550V
Unit
V
A
V
W
Electrical Characteristics
Symbol Characteristic
ICES
Zero Gate Voltage Collector Current
VCE(sat)
Collector Emitter Saturation Voltage
VGE(th)
IGES
Gate Threshold Voltage
Gate – Emitter Leakage Current
Test Conditions
VGE = 0V, VCE = 600V
Tj = 25°C
VGE =15V
IC = 50A
Tj = 150°C
VGE = VCE , IC = 600µA
VGE = 20V, VCE = 0V
Min
Typ
5.0
1.5
1.7
5.8
Min
Typ
Max
Unit
250
1.9
µA
6.5
600
V
nA
Max
Unit
V
Dynamic Characteristics
Cies
Coes
Cres
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
VGE = 0V
VCE = 25V
f = 1MHz
3150
200
95
pF
Td(on)
Tr
Td(off)
Tf
Turn-on Delay Time
Rise Time
Turn-off Delay Time
Fall Time
110
45
200
40
ns
Td(on)
Tr
Td(off)
Turn-on Delay Time
Rise Time
Turn-off Delay Time
Inductive Switching (25°C)
VGE = ±15V
VBus = 300V
IC = 50A
RG = 8.2Ω
Inductive Switching (150°C)
VGE = ±15V
VBus = 300V
IC = 50A
RG = 8.2Ω
VGE = ±15V
Tj = 25°C
VBus = 300V
Tj = 150°C
IC = 50A
Tj = 25°C
RG = 8.2Ω
Tj = 150°C
Tf
Fall Time
Eon
Turn-on Switching Energy
Eoff
Turn-off Switching Energy
RthJC
Junction to Case Thermal resistance
120
50
250
ns
60
0.3
0.43
1.35
1.75
mJ
mJ
0.85
www.microsemi.com
June, 2007
Test Conditions
°C/W
2-9
APTCV50H60T3G – Rev 0
Symbol Characteristic
APTCV50H60T3G
1.2 Top fast diode characteristics
Symbol Characteristic
VRRM
IRM
IF
VF
Min
Maximum Reverse Leakage Current
VR=600V
DC Forward Current
Diode Forward Voltage
Reverse Recovery Time
Qrr
Reverse Recovery Charge
Typ
Max
600
Maximum Peak Repetitive Reverse Voltage
trr
RthJC
Test Conditions
IF = 30A
VR = 400V
di/dt =200A/µs
V
Tj = 25°C
Tj = 125°C
25
500
Tc = 80°C
IF = 30A
IF = 60A
IF = 30A
Unit
Tj = 125°C
30
1.8
2.1
1.5
Tj = 25°C
25
Tj = 125°C
Tj = 25°C
160
35
Tj = 125°C
480
Junction to Case Thermal resistance
µA
A
2.3
V
ns
nC
1.2
°C/W
2. Bottom switches
2.1 Bottom CoolMOS™ characteristics
Absolute maximum ratings
Symbol
VDSS
ID
IDM
VGS
RDSon
PD
IAR
EAR
EAS
Parameter
Drain - Source Breakdown Voltage
Tc = 25°C
Tc = 80°C
Continuous Drain Current
Pulsed Drain current
Gate - Source Voltage
Drain - Source ON Resistance
Maximum Power Dissipation
Avalanche current (repetitive and non repetitive)
Repetitive Avalanche Energy
Single Pulse Avalanche Energy
Tc = 25°C
Max ratings
600
49
38
130
±20
45
290
15
3
1900
Unit
V
A
V
mΩ
W
A
mJ
Electrical Characteristics
RDS(on)
VGS(th)
IGSS
Zero Gate Voltage Drain Current
Drain – Source on Resistance
Gate Threshold Voltage
Gate – Source Leakage Current
VGS = 0V,VDS = 600V
Min
VGS = 10V, ID = 24.5A
VGS = VDS, ID = 3mA
VGS = ±20 V, VDS = 0V
www.microsemi.com
Typ
Tj = 25°C
Tj = 125°C
2.1
40
3
Max
250
500
45
3.9
100
Unit
µA
mΩ
V
nA
June, 2007
IDSS
Test Conditions
VGS = 0V,VDS = 600V
3-9
APTCV50H60T3G – Rev 0
Symbol Characteristic
APTCV50H60T3G
Dynamic Characteristics
Symbol Characteristic
Ciss
Input Capacitance
Crss
Reverse Transfer Capacitance
Qg
Total gate Charge
Qgs
Gate – Source Charge
Qgd
Gate – Drain Charge
Td(on)
Turn-on Delay Time
Tr
Td(off)
Test Conditions
VGS = 0V ; VDS = 25V
f = 1MHz
Min
Tf
Fall Time
Eon
Turn-on Switching Energy
Eoff
Turn-off Switching Energy
Eon
Turn-on Switching Energy
Eoff
Turn-off Switching Energy
RthJC
Junction to Case Thermal resistance
Unit
nF
nC
34
51
21
Inductive Switching (125°C)
VGS = 10V
VBus = 400V
ID = 49A
RG = 4.7Ω
Turn-off Delay Time
Max
150
VGS = 10V
VBus = 300V
ID = 49A
Rise Time
Typ
7.2
0.29
30
ns
100
45
Inductive switching @ 25°C
VGS = 10V ; VBus = 400V
ID = 49A ; RG = 4.7Ω
Inductive switching @ 125°C
VGS = 10V ; VBus = 400V
ID = 49A ; RG = 4.7Ω
675
µJ
520
1100
µJ
635
0.5
°C/W
3. Temperature sensor
NTC (see application note APT0406 on www.microsemi.com for more information).
