PD - 96360 IRLHS2242PbF HEXFET® Power MOSFET VDS -20 V VGS max ±12 V RDS(on) max 31 mΩ (@VGS = 4.5V) RDS(on) max (@VGS = 2.5V) Qg typ ID (@Tc(Bottom) = 25°C) T OP VIEW 53 mΩ 9.6 nC -8.5 i D 1 D 6 D D G D D 2 D 5 D D G 3 S 4 S D S S 2mm x 2mm PQFN A Applications l l Charge and Discharge Switch for Battery Application System/load switch Features and Benefits Features Low Thermal Resistance to PCB (≤ 13°C/W) Low Profile (≤ 1.0mm) Industry-Standard Pinout Benefits Enable better thermal dissipation results in Increased Power Density ⇒ Multi-Vendor Compatibility Easier Manufacturing Environmentally Friendlier Increased Reliability Compatible with Existing Surface Mount Techniques RoHS Compliant Containing no Lead, no Bromide and no Halogen MSL1, Consumer Qualification Orderable part number Package Type IRLHS2242TRPBF IRLHS2242TR2PBF PQFN 2mm x 2mm PQFN 2mm x 2mm Standard Pack Form Quantity Tape and Reel 4000 Tape and Reel 400 Note Absolute Maximum Ratings Parameter Max. VDS Drain-to-Source Voltage -20 VGS ±12 ID @ TA = 25°C Gate-to-Source Voltage Continuous Drain Current, VGS @ 4.5V ID @ TA = 70°C Continuous Drain Current, VGS @ 4.5V ID @ TC(Bottom) = 25°C Continuous Drain Current, VGS @ 4.5V -5.8 -15 ID @ TC(Bottom) = 100°C Continuous Drain Current, VGS @ 4.5V -9.8 ID @ TC = 25°C IDM Continuous Drain Current, VGS @ 4.5V (Wirebond Limited) Pulsed Drain Current PD @TA = 25°C Power Dissipation c PD @TC(Bottom) = 25°C g Power Dissipation g TJ Linear Derating Factor Operating Junction and TSTG Storage Temperature Range V -7.2 hi hi -8.5i A -34 2.1 g Units 9.6 0.02 -55 to + 150 W W/°C °C Notes through are on page 9 www.irf.com 1 03/18/11 IRLHS2242TR/TR2PbF Static @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units Conditions BVDSS ΔΒVDSS/ΔTJ Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient -20 ––– ––– 0.01 ––– ––– V VGS = 0V, ID = -250μA V/°C Reference to 25°C, ID = -1mA RDS(on) Static Drain-to-Source On-Resistance ––– ––– 25 43 31 53 mΩ VGS(th) ΔVGS(th) IDSS Gate Threshold Voltage Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current -0.4 ––– ––– -0.8 -3.8 ––– IGSS Gate-to-Source Forward Leakage ––– ––– ––– ––– Gate-to-Source Reverse Leakage Forward Transconductance ––– 10 ––– ––– -1.1 V VDS = VGS, ID = -10μA ––– mV/°C -1.0 VDS = -16V, VGS = 0V μA -150 VDS = -16V, VGS = 0V, TJ = 125°C -100 VGS = -12V nA 100 VGS = 12V ––– S VDS = -10V, ID = -8.5A Total Gate Charge ––– ––– ––– 12 9.6 1.6 ––– ––– ––– ––– ––– 3.7 4.3 ––– ––– Output Charge ––– ––– 4.8 6.8 ––– ––– RG td(on) tr Gate Resistance Turn-On Delay Time Rise Time ––– ––– ––– 17 7.9 54 ––– ––– ––– td(off) tf Turn-Off Delay Time Fall Time ––– ––– 54 66 ––– ––– Ciss Coss Input Capacitance Output Capacitance ––– ––– 877 273 ––– ––– Crss Reverse Transfer Capacitance ––– 182 ––– gfs Qg Qg Qgs Qgd Qgodr Qsw Qoss Total Gate Charge Gate-to-Source Charge Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) nC nC VGS = -4.5V, ID = -8.5A VGS = -2.5V, ID = -6.8A e e VGS =-10V, VDS = -10V, ID = -8.5A VDS = -10V VGS = -4.5V ID = -8.5A nC VDS = 16V, VGS = 