IRF IRLHS2242TR2PBF

PD - 96360
IRLHS2242PbF
HEXFET® Power MOSFET
VDS
-20
V
VGS max
±12
V
RDS(on) max
31
mΩ
(@VGS = 4.5V)
RDS(on) max
(@VGS = 2.5V)
Qg typ
ID
(@Tc(Bottom) = 25°C)
T OP VIEW
53
mΩ
9.6
nC
-8.5
i
D 1
D
6 D
D
G
D
D 2
D
5 D
D
G 3
S
4 S
D
S
S
2mm x 2mm PQFN
A
Applications
l
l
Charge and Discharge Switch for Battery Application
System/load switch
Features and Benefits
Features
Low Thermal Resistance to PCB (≤ 13°C/W)
Low Profile (≤ 1.0mm)
Industry-Standard Pinout
Benefits
Enable better thermal dissipation
results in Increased Power Density
⇒
Multi-Vendor Compatibility
Easier Manufacturing
Environmentally Friendlier
Increased Reliability
Compatible with Existing Surface Mount Techniques
RoHS Compliant Containing no Lead, no Bromide and no Halogen
MSL1, Consumer Qualification
Orderable part number
Package Type
IRLHS2242TRPBF
IRLHS2242TR2PBF
PQFN 2mm x 2mm
PQFN 2mm x 2mm
Standard Pack
Form
Quantity
Tape and Reel
4000
Tape and Reel
400
Note
Absolute Maximum Ratings
Parameter
Max.
VDS
Drain-to-Source Voltage
-20
VGS
±12
ID @ TA = 25°C
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 4.5V
ID @ TA = 70°C
Continuous Drain Current, VGS @ 4.5V
ID @ TC(Bottom) = 25°C
Continuous Drain Current, VGS @ 4.5V
-5.8
-15
ID @ TC(Bottom) = 100°C
Continuous Drain Current, VGS @ 4.5V
-9.8
ID @ TC = 25°C
IDM
Continuous Drain Current, VGS @ 4.5V (Wirebond Limited)
Pulsed Drain Current
PD @TA = 25°C
Power Dissipation
c
PD @TC(Bottom) = 25°C
g
Power Dissipation g
TJ
Linear Derating Factor
Operating Junction and
TSTG
Storage Temperature Range
V
-7.2
hi
hi
-8.5i
A
-34
2.1
g
Units
9.6
0.02
-55 to + 150
W
W/°C
°C
Notes  through ‡ are on page 9
www.irf.com
1
03/18/11
IRLHS2242TR/TR2PbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Conditions
BVDSS
ΔΒVDSS/ΔTJ
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
-20
–––
–––
0.01
–––
–––
V VGS = 0V, ID = -250μA
V/°C Reference to 25°C, ID = -1mA
RDS(on)
Static Drain-to-Source On-Resistance
–––
–––
25
43
31
53
mΩ
VGS(th)
ΔVGS(th)
IDSS
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
-0.4
–––
–––
-0.8
-3.8
–––
IGSS
Gate-to-Source Forward Leakage
–––
–––
–––
–––
Gate-to-Source Reverse Leakage
Forward Transconductance
–––
10
–––
–––
-1.1
V
VDS = VGS, ID = -10μA
––– mV/°C
-1.0
VDS = -16V, VGS = 0V
μA
-150
VDS = -16V, VGS = 0V, TJ = 125°C
-100
VGS = -12V
nA
100
VGS = 12V
–––
S VDS = -10V, ID = -8.5A
Total Gate Charge
–––
–––
–––
12
9.6
1.6
–––
–––
–––
–––
–––
3.7
4.3
–––
–––
Output Charge
–––
–––
4.8
6.8
–––
–––
RG
td(on)
tr
Gate Resistance
Turn-On Delay Time
Rise Time
–––
–––
–––
17
7.9
54
–––
–––
–––
td(off)
tf
Turn-Off Delay Time
Fall Time
–––
–––
54
66
–––
–––
Ciss
Coss
Input Capacitance
Output Capacitance
–––
–––
877
273
–––
–––
Crss
Reverse Transfer Capacitance
–––
182
–––
gfs
Qg
Qg
Qgs
Qgd
Qgodr
Qsw
Qoss
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain Charge
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
nC
nC
VGS = -4.5V, ID = -8.5A
VGS = -2.5V, ID = -6.8A
e
e
VGS =-10V, VDS = -10V, ID = -8.5A
VDS = -10V
VGS = -4.5V
ID = -8.5A
nC
VDS = 16V, VGS = 0V
Ω
ns
pF
VDD = -10V, VGS = -4.5V
ID = -8.5A
RG = 2.0Ω
VGS = 0V
VDS = -10V
ƒ = 1.0KHz
Avalanche Characteristics
EAS
IAR
Parameter
Single Pulse Avalanche Energy
Avalanche Current
c
Typ.