Symbol Characteristic
R25
Resistance @ 25°C
B 25/85 T25 = 298.15 K
RT =
Min
Typ
50
3952
Max
Unit
kΩ
K
Min
2500
-40
-40
-40
2.5
Typ
Max
Unit
V
R25
T: Thermistor temperature

 1
1  RT: Thermistor value at T
exp  B25 / 85 
− 
 T25 T 

4. Package characteristics
Symbol
VISOL
TJ
TSTG
TC
Torque
Wt
Characteristic
RMS Isolation Voltage, any terminal to case t =1 min, I isol<1mA, 50/60Hz
Operating junction temperature range
Storage Temperature Range
Operating Case Temperature
Mounting torque
Package Weight
To heatsink
M4
150*
125
100
4.7
110
°C
N.m
g
www.microsemi.com
4-9
APTCV50H60T3G – Rev 0
June, 2007
Tj=175°C for Trench & Field Stop IGBT
APTCV50H60T3G
5. SP3 Package outline (dimensions in mm)
28
17
1
12
See application note 1901 - Mounting Instructions for SP3 Power Modules on www.microsemi.com
6. Top switches curves
6.1 Top Trench + Field Stop IGBT® typical performance curves
Output Characteristics (VGE=15V)
Output Characteristics
100
100
TJ=25°C
TJ=125°C
VGE=13V
TJ=150°C
60
60
VGE=15V
40
40
20
20
TJ=25°C
0.5
1
1.5
VCE (V)
0
2
2.5
0
3
3.5
60
E (mJ)
IC (A)
2.5
40
1.5
2
VCE (V)
VCE = 300V
VGE = 15V
RG = 8.2Ω
TJ = 150°C
3
TJ=25°C
80
1
2.5
3
3.5
Energy losses vs Collector Current
Transfert Characteristics
100
0.5
TJ=125°C
Eoff
June, 2007
0
VGE=9V
2
1.5
1
TJ=150°C
20
TJ=25°C
0
0
5
6
7
Eon
0.5
8
9
10
11
12
0
20
40
60
80
100
IC (A)
VGE (V)
www.microsemi.com
5-9
APTCV50H60T3G – Rev 0
0
VGE=19V
80
IC (A)
IC (A)
80
TJ = 150°C
APTCV50H60T3G
Switching Energy Losses vs Gate Resistance
Reverse Bias Safe Operating Area
3
125
2.5
Eoff
100
IC (A)
E (mJ)
2
1.5
0.5
50
VCE = 300V
VGE =15V
IC = 50A
TJ = 150°C
1
Eon
75
VGE=15V
TJ=150°C
RG=8.2Ω
25
0
0
5
15
25
35
45
55
Gate Resistance (ohms)
65
0
100
200
300 400
VCE (V)
500
600
700
maximum Effective Transient Thermal Impedance, Junction to Case vs Pulse Duration
Thermal Impedance (°C/W)
1
IGBT
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.05
0
0.00001
Single Pulse
0.0001
0.001
0.01
0.1
1
10
Rectangular Pulse Duration in Seconds
6.2 Top Fast diode typical performance curves
Forw ard Current vs Forw ard Voltage
IF, Forward Current (A)
120
100
80
T J=125°C
60
40
T J=25°C
20
T J=-55°C
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
V F, Anode to Cathode Voltage (V)
Maxim um Effective Transient Therm al Im pedance, Junction to Case vs Pulse Duration
1.2
1
0.8
0.9
0.7
0.5
0.4
0.2
0
0.00001
June, 2007
0.6
0.3
0.1
0.05
Single Pulse
0.0001
0.001
0.01
0.1
1
10
Rectangular Pulse Duration (Seconds)
www.microsemi.com
6-9
APTCV50H60T3G – Rev 0
Thermal Impedance (°C/W)
1.4
APTCV50H60T3G
7. Bottom switches curves
7.1 Bottom CoolMOS™ typical performance curves
Maximum Effective Transient Thermal Impedance, Junction to Case vs Pulse Duration
Thermal Impedance (°C/W)
0.6
0.5
0.9
0.4
0.7
0.3
0.5
0.2
0.3
0.1
0.1
Single Pulse
0.05
0
0.00001
0.0001
0.001
0.01
0.1
1
10
rectangular Pulse Duration (Seconds)
Transfert Characteristics
Low Voltage Output Characteristics
140
360
VGS=15&10V
6.5V
280
ID, Drain Current (A)
6V
240
200
5.5V
160
120
5V
80
4.5V
40
4V
0
100
80
60
40
TJ=125°C
20
TJ=25°C
TJ=-55°C
0
0
5
10
15
20
VDS, Drain to Source Voltage (V)