0V Ω ns pF VDD = -10V, VGS = -4.5V ID = -8.5A RG = 2.0Ω VGS = 0V VDS = -10V ƒ = 1.0KHz Avalanche Characteristics EAS IAR Parameter Single Pulse Avalanche Energy Avalanche Current c Typ. ––– ––– d Max. 18 -8.5 Units mJ A Diode Characteristics Parameter IS Continuous Source Current ISM (Body Diode) Pulsed Source Current Min. Typ. Max. Units Conditions MOSFET symbol h D ––– ––– -8.5 ––– -34 VSD (Body Diode) Diode Forward Voltage ––– ––– ––– -1.2 V p-n junction diode. TJ = 25°C, IS = -8.5A, VGS = 0V trr Qrr Reverse Recovery Time Reverse Recovery Charge ––– ––– 27 20 41 30 ns nC TJ = 25°C, IF = -8.5A, VDD = -10V di/dt = 200A/μs ton Forward Turn-On Time A c showing the integral reverse G S e e Time is dominated by parasitic Inductance Thermal Resistance RθJC (Bottom) RθJC (Top) RθJA RθJA (<10s) 2 g g Junction-to-Case Junction-to-Case Junction-to-Ambient Junction-to-Ambient Parameter f f Typ. ––– ––– ––– ––– Max. 13 90 60 42 Units °C/W www.irf.com IRLHS2242TR/TR2PbF 100 100 10 BOTTOM TOP -ID, Drain-to-Source Current (A) -ID, Drain-to-Source Current (A) TOP VGS -10V -7.0V -4.5V -3.5V -2.5V -2.0V -1.8V -1.5V 1 -1.5V 10 BOTTOM -1.5V 1 ≤60μs PULSE WIDTH ≤60μs PULSE WIDTH Tj = 25°C Tj = 150°C 0.1 0.1 0.1 1 10 0.1 100 10 100 Fig 2. Typical Output Characteristics Fig 1. Typical Output Characteristics 100 1.4 RDS(on) , Drain-to-Source On Resistance (Normalized) -I D, Drain-to-Source Current (A) 1 -V DS, Drain-to-Source Voltage (V) -V DS, Drain-to-Source Voltage (V) 10 T J = 150°C TJ = 25°C 1 VDS = -10V ≤60μs PULSE WIDTH 0.1 ID = -8.5A VGS = -4.5V 1.2 1.0 0.8 0.6 0 1 2 3 4 5 -60 -40 -20 0 Fig 3. Typical Transfer Characteristics 10000 Fig 4. Normalized On-Resistance vs. Temperature 14 -V GS, Gate-to-Source Voltage (V) VGS = 0V, f = 1 KHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd 1000 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) -VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) VGS -10V -7.0V -4.5V -3.5V -2.5V -2.0V -1.8V -1.5V Ciss Coss Crss 100 ID= -8.5A 12 VDS= -16V VDS= -10V 10 VDS= -4V 8 6 4 2 0 1 10 100 -VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs.Drain-to-Source Voltage www.irf.com 0 5 10 15 20 25 QG, Total Gate Charge (nC) Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage 3 IRLHS2242TR/TR2PbF 1000 100 -I D, Drain-to-Source Current (A) -I SD, Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY RDS(on) T J = 150°C 10 TJ = 25°C 1 100 100μsec 10 1msec 10msec 1 Limited by Wirebond DC 0.1 Tc = 25°C Tj = 150°C Single Pulse VGS = 0V 0.01 0.1 0.2 0.6 0.10 1.0 Fig 7. Typical Source-Drain Diode Forward Voltage 10 100 Fig 8. Maximum Safe Operating Area 1.5 14 -V GS(th), Gate threshold Voltage (V) 16 -I D, Drain Current (A) 1 -VDS, Drain-to-Source Voltage (V) -VSD, Source-to-Drain Voltage (V) Limited By Wirebond 12 10 8 6 4 2 0 1.2 0.9 0.6 ID = -10uA ID = -250uA ID = -1.0mA ID = -10mA 0.3 0.0 25 50 75 100 125 150 -75 -50 -25 T C , Case Temperature (°C) 0 25 50 75 100 125 150 T J , Temperature ( °C ) Fig 10. Threshold Voltage vs. Temperature Fig 9. Maximum Drain Current vs. Case