KEC KML0D6NP20EA

SEMICONDUCTOR
KML0D6NP20EA
TECHNICAL DATA
N and P-Ch Trench MOSFET
General Description
It’s Mainly Suitable for Load Switching Cell Phones, Battery Powered
Systems and Level-Shifter.
B
C
A
1
6
2
5
3
4
A1
FEATURES
C
B1
D
・N-Channel
: VDSS=20V, ID=600mA (RDS(ON)=0.70Ω @ VGS=4.5V).
: VDSS=20V, ID=500mA (RDS(ON)=0.85Ω @ VGS=2.5V).
: VDSS=20V, ID=350mA (RDS(ON)=1.25Ω @ VGS=1.8V).
P
・P-Channel
P
MILLIMETERS
_ 0.05
1.6 +
_ 0.05
1.0 +
_ 0.05
1.6 +
_ 0.05
1.2 +
0.50
_ 0.05
0.2 +
_ 0.05
0.5 +
_ 0.05
0.12 +
5
H
: VDSS=-20V, ID=-400mA (RDS(ON)=1.2Ω @ VGS=-4.5V).
P
DIM
A
A1
B
B1
C
D
H
J
J
: VDSS=-20V, ID=-300mA (RDS(ON)=1.6Ω @ VGS=-2.5V).
: VDSS=-20V, ID=-150mA (RDS(ON)=2.7Ω @ VGS=-1.8V).
1. Source 1
2. Gate 1
3. Drain 2
4. Source 2
5. Gate 2
6. Drain 1
TES6
MAXIMUM RATING (Ta=25℃)
CHARACTERISTIC
SYMBOL
N-Ch
P-Ch
UNIT
Drain-Source Voltage
VDSS
20
-20
V
Gate-Source Voltage
VGSS
±6
±6
V
515
-390
370
-280
DC @TA=25℃
Drain Current
ID*
DC @TA=85℃
Pulsed
Source-Drain Diode Current
Drain Power Dissipation
Maximum Junction Temperature
Storage Temperature Range
Thermal Resistance, Junction to Ambient
650
-650
IS
450
-450
P D*
280
280
Lot No.
Type Name
mA
IDP
Marking
A1
mW
Tj
150
℃
Tstg
-55~150
℃
RthJA*
446
℃/W
Note 1) *Surface Mounted on FR4 Board, t≤5sec
PIN CONNECTION (TOP VIEW)
S1
1
6
D1
1
6
G1
2
5
G2
2
5
D2
3
4
S2
3
4
2008. 9. 10
Revision No : 3
1/6
KML0D6NP20EA
ELECTRICAL CHARACTERISTICS (Ta=25℃)
CHARACTERISTIC
SYMBOL
TEST CONDITION
MIN.
TYP.
MAX.
UNIT
Static
Drain-Source Breakdown Voltage
Drain Cut-off Current
Gate Leakage Current
Gate Threshold Voltage
Drain-Source ON Resistance
ON State Drain Current
Forward Transconductance
Source-Drain Diode Forward
Voltage
BVDSS
ID=250μA, VGS=0V
N-Ch
20
-
-
ID=-250μA, VGS=0V
P-Ch
-20
-
-
VGS=0V, VDS=16V
N-Ch
-
0.3
100
VGS=0V, VDS=-16V
P-Ch
-
-0.3
-100
N-Ch
-
±0.5
±1.0
P-Ch
-
±1.0
±2.0
VDS=VGS, ID=250μA
N-Ch
0.45
-
1.0
VDS=VGS, ID=-250μA
P-Ch
-0.45
-
-1.0
VGS=4.5V, ID=600mA
N-Ch
-
0.41
0.70
VGS=-4.5V, ID=-350mA
P-Ch
-
0.80
1.20
VGS=2.5V, ID=500mA
N-Ch
-
0.53
0.85
VGS=-2.5V, ID=-300mA
P-Ch
-
1.20
1.60
VGS=1.8V, ID=350mA
N-Ch
-
0.70
1.25
VGS=-1.8V, ID=-150mA
P-Ch
-
1.80
2.70
VGS=4.5V, VDS=5V
N-Ch
700
-
-
VGS=-4.5V, VDS=-5V
P-Ch
-700
-
-
VDS=10V, ID=400mA
N-Ch
-
1.0
-
VDS=-10V, ID=-250mA
P-Ch
-
0.4
-
IS=150mA, VGS=0V
N-Ch
-
0.8
1.2
IS=-150mA, VGS=0V
P-Ch
-
-0.8
-1.2
N-Ch
-
750
-
P-Ch
-
1500
-
N-Ch
-
75
-
P-Ch
-
150
-
N-Ch
-
225
-
P-Ch
-
450
-
N-Ch
-
5
-
P-Ch
-
5
-
N-Ch
-
25
-
P-Ch
-
35
-
V
IDSS
IGSS
Vth
RDS(ON)*
nA
μA
VGS=±4.5V, VDS=0V
V
ID(ON)*
Ω
mA
gfs*
S
VSD*
V
Dynamic
Total Gate Charge
Gate-Source Charge
Gate-Drain Charge
Turn-on Delay time
Turn-off Delay time
Qg*
Qgs*
N-Ch
: VDS=10V, ID=250mA, VGS=4.5V
P-Ch
: VDS=-10V, ID=-250mA, VGS=-4.5V
pC
Qgd*
td(on)*
td(off)*
N-Ch
: VDD=10V, ID=200mA,
VGS=4.5V, RG=10Ω
P-Ch
: VDD=-10V, VGS=-4.5V,
ID=-200mA, RG=10Ω
ns
Note 2) *Pulse test : Pulse width≤300㎲, Duty Cycle≤2%.