25
0
RDS(on) vs Drain Current
1.3
Normalized to
VGS=10V @ 50A
1.25
1.2
VGS=10V
1.15
1.1
VGS=20V
1.05
1
0.95
ID, DC Drain Current (A)
0.9
0
20
40
60
80
100 120 140
ID, Drain Current (A)
1
2
3
4
5
6
VGS, Gate to Source Voltage (V)
7
DC Drain Current vs Case Temperature
50
45
40
35
30
25
20
15
10
5
0
25
50
75
100
125
150
TC, Case Temperature (°C)
June, 2007
RDS(on) Drain to Source ON Resistance
VDS > ID(on)xRDS(on)MAX
250µs pulse test @ < 0.5 duty cycle
120
www.microsemi.com
7-9
APTCV50H60T3G – Rev 0
ID, Drain Current (A)
320
1.1
1.0
0.9
0.8
0.7
-50 -25
0
25
50
75 100 125 150
ON resistance vs Temperature
3.0
2.5
2.0
1.5
1.0
0.5
0.0
-50 -25 0 25 50 75 100 125 150
TJ, Junction Temperature (°C)
TJ, Junction Temperature (°C)
Maximum Safe Operating Area
Threshold Voltage vs Temperature
1000
1.1
ID, Drain Current (A)
VGS(TH), Threshold Voltage
(Normalized)
1.2
1.0
0.9
0.8
0.7
limited by RDSon
100
100 µs
1 ms
Single pulse
TJ=150°C
TC=25°C
10
0.6
10 ms
1
-50 -25
0
25
50
75 100 125 150
1
Coss
Ciss
1000
Crss
100
10
1000
10
20
30
40
50
VDS, Drain to Source Voltage (V)
12
ID=50A
TJ=25°C
10
VDS=120V
VDS=300V
8
VDS=480V
6
4
2
0
0
20
40
60 80 100 120 140 160
Gate Charge (nC)
June, 2007
0
100
Gate Charge vs Gate to Source Voltage
VGS, Gate to Source Voltage (V)
Capacitance vs Drain to Source Voltage
100000
10000
10
VDS, Drain to Source Voltage (V)
TC, Case Temperature (°C)
C, Capacitance (pF)
VGS=10V
ID= 50A
www.microsemi.com
8-9
APTCV50H60T3G – Rev 0
BVDSS, Drain to Source Breakdown
Voltage (Normalized)
Breakdown Voltage vs Temperature
1.2
RDS(on), Drain to Source ON resistance
(Normalized)
APTCV50H60T3G
APTCV50H60T3G
Delay Times vs Current
140
Rise and Fall times vs Current
70
100
VDS=400V
RG=5Ω
TJ=125°C
L=100µH
80
60
40
VDS=400V
RG=5Ω
TJ=125°C
L=100µH
60
td(off)
50
tr and tf (ns)
tf
40
30
tr
20
td(on)
20
10
0
0
10
20 30 40 50
0
60 70 80
0
10
20
ID, Drain Current (A)
Switching Energy (mJ)
Eon
1.2
Eoff
0.8
0.4
VDS=400V
ID=50A
TJ=125°C
L=100µH
2
1.5
60
70
80
Eoff
Eon
1
0.5
0
0
10
20 30 40 50 60
ID, Drain Current (A)
70
80
Operating Frequency vs Drain Current
ZVS
200
ZCS
150
VDS=400V
D=50%
RG=5Ω
TJ=125°C
TC=75°C
100
hard
switching
50
20
30
40
50
Source to Drain Diode Forward Voltage
1000
0
5
10
Gate Resistance (Ohms)
300
250
0
IDR, Reverse Drain Current (A)
0
Frequency (kHz)
50
10 15 20 25 30 35 40 45 50
ID, Drain Current (A)
TJ=150°C
100
TJ=25°C
10
1
0.3
0.5
0.7
0.9
1.1
1.3
1.5
VSD, Source to Drain Voltage (V)
Microsemi reserves the right to change, without notice, the specifications and information contained herein
“COOLMOS™ comprise a new family of transistors developed by Infineon Technologies AG. “COOLMOS” is a trademark of Infineon
Technologies AG”.
Microsemi's products are covered by one or more of U.S patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. U.S and Foreign patents pending. All Rights Reserved.
www.microsemi.com
9-9
June, 2007
Switching Energy (mJ)
VDS=400V
RG=5Ω
TJ=125°C
L=100µH
1.6
40
Switching Energy vs Gate Resistance
2.5
Switching Energy vs Current
2
30
ID, Drain Current (A)
APTCV50H60T3G – Rev 0
td(on) and td(off) (ns)
120