IRF IRFH5250DTRPBF

IRFH5250DPbF
V DS
25
V
RDS(on) max
1.4
m
0.6
V
27
ns
(@V GS = 10V)
V SD
max
(@I S = 5.0A)
trr (typical)
ID
(@Tmb = 25°C)
100
h
HEXFET® Power MOSFET
PQFN 5X6 mm
A
Applications
Synchronous MOSFET for high frequency buck converters
Features and Benefits
Benefits
Features
Low RDSon (<1.4m)
Schottky Intrinsic Diode with Low Forward Voltage
Low Thermal Resistance to PCB (<0.8°C/W)
100% Rg tested
Low Profile (<0.9 mm)
Lower Conduction Losses
Lower Switching Losses
Enable better thermal dissipation
Increased Reliability
results in Increased Power Density
Industry-Standard Pinout
Compatible with Existing Surface Mount Techniques
RoHS Compliant Containing no Lead, no Bromide and no Halogen
MSL1, Industrial Qualification
Orderable part number
Package Type
IRFH5250DTRPBF
IRFH5250DTR2PBF
PQFN 5mm x 6mm
PQFN 5mm x 6mm

Multi-Vendor Compatibility
Easier Manufacturing
Environmentally Friendlier
Increased Reliability
Standard Pack
Form
Quantity
Tape and Reel
4000
Tape and Reel
400
Note
Absolute Maximum Ratings
Parameter
Max.
VDS
Drain-to-Source Voltage
25
VGS
Gate-to-Source Voltage
± 20
ID @ TA = 25°C
Continuous Drain Current, VGS @ 10V
40
ID @ TA = 70°C
Continuous Drain Current, VGS @ 10V
ID @ Tmb = 25°C
Continuous Drain Current, VGS @ 10V
32
100
ID @ Tmb = 100°C
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current
IDM
c
PD @Tmb = 25°C
g
Power Dissipation g
TJ
Linear Derating Factor
Operating Junction and
TSTG
Storage Temperature Range
PD @TA = 25°C
Power Dissipation
h
h
V
A
100
400
3.6
g
Units
156
0.029
-55 to + 150
W
W/°C
°C
Notes  through † are on page 8
www.irf.com
1
January 21, 2013
IRFH5250DPbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
BVDSS
VDSS/TJ
RDS(on)
VGS(th)
VGS(th)
IDSS
IGSS
gfs
Qg
Qg
Qgs1
Qgs2
Qgd
Qgodr
Qsw
Qoss
RG
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Min.
Typ.
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
25
–––
–––
–––
-8.0
1.0
Max. Units
–––
–––
1.4
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
–––
1.35
–––
–––
1.7
1.80
-11
–––
2.2
2.35
–––
500
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Forward Transconductance
–––
–––
–––
120
–––
–––
–––
–––
5.0
100
-100
–––
Total Gate Charge
Total Gate Charge
Pre-Vth Gate-to-Source Charge
Post-Vth Gate-to-Source Charge
–––
–––
–––
–––
83
39
11
6.1
–––
59
–––
–––
Gate-to-Drain Charge
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
–––
–––
12
9.9
18.1
–––
–––
–––
Conditions
V
VGS = 0V, ID = 1.0mA
mV/°C Reference to 25°C, ID = 10mA
VGS = 10V, ID = 50A
m
VGS = 4.5V, ID = 50A
VDS = VGS, ID = 150μA
V
e
e
mV/°C
μA
mA
nA
S
nC
nC
Output Charge
–––
36
–––
nC
Gate Resistance
Turn-On Delay Time
Rise Time
–––
–––
–––
1.4
23
72
–––
–––
–––

Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
–––
–––
–––
–––
23
24
6115
1730
–––
–––
–––
–––
Reverse Transfer Capacitance
–––
610
–––
ns
pF
VDS = 20V, VGS = 0V
VDS = 20V, VGS = 0V, TJ = 125°C
VGS = 20V
VGS = -20V
VDS = 13V, ID = 50A
VGS = 10V, VDS = 13V, ID = 50A
VDS = 13V
VGS = 4.5V
ID = 50A
VDS = 16V, VGS = 0V
VDD = 13V, VGS = 4.5V
ID = 50A
RG=1.8
VGS = 0V
VDS = 13V
ƒ = 1.0MHz
Avalanche Characteristics
EAS
Parameter
Single Pulse Avalanche Energy
IAR
Avalanche Current
c
Typ.