–––
–––
d
Max.
18
-8.5
Units
mJ
A
Diode Characteristics
Parameter
IS
Continuous Source Current
ISM
(Body Diode)
Pulsed Source Current
Min. Typ. Max. Units
Conditions
MOSFET symbol
h
D
–––
–––
-8.5
–––
-34
VSD
(Body Diode)
Diode Forward Voltage
–––
–––
–––
-1.2
V
p-n junction diode.
TJ = 25°C, IS = -8.5A, VGS = 0V
trr
Qrr
Reverse Recovery Time
Reverse Recovery Charge
–––
–––
27
20
41
30
ns
nC
TJ = 25°C, IF = -8.5A, VDD = -10V
di/dt = 200A/μs
ton
Forward Turn-On Time
A
c
showing the
integral reverse
G
S
e
e
Time is dominated by parasitic Inductance
Thermal Resistance
RθJC (Bottom)
RθJC (Top)
RθJA
RθJA (<10s)
2
g
g
Junction-to-Case
Junction-to-Case
Junction-to-Ambient
Junction-to-Ambient
Parameter
f
f
Typ.
–––
–––
–––
–––
Max.
13
90
60
42
Units
°C/W
www.irf.com
IRLHS2242TR/TR2PbF
100
100
10
BOTTOM
TOP
-ID, Drain-to-Source Current (A)
-ID, Drain-to-Source Current (A)
TOP
VGS
-10V
-7.0V
-4.5V
-3.5V
-2.5V
-2.0V
-1.8V
-1.5V
1
-1.5V
10
BOTTOM
-1.5V
1
≤60μs PULSE WIDTH
≤60μs PULSE WIDTH
Tj = 25°C
Tj = 150°C
0.1
0.1
0.1
1
10
0.1
100
10
100
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
100
1.4
RDS(on) , Drain-to-Source On Resistance
(Normalized)
-I D, Drain-to-Source Current (A)
1
-V DS, Drain-to-Source Voltage (V)
-V DS, Drain-to-Source Voltage (V)
10
T J = 150°C
TJ = 25°C
1
VDS = -10V
≤60μs PULSE WIDTH
0.1
ID = -8.5A
VGS = -4.5V
1.2
1.0
0.8
0.6
0
1
2
3
4
5
-60 -40 -20 0
Fig 3. Typical Transfer Characteristics
10000
Fig 4. Normalized On-Resistance vs. Temperature
14
-V GS, Gate-to-Source Voltage (V)
VGS = 0V,
f = 1 KHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
C oss = C ds + C gd
1000
20 40 60 80 100 120 140 160
T J , Junction Temperature (°C)
-VGS, Gate-to-Source Voltage (V)
C, Capacitance (pF)
VGS
-10V
-7.0V
-4.5V
-3.5V
-2.5V
-2.0V
-1.8V
-1.5V
Ciss
Coss
Crss
100
ID= -8.5A
12
VDS= -16V
VDS= -10V
10
VDS= -4V
8
6
4
2
0
1
10
100
-VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs.Drain-to-Source Voltage
www.irf.com
0
5
10
15
20
25
QG, Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage
3
IRLHS2242TR/TR2PbF
1000
100
-I D, Drain-to-Source Current (A)
-I SD, Reverse Drain Current (A)
OPERATION IN THIS AREA LIMITED BY RDS(on)
T J = 150°C
10
TJ = 25°C
1
100
100μsec
10
1msec
10msec
1
Limited by
Wirebond
DC
0.1
Tc = 25°C
Tj = 150°C
Single Pulse
VGS = 0V
0.01
0.1
0.2
0.6
0.10
1.0
Fig 7. Typical Source-Drain Diode Forward Voltage
10
100
Fig 8. Maximum Safe Operating Area
1.5
14
-V GS(th), Gate threshold Voltage (V)
16
-I D, Drain Current (A)
1
-VDS, Drain-to-Source Voltage (V)
-VSD, Source-to-Drain Voltage (V)
Limited By Wirebond
12
10
8
6
4
2
0
1.2
0.9
0.6
ID = -10uA
ID = -250uA
ID = -1.0mA
ID = -10mA
0.3
0.0
25
50
75
100
125
150
-75 -50 -25
T C , Case Temperature (°C)
0
25
50
75 100 125 150
T J , Temperature ( °C )
Fig 10. Threshold Voltage vs. Temperature
Fig 9. Maximum Drain Current vs.
