SMMS690B − AUGUST 1997 − REVISED FEBRUARY 1998 D Organization: D D D D D D D D Read Latencies 2 and 3 Supported D Support Burst-Interleave and − TM8SK64JPU . . . 8 388 608 x 64 Bits Single 3.3-V Power Supply (±10% Tolerance) Designed for 66-MHz 4-Clock Systems JEDEC 144-Pin Small Outline Dual-In-Line Memory Module (SODIMM) Without Buffer for Use With Socket Uses Eight 64M-Bit Synchronous Dynamic RAMs (SDRAMs) (8M × 8-Bit) in Plastic Thin Small-Outline Packages (TSOPs) Byte-Read/Write Capability Performance Ranges: High-Speed, Low-Noise Low-Voltage TTL (LVTTL) Interface ’8SK64JPU-10 SYNCHRONOUS CLOCK CYCLE TIME tCK3 tCK2 ACCESS TIME CLOCK TO OUTPUT tAC3 tAC2 10 ns 8 ns 15 ns 9 ns Burst-Interrupt Operations D Burst Length Programmable to D D D D D 1, 2, 4, and 8 Four Banks for On-Chip Interleaving (Gapless Access) Ambient Temperature Range 0°C to 70°C Gold-Plated Contacts Pipeline Architecture Serial Presence Detect (SPD) Using EEPROM REFRESH INTERVAL tREF 64 ms description The TM8SK64JPU is a 64M-byte, 144-pin SODIMM. The SODIMM is composed of eight TMS664814DGE, 8 388 608 x 8-bit SDRAMs, each in a 400-mil, 54-pin plastic thin small-outline package (TSOP) mounted on a substrate with decoupling capacitors. See the TMS664814 data sheet (literature number SMOS690). operation The TM8SK64JPU operates as eight TMS664814DGE devices that are connected as shown in the TM8SK64JPU functional block diagram. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 1998, Texas Instruments Incorporated !"#$ % &'!!($ #% )'*+&#$ ,#$(!,'&$% &!" $ %)(&&#$% )(! $.( $(!"% (/#% %$!'"($% %$#,#!, 0#!!#$1- !,'&$ )!&(%%2 ,(% $ (&(%%#!+1 &+',( $(%$2 #++ )#!#"($(!%- POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251−1443 1 SMMS690B − AUGUST 1997 − REVISED FEBRUARY 1998 DUAL-IN-LINE MEMORY MODULE ( TOP VIEW ) TM8SK64JPU ( SIDE VIEW ) PIN NOMENCLATURE A[0:11] A[0:8] A13/BA0 A12/BA1 CAS CKE[0:1] CK[0:3] DQ[0:63] DQMB[0:7] 1 NC RAS S0 SCL SDA VDD VSS WE 59 61 143 2 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251−1443 Row Address Inputs Column Address Inputs Bank-Select Zero Bank-Select One Column-Address Strobe Clock Enable System Clock Data-In / Data Out Data-In/Data-Out Mask Enable No Connect Row-Address Strobe Chip-Select SPD Clock SPD Address / Data 3.3-V Supply Ground Write Enable SMMS690B − AUGUST 1997 − REVISED FEBRUARY 1998 Pin Assignments ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ PIN PIN NAME NO. NAME NO. NO. 1 37 DQ8 73 2 VSS VSS 38 DQ40 3 DQ0 39 DQ9 4 DQ32 40 DQ41 5 DQ1 41 6 DQ33 42 7 DQ2 8 DQ34 9 PIN NAME NO. PIN NAME NC 109 A9 74 CK1 110 A12/BA1 75 111 A10 76 VSS VSS 112 A11 DQ10 77 NC 113 DQ42 78 NC 114 VDD VDD 43 DQ11 79 NC 115 DQMB2 44 DQ43 80 NC 116 DQMB6 DQ3 45 81 DQMB3 DQ35 46 82 VDD VDD 117 10 VDD VDD 118 DQMB7 11 47 DQ12 83 DQ16 119 12 VDD VDD 48 DQ44 84 DQ48 120 VSS VSS 13 DQ4 49 DQ13 85 DQ17 121 DQ24 14 DQ36 50 DQ45 86 DQ49 122 DQ56 15 DQ5 51 DQ14 87 DQ18 123 DQ25 16 DQ37 52 DQ46 88 DQ50 124 DQ57 17 DQ6 53 DQ15 89 DQ19 125 DQ26 18 DQ38 54 DQ47 90 DQ51 126 DQ58 19 DQ7 55 91 DQ27 DQ39 56 92 VSS VSS 127 20 VSS VSS 128 DQ59 21 57 NC 93 DQ20 129 22 VSS VSS 58 NC 94 DQ52 130 VDD VDD 23 DQMB0 59 NC 95 DQ21 131 DQ28 24 DQMB4 60 NC 96 DQ53 132 DQ60 25 DQMB1 61 CK0 97 DQ22 133 DQ29 26 DQMB5 62 CKE0 98 DQ54 134 DQ61 27 63 DQ23 135 DQ30 64 VDD VDD 99 28 VDD VDD 100 DQ55 136 DQ62 29 A0 65 RAS 101 137 DQ31 30 A3 66 CAS 102 VDD VDD 138 DQ63 31 A1 67 WE 103 A6 139 32 A4 68 NC 104 A7 140 VSS VSS 33 A2 69 S0 105 A8 141 SDA 34 A5 70 NC 106 A13/BA0 142 SCL 35 