2008. 9. 10
Revision No : 3
2/6
KML0D6NP20EA
N-Channel
Fig 2. RDS(on) - ID
Drain Current ID (A)
1.0
VGS=2.5V
VGS=1.8V
0.8
VGS=2.0V
0.6
VGS=5,4,3V
0.4
0.2
VGS=1.0V
0.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
Drain-Source On Resistance RDS(on) (Ω)
Fig 1. ID - VDS
4.0
3.2
2.4
1.6
0.0
VGS=4.5V
0
0.2
0.4
Drain - Source Voltage VDS (V)
Drain Current ID (A)
-55 C
TC=125 C
0.6
0.4
0.2
0.0
0.0
0.5
1.0
1.5
2.0
2.5
Gate - Source Voltage VGS (V)
Normalized Drain-Source On Resistance RDS(on) (Ω)
1.0
25 C
Reverse Drain Current IDR (mA)
Gate Threshold Voltage Vth (V)
ID = 250µA
0.2
0.1
-0.0
-0.1
-0.2
0
25
50
75
Junction Temperature Tj ( C)
2008. 9. 10
1.0
1.6
VGS = 4.5V
ID = 350mA
1.4
1.2
1.0
0.8
0.6
-50
-25
0
25
50
75
100
125
1.2
1.4
Junction Temperature Tj ( C)
Fig 6. IDR - VSDF
0.3
-25
0.8
Fig 4. RDS(ON) - Tj
Fig 5. Vth - Tj
-0.3
-50
0.6
Drain - Current ID (A)
Fig 3. ID - VGS
0.8
VGS=1.8V
VGS=2.5V
0.8
Revision No : 3
100
125
1000
Tj=125 C
100
25 C
50 C
10
1
0.0
0.2
0.4
0.6
0.8
1.0
Source - Drain Forward Voltage VSDF (V)
3/6
KML0D6NP20EA
Fig 7. VGS - Qg
100
VDS = 10V
ID = 250mA
VGS = 0V
f = 1MHz
4
Capacitance C (pF)
Gate - Source Voltage VGS (V)
5
Fig 8. C - VDS
3
2
1
80
Ciss
60
40
Coss
20
Crss
0
0
0.2
0.0
0.4
0
0.8
0.6
Normalized Effective Transient Thermal Resistance
8
12
16
20
Drain - Source Voltage VDS (V)
Total Gate - Charge Qg (nC)
2008. 9. 10
4
Fig 9. Transient Thermal Response Curve
100
Duty=0.5
0.2
PDM
0.1
10-1
t1
0.05
t2
0.02
10-2
10-4
- Duty cycle D = t1/t2
- Per Unit Base = RthJA = 500 C /W
SINGLE
10-3
10-2
10-1
100
101
102
103
Square Wave Pulse Duration (sec)
Revision No : 3
4/6
KML0D6NP20EA
P-Channel
Fig 2. RDS(on) - ID
1.0
VGS=4V
VGS=3V
VGS=2.5V
0.8
0.6
VGS=2V
0.4
VGS=1.8V
0.2
0.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
2.4
VGS=1.8V
1.6
VGS=2.5V
0.8
0.0
VGS=4.5V
0
0.2
25 C
0.6
TC=125 C
0.4
0.2
0.5
1.0
1.5
2.0
2.5
3.0
Gate - Source Voltage VGS (V)
1.6
Reverse Drain Current IDR (mA)
Gate Threshold Voltage Vth (V)
ID = 250µA
0.2
0.1
-0.0
-0.1
-0.2
0
25
50
1.0
1.4
1.2
1.0
0.8
0.6
-50
-25
0
25
50
75
100
125
1.2
1.4
Junction Temperature Tj ( C)
Fig 6. IDR - VSDF
0.3
75
Junction Temperature Tj ( C)
2008. 9. 10
0.8
VGS = 4.5V
ID = 350mA
Fig 5. Vth - Tj
-25
0.6
Fig 4. RDS(ON) - Tj
0.8
-0.3
-50
0.4
Fig 3. ID - VGS
-55 C
Drain Current ID (A)
3.2
Drain - Current ID (A)
1.0
0.0
0.0
4.0
Drain - Source Voltage VDS (V)
Normalized Drain-Source On Resistance RDS(on) (Ω)
Drain Current ID (A)
VGS=5V
Drain-Source On Resistance RDS(on) (Ω)
Fig 1. ID - VDS
Revision No : 3
100
125
1000
Tj=125 C
25 C
100
-55 C
10
1
0.0
0.2
0.4
0.6
0.8
1.0
Source - Drain Forward Voltage VSDF (V)
5/6
KML0D6NP20EA
Fig 7. VGS - Qg
120
5
VDS = 10V
ID = 250mA
VGS = 0V
f = 1MHz
100
4
Capacitance C (pF)
Gate - Source Voltage VGS (V)
Fig 8. C - VDS
3
2
1
Ciss
80
60
40
Coss
20
Crss
0
0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
0
1.6
Normalized Effective Transient Thermal Resistance
8
12
16
20
Drain - Source Voltage VDS (V)
Total Gate - Charge Qg (nC)
2008. 9. 10
4
Fig 9. Transient Thermal Response Curve
100
Duty=0.5
0.2
PDM
0.1
10-1
t1
0.05
t2
0.02
10-2
10-4
- Duty cycle D = t1/t2
- Per Unit Base = RthJA = 500 C /W
SINGLE
10-3
10-2
10-1
100
101
102
103
Square Wave Pulse Duration (sec)
Revision No : 3
6/6