–––
–––
d
Max.
470
50
Units
mJ
A
Diode Characteristics
Parameter
IS
Continuous Source Current
ISM
(Body Diode)
Pulsed Source Current
VSD
VSD
trr
Qrr
ton
Min.
–––
Typ.
–––
Max. Units
100
A
c
(Body Diode)
Diode Forward Voltage
Diode Forward Voltage
–––
–––
400
–––
–––
–––
–––
0.6
1.0
Conditions
MOSFET symbol
V
V
showing the
integral reverse
D
G
p-n junction diode.
TJ = 25°C, IS = 5.0A, VGS = 0V
TJ = 25°C, IS = 50A, VGS = 0V
S
e
e
–––
27
41
ns TJ = 25°C, IF = 50A, VDD = 13V
–––
51
77
nC di/dt = 335A/μs
Time is dominated by parasitic Inductance
Reverse Recovery Time
Reverse Recovery Charge
Forward Turn-On Time
e
Thermal Resistance
Parameter
RJC-mb
Typ.
Max.
Junction-to-Mounting Base
Junction-to-Case
f
0.5
0.8
RJC (Top)
–––
15
RJA
Junction-to-Ambient
–––
35
–––
22
RJA (<10s)
2
January 21, 2013
g
Junction-to-Ambient g
Units
°C/W
www.irf.com
IRFH5250DPbF
1000
1000
100
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
10V
5.0V
4.5V
3.5V
3.3V
3.0V
2.9V
2.7V
100
10
2.7V
1
BOTTOM
2.7V
10
60μs PULSE WIDTH
60μs PULSE WIDTH
Tj = 150°C
Tj = 25°C
0.1
1
0.1
1
10
100
0.1
V DS, Drain-to-Source Voltage (V)
10
100
Fig 2. Typical Output Characteristics
1000
1.6
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
1
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
100
T J = 150°C
10
T J = 25°C
VDS = 15V
60μs PULSE WIDTH
1.0
ID = 50A
VGS = 10V
1.4
1.2
1.0
0.8
0.6
1
2
3
4
5
-60 -40 -20 0
Fig 4. Normalized On-Resistance vs. Temperature
Fig 3. Typical Transfer Characteristics
100000
14.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
VGS, Gate-to-Source Voltage (V)
ID= 50A
C oss = C ds + C gd
10000
Ciss
Coss
1000
20 40 60 80 100 120 140 160
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
C, Capacitance (pF)
VGS
10V
5.0V
4.5V
3.5V
3.3V
3.0V
2.9V
2.7V
Crss
100
12.0
VDS= 20V
VDS= 13V
10.0
8.0
6.0
4.0
2.0
0.0
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs.Drain-to-Source Voltage
www.irf.com
0
20
40
60
80
100
120
QG, Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage
3
January 21, 2013
IRFH5250DPbF
10000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
T J = 150°C
100
T J = 25°C
10
100
1.0
100μsec
1msec
10msec
10
DC
1
VGS = 0V
Tc = 25°C
Tj = 150°C
Single Pulse
0.1
0.0
0.2
0.4
0.6
0.8
1.0
1.2
0.1
VSD, Source-to-Drain Voltage (V)
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
3.0
300
VGS(th) , Gate threshold Voltage (V)
Limited By Package
250
ID, Drain Current (A)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
1000
200
150
100
50
2.5
2.0
ID = 150μA
1.5
ID = 250μA
ID = 1.0mA
1.0
ID = 1.0A
0.5
0
25
50
75
100
125
-75 -50 -25
150
0
25
50
75 100 125 150
T J , Temperature ( °C )
T C , Case Temperature (°C)
Fig 9. Maximum Drain Current vs.