VSS VSS 71 NC 107 143 72 NC 108 VSS VSS VDD VDD 36 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251−1443 144 3 SMMS690B − AUGUST 1997 − REVISED FEBRUARY 1998 small-outline dual-in-line memory module and components The small-outline dual-in-line memory module and components include: D PC substrate: 1,10 ± 0,1 mm (0.04 inch) nominal thickness D Bypass capacitors: Multilayer ceramic D Contact area: Nickel plate and gold plate over copper functional block diagram S0 RC CS CK: U0, UB0 CS RC CK0 CK: U1, UB1 DQMB0 U0 DQM R DQ[0:7] 8 DQMB4 DQM R DQ[0:7] DQ[32:39] 8 RC UB0 CK: U2, UB2 RC CK1 DQ[0:7] CK: U3, UB3 RC CK2 CS C CS RC CK3 DQMB1 U1 DQM R DQ[8:15] 8 DQMB5 DQ[0:7] UB1 DQM R DQ[40:47] 8 CS C DQ[0:7] R = 10 Ω RC = 10 Ω C = 10 pF CS VDD DQMB2 U2 DQM R DQ[16:23] 8 DQMB6 R DQ[0:7] DQ[48:55] 8 U[0:3], UB[0:3] Two 0.22 µF and one 0.01 µF per SDRAM U[0:3], UB[0:3] UB2 DQM DQ[0:7] VSS CS DQMB3 DQ[24:31] RAS CAS WE CKE0 A[0:13] CS U3 DQM R 8 DQMB7 DQ[0:7] DQ[56:63] 8 DQ[0:7] SPD EEPROM RAS: SDRAM U[0:3], UB[0:3] CAS: SDRAM U[0:3], UB[0:3] WE: SDRAM U[0:3], UB[0:3] CKE: SDRAM U[0:3], UB[0:3] A[0:13]: SDRAM U[0:3], UB[0:3] LEGEND: CS = SPD = 4 UB3 DQM R POST OFFICE BOX 1443 SCL SDA A0 A1 VSS Chip select Serial Presence Detect • HOUSTON, TEXAS 77251−1443 A2 SMMS690B − AUGUST 1997 − REVISED FEBRUARY 1998 absolute maximum ratings over ambient temperature range (unless otherwise noted)† Supply voltage range, VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V Voltage range on any pin (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 0.5 V to 4.6 V Short-circuit output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA Power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 W Ambient temperature range, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 55°C to 125°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: All voltage values are with respect to VSS. ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ recommended operating conditions MIN NOM MAX UNIT 3 3.3 3.6 V VDD VSS Supply voltage VIH VIH-SPD High-level input voltage 2 High-level input voltage for SPD device 2 VIL TA Low-level input voltage Supply voltage 0 Ambient temperature V VDD + 0.3 5.5 V V −0.3 0.8 V 0 70 °C capacitance over recommended ranges of supply voltage and ambient temperature, f = 1 MHz (see Note 2)‡ TM8SK64JPU PARAMETER MIN MAX UNIT Ci(CK) Input capacitance, CK input 5 pF Ci(AC) Input capacitance, address and control inputs: A0 −A13, RAS, CAS, WE 5 pF Ci(CKE) Input capacitance, CKE input 5 pF Co Output capacitance 7 pF Ci(DQMBx) Input capacitance, DQMBx input 5 pF Ci(Sx) Input capacitance, Sx input 5 pF Ci/o(SDA) Input/output capacitance, SDA input 9 pF 7 pF Ci(SPD) Input capacitance, SPD inputs (except SDA) ‡ Specifications in this table represent a single SDRAM device. NOTE 2: VDD = 3.3 V ± 0.3 V. Bias on pins under test is 0 V. POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251−1443 5 SMMS690B − AUGUST 1997 − REVISED FEBRUARY 1998 electrical characteristics over recommended ranges of supply voltage and ambient temperature (unless otherwise noted) (see Note 3)† ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ’8SK64JPU-10 PARAMETER VOH VOL TEST CONDITIONS High-level output voltage IOH = − 2 mA IOL = 2 mA Low-level output voltage µA "10 µA CAS latency = 2 105 mA CAS latency = 3 135 mA CKE ≤ VIL MAX, tCK = 15 ns (see Note 7) 2 mA CKE and CK ≤ VIL MAX, tCK = ∞ (see Note 8) 2 mA CKE ≥ VIH MIN, tCK = 15 ns (see Note 7) 40 mA tCK = infinite (see Note 8) CKE ≤ VIL MAX, tCK = 15 ns (see Notes 4 and 7) 3 mA 15 mA CKE and CK ≤ VIL MAX, tCK = ∞ (see Notes 4 and 8) 15 mA CKE ≥ VIH MIN, tCK = 15 ns (see Notes 4 and 7) 70 mA CKE ≥ VIH MIN, CK ≤ VIL MAX, tCK = ∞ (see Notes 4 and 8) 20 mA Page burst, IOH/IOL = 0 mA CAS latency = 2 All banks activated, nCCD = one cycle CAS latency = 3 (see Notes 9 and 10) 130 mA 185 mA CAS latency = 2 1 65 mA CAS latency = 3 1 95 mA IO Output current (leakage) 0 V < VO < VDD +0.3 V, Output disabled Operating current Burst length = 1, tRC ≥ tRC MIN IOH/IOL = 0 mA, (see Notes 4, 5, and 6) ICC2N ICC2NS Precharge standby current in non-power-down mode ICC3P ICC3PS Active standby current in power-down mode ICC3N ICC3NS ICC4 ICC5 Active standby current in non-power-down mode Burst current Auto-refresh current V "10 Input current (leakage) Precharge standby current in power-down mode 2.4 UNIT V II ICC2P ICC2PS MAX 0.4 0 V < VI < VDD + 0.3 V, All other pins = 0 V to VDD ICC1 MIN tRC ≤ tRC MIN (see Notes 5 and 8) ICC6 Self-refresh current CKE ≤ VIL MAX 2 mA † Specifications in this table represent a single SDRAM device. NOTES: 3. All specifications apply to the device after power-up initialization. All control and address inputs must be stable and valid. 4. Only one bank is activated. 5. tRC ≥ MIN 6. Control and address inputs change state twice during tRC. 7. Control and address inputs change state once every 30 ns. 8. Control and address inputs do not change state (stable). 9. Control and address inputs change once every cycle. 10. Continuous burst access, nCCD = 1 cycle 6 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251−1443 SMMS690B − AUGUST 1997 − REVISED FEBRUARY 1998 ac timing requirements†‡ ’8SK64JPU-10 MIN MAX UNIT tCK2 tCK3 Cycle time, CK CAS latency = 2 15 ns Cycle time, CK CAS latency = 3 10 ns tCH tCL Pulse duration, CK high 3 ns tAC2 tAC3 Access time, CK high to data out (see Note 11) CAS latency = 2 9 ns Access time, CK high to data out (see Note 11) CAS latency = 3 8 ns tOH tLZ Hold time, CK high to data out 3 ns Delay time, CK high to DQ in low−impedance state (see Note 12) 1 ns tHZ tIS Delay time, CK high to DQ in high−impedance state (see Note 13) tIH tCESP Hold time, address, control, and data input Power down/self−refresh exit time 10 tRAS tRC Delay time, ACTV command to DEAC or DCAB command 50 Delay time, ACTV, MRS, REFR, or SLFR to ACTV, MRS, REFR, or SLFR command 80 ns tRCD tRP Delay time ACTV command to READ, READ−P, WRT, or WRT−P command (see Note 14) 30 ns Delay time, DEAC or DCAB command to ACTV, MRS, REFR, or SLFR command 30 ns tRRD tRSA Delay time, ACTV command in one bank to ACTV command in the other bank 20 ns Delay time, MRS command to ACTV, MRS, REFR, or SLFR command 20 ns tAPR tAPW Final data out of READ−P operation to ACTV, MRS, SLFR, or REFR command Pulse duraction, CK low 3 Setup time, address, control, and data input Final data in of WRT−P operation to ACTV, MRS, SLFR, or REFR command ns 8 ns 3 ns 1 ns ns 100000 tRP − (CL−1)* tCK tRP + 1 tCK ns ns ns tWR Delay time, final data in of WRT operation to DEAC or DCAB command 10 ns tT Transition time 1 5 ms † All references are made to the rising transition of CK unless otherwise noted. ‡ Specifications in this table represent a single SDRAM device. NOTES: 11. tAC is referenced from the rising transition of CK that precedes the data-out cycle. For example, the first data out tAC is referenced from the rising transition of CK that is read latency (one cycle after the READ command). Access time is measured at output reference level 1.4 V. 12. tLZ is measured from the rising transition of CK that is read latency (one cycle after the READ command). 