Temperature Thermal Response ( Z thJC ) °C/W 100 10 1 0.1 0.01 0.001 1E-006 D = 0.50 0.20 0.10 0.05 0.02 0.01 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com 70 80 EAS, Single Pulse Avalanche Energy (mJ) RDS(on), Drain-to -Source On Resistance (m Ω) IRLHS2242TR/TR2PbF ID = -8.5A 60 50 40 T J = 125°C 30 20 T J = 25°C ID -2.2A -4.3A BOTTOM -8.5A 70 TOP 60 50 40 30 20 10 0 10 0 2 4 6 8 10 12 25 -VGS -20V IAS 125 150 I AS D.U.T RG 100 Fig 13. Maximum Avalanche Energy vs. Drain Current L VDS 75 Starting T J, Junction Temperature (°C) -VGS, Gate -to -Source Voltage (V) Fig 12. On-Resistance vs. Gate Voltage 50 VDD A DRIVER 0.01Ω tp tp V(BR)DSS 15V Fig 14b. Unclamped Inductive Waveforms Fig 14a. Unclamped Inductive Test Circuit VDS RD td(on) VGS RG D.U.T. - + t d(off) tf 10% V DD -V GS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 15a. Switching Time Test Circuit www.irf.com tr VGS 90% VDS Fig 15b. Switching Time Waveforms 5 IRLHS2242TR/TR2PbF Driver Gate Drive D.U.T * + + - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • di/dt controlled by RG • Driver same type as D.U.T. • I SD controlled by Duty Factor "D" • D.U.T. - Device Under Test V DD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer D= Period P.W. + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop InductorCurent Current Inductor - ISD Ripple ≤ 5% * * VGS = 5V for Logic Level Devices Reverse Polarity of D.U.T for P-Channel Fig 16. Diode Reverse Recovery Test Circuit for P-Channel HEXFET® Power MOSFETs Id Vds L DUT 0 20K 1K VCC Vgs SS Vgs(th) Qgodr Fig 17a. Gate Charge Test Circuit 6 Qgd Qgs2 Qgs1 Fig 17b. Gate Charge Waveform www.irf.com IRLHS2242TR/TR2PbF PQFN Package Details PQFN Part Marking 9301 Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ www.irf.com 7 IRLHS2242TR/TR2PbF PQFN 2x2 Outline Tape and Reel CORE TAPE Width Table 2: COVER TAPE (WIDTH) 5.4 mm 9.5 mm 8 Remark: - Dimension above are typical dimensions. - Cover tape thickness is 0.048mm +/- 0.005mm. - Surface resistivity 10E5 < Rs <10E9. TOLERANCE +/- 0.1 mm +/- 0.1 mm www.irf.com IRLHS2242TR/TR2PbF Qualification information † †† Consumer Qualification level (per JEDEC JESD47F Moisture Sensitivity Level ††† guidelines ) MSL1 PQFN 2mm x 2mm (per IPC/JEDEC J-STD-020D†† † ) RoHS compliant Yes Qualification standards can be found at International Rectifier’s web site http://www.irf.com/product-info/reliability Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/ Applicable version of JEDEC standard at the time of product release. Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.49mH, RG = 50Ω, IAS = -8.5A. Pulse width ≤ 400μs; duty cycle ≤ 2%. Rθ is measured at TJ of approximately 90°C. When mounted on 1 inch square 2 oz copper pad on 1.5x1.5 in. board of FR-4 material. Calculated continuous current based on maximum allowable junction temperature. Package is limited to -8.5A by die-source to lead-frame bonding technology Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd, El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.03/2011 www.irf.com 9