Case Temperature
Fig 10. Threshold Voltage vs. Temperature
Thermal Response ( Z thJC ) °C/W
10
1
D = 0.50
0.1
0.20
0.10
0.05
0.01
0.02
0.01
SINGLE PULSE
( THERMAL RESPONSE )
0.001
0.0001
1E-006
1E-005
0.0001
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Mounting Base
4
January 21, 2013
www.irf.com
IRFH5250DPbF
2000
EAS , Single Pulse Avalanche Energy (mJ)
RDS(on) , Drain-to -Source On Resistance (m)
4
ID = 50A
ID
18A
24A
BOTTOM 50A
1800
TOP
1600
3
1400
1200
T J = 125°C
2
1000
1
T J = 25°C
0
800
600
400
200
0
2
4
6
8
10
12
14
16
18
20
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
VGS, Gate -to -Source Voltage (V)
Fig 12. On-Resistance vs. Gate Voltage
Fig 13. Maximum Avalanche Energy vs. Drain Current
1000
Avalanche Current (A)
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming Tj = 125°C and
Tstart =25°C (Single Pulse)
100
10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming  j = 25°C and
Tstart = 125°C.
1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs. Pulsewidth
www.irf.com
5
January 21, 2013
IRFH5250DPbF
D.U.T
Driver Gate Drive
ƒ
+
‚
-
-
„
P.W.
Period
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D=
VGS=10V
Circuit Layout Considerations
 Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
-
RG
Period
P.W.
+
V DD
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
ISD
Ripple  5%
*
VGS = 5V for Logic Level Devices
Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V(BR)DSS
tp
15V
DRIVER
L
VDS
D.U.T
RG
+
V
- DD
IAS
20V
A
I AS
0.01
tp
Fig 16b. Unclamped Inductive Waveforms
Fig 16a. Unclamped Inductive Test Circuit
VGS
VDS
RD
V DS
90%
D.U.T.
RG
+
-V DD
10%
VGS
V10V
GS
Pulse Width µs
Duty Factor 
td(on)
tr
td(off)
tf
Fig 17b. Switching Time Waveforms
Fig 17a. Switching Time Test Circuit
Id
Vds
Vgs
L
DUT
0
1K
VCC
Vgs(th)
S
Qgs1 Qgs2
Fig 18a. Gate Charge Test Circuit
6
January 21, 2013
Qgd
Qgodr
Fig 18b. Gate Charge Waveform
www.irf.com
IRFH5250DPbF
PQFN 5x6 Outline "B" Package Details
For more information on board mounting, including footprint and stencil recommendation, please refer to application note AN-1136:
http://www.irf.com/technical-info/appnotes/an-1136.pdf
For more information on package inspection techniques, please refer to application note AN-1154:
http://www.irf.com/technical-info/appnotes/an-1154.pdf
PQFN 5x6 Outline "B" Part Marking
INTERNATIONAL
RECTIFIER LOGO
DATE CODE
ASSEMBLY
SITE CODE
(Per SCOP 200-002)
PIN 1
IDENTIFIER
XXXX
XYWWX
XXXXX
PART NUMBER
(“4 or 5 digits”)
MARKING CODE
(Per Marking Spec)
LOT CODE
(Eng Mode - Min last 4 digits of EATI#)
(Prod Mode - 4 digits of SPN code)
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
www.irf.com
7
January 21, 2013
IRFH5250DPbF
PQFN 5x6 Outline "B" Tape and Reel
Qualification information†
Qualification level
Moisture Sensitivity Level
RoHS compliant
†
††
†††
Indus trial
(per JE DE C JE S D47F
PQFN 5mm x 6mm
††
†††
guidelines )
MS L1
†††
(per JE DE C J-S T D-020D
)
Yes
Qualification standards can be found at International Rectifier’s web site
http://www.irf.com/product-info/reliability
Higher qualification ratings may be available should the user have such requirements.
Please contact your International Rectifier sales representative for further information:
http://www.irf.com/whoto-call/salesrep/
Applicable version of JEDEC standard at the time of product release.
Notes:
 Repetitive rating; pulse width limited by max. junction temperature.
‚ Starting TJ = 25°C, L = 0.37mH, RG = 25, IAS = 50A.
ƒ Pulse width  400μs; duty cycle  2%.
„ Ris measured at TJ of approximately 90°C.
… When mounted on 1 inch square 2 oz copper pad on 1.5x1.5 in. board of FR-4 material.
† Calculated continuous current based on maximum allowable junction temperature. Package is limited to 100A by production
test capability.
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/
8
January 21, 2013
www.irf.com