Case Temperature
Thermal Response ( Z thJC ) °C/W
100
10
1
0.1
0.01
0.001
1E-006
D = 0.50
0.20
0.10
0.05
0.02
0.01
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
70
80
EAS, Single Pulse Avalanche Energy (mJ)
RDS(on), Drain-to -Source On Resistance (m Ω)
IRLHS2242TR/TR2PbF
ID = -8.5A
60
50
40
T J = 125°C
30
20
T J = 25°C
ID
-2.2A
-4.3A
BOTTOM -8.5A
70
TOP
60
50
40
30
20
10
0
10
0
2
4
6
8
10
12
25
-VGS
-20V
IAS
125
150
I AS
D.U.T
RG
100
Fig 13. Maximum Avalanche Energy vs. Drain Current
L
VDS
75
Starting T J, Junction Temperature (°C)
-VGS, Gate -to -Source Voltage (V)
Fig 12. On-Resistance vs. Gate Voltage
50
VDD
A
DRIVER
0.01Ω
tp
tp
V(BR)DSS
15V
Fig 14b. Unclamped Inductive Waveforms
Fig 14a. Unclamped Inductive Test Circuit
VDS
RD
td(on)
VGS
RG
D.U.T.
-
+
t d(off)
tf
10%
V DD
-V GS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 15a. Switching Time Test Circuit
www.irf.com
tr
VGS
90%
VDS
Fig 15b. Switching Time Waveforms
5
IRLHS2242TR/TR2PbF
Driver Gate Drive
D.U.T *
+
ƒ
+
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
• di/dt controlled by RG
• Driver same type as D.U.T.
• I SD controlled by Duty Factor "D"
• D.U.T. - Device Under Test
V DD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
‚
D=
Period
P.W.
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
InductorCurent
Current
Inductor
-
ISD
Ripple ≤ 5%
*
* VGS = 5V for Logic Level Devices
Reverse Polarity of D.U.T for P-Channel
Fig 16. Diode Reverse Recovery Test Circuit for P-Channel HEXFET® Power MOSFETs
Id
Vds
L
DUT
0
20K
1K
VCC
Vgs
SS
Vgs(th)
Qgodr
Fig 17a. Gate Charge Test Circuit
6
Qgd
Qgs2 Qgs1
Fig 17b. Gate Charge Waveform
www.irf.com
IRLHS2242TR/TR2PbF
PQFN Package Details
PQFN Part Marking
9301
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
www.irf.com
7
IRLHS2242TR/TR2PbF
PQFN 2x2 Outline Tape and Reel
CORE
TAPE
Width
Table 2:
COVER
TAPE
(WIDTH)
5.4 mm
9.5 mm
8
Remark:
- Dimension above are typical dimensions.
- Cover tape thickness is 0.048mm +/- 0.005mm.
- Surface resistivity 10E5 < Rs <10E9.
TOLERANCE
+/- 0.1 mm
+/- 0.1 mm
www.irf.com
IRLHS2242TR/TR2PbF
Qualification information
†
††
Consumer
Qualification level
(per JEDEC JESD47F
Moisture Sensitivity Level
†††
guidelines )
MSL1
PQFN 2mm x 2mm
(per IPC/JEDEC J-STD-020D†† † )
RoHS compliant
Yes
†
Qualification standards can be found at International Rectifier’s web site
http://www.irf.com/product-info/reliability
†† Higher qualification ratings may be available should the user have such requirements.
Please contact your International Rectifier sales representative for further information:
http://www.irf.com/whoto-call/salesrep/
††† Applicable version of JEDEC standard at the time of product release.
Notes:
 Repetitive rating; pulse width limited by max. junction temperature.
‚ Starting TJ = 25°C, L = 0.49mH, RG = 50Ω, IAS = -8.5A.
ƒ Pulse width ≤ 400μs; duty cycle ≤ 2%.
„ Rθ is measured at TJ of approximately 90°C.
… When mounted on 1 inch square 2 oz copper pad on 1.5x1.5 in. board of FR-4 material.
† Calculated continuous current based on maximum allowable junction temperature.
‡ Package is limited to -8.5A by die-source to lead-frame bonding technology
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd, El Segundo, California 90245, USA Tel: (310)
252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.03/2011
www.irf.com
9