13. tHZ (max) defines the time at which the outputs are no longer driven and is not referenced to output voltage levels. 14. For read or write operations with automatic deactivate, tRCD must be set to satisfy minimum tRAS. POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251−1443 7 SMMS690B − AUGUST 1997 − REVISED FEBRUARY 1998 clock timing requirements† ’8SK64JPU-10 MIN MAX 64 UNIT‡ tREF nCCD Refresh interval Delay time, READ or WRT command to an interrupting command 1 nCDD nCLE Delay time, CS low or high to input enabled or inhibited 0 Delay time, CKE high or low to CLK enabled or disabled 1 nCWL nDID Delay time, final data in of WRT operation to READ, READ-P, WRT, or WRT-P 1 Delay time, ENBL or MASK command to enabled or masked data in 0 0 cycles nDOD Delay time, ENBL or MASK command to enabled or masked data out 2 2 cycles nHZP2 Delay time, DEAC or DCAB, command to DQ in high−impedance state 2 cycles nHZP3 Delay time, DEAC or DCAB, command to DQ in high−impedance state 3 cycles CAS latency = 2 CAS latency = 3 ms cycles cycles 1 cycles cycles nWCD Delay time, WRT command to first data in 0 0 cycles † All references are made to the rising transition of CK unless otherwise noted. ‡ A CK cycle can be considered as contributing to a timing requirement for those parameters defined in cycle units only when not gated by CKE (those CK cycles occurring during the time when CKE is asserted low). 8 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251−1443 SMMS690B − AUGUST 1997 − REVISED FEBRUARY 1998 serial presence detect The serial presence detect (SPD) is contained in a 2K-bit serial EEPROM located on the module. The SPD nonvolatile EEPROM contains various data such as module configuration, SDRAM organization, and timing parameters (see Table 1). Only the first 128 bytes are programmed by Texas Instruments, while the remaining 128 bytes are available for customer use. Programming is done through an IIC bus using the clock (SCL) and data (SDA) signals. All Texas Instruments modules comply with the current JEDEC SPD standards. See the Texas Instruments Serial Presence Detect Technical Reference (literature number SMMU001) for further details. Table 1 lists SPD contents as follows: Table 1. Serial Presence Detect Data TM8SK64JPU-10 BYTE NO. DESCRIPTION OF FUNCTION ITEM DATA 0 Defines number of bytes written into serial memory during module manufacturing 128 bytes 80h 1 Total number of bytes of SPD memory device 256 bytes 08h 2 Fundamental memory type (FPM, EDO, SDRAM, . . .) SDRAM 04h 3 Number of row addresses on this assembly 12 0Ch 4 Number of column addresses on this assembly 9 09h 5 Number of module banks on this assembly 1 bank 01h 6 Data width of this assembly 64 bits 40h 7 Data width continuation 8 Voltage interface standard of this assembly 00h LVTTL 01h 9 SDRAM cycle time at maximum supported CAS latency (CL), CL = X SDRAM access from clock at CL = X tCK = 10 ns tAC =8 ns A0h 10 11 SODIMM configuration type (non-parity, parity, error correcting code [ECC]) Non-Parity 00h 12 Refresh rate / type 15.6 µs/ self-refresh 80h 13 SDRAM width, primary DRAM x8 08h 14 Error-checking SDRAM data width N/A 00h 15 Minimum clock delay, back-to-back random column addresses 16 Burst lengths supported 17 Number of banks on each SDRAM device 18 CAS latencies supported 19 CS latency 20 Write latency 21 SDRAM module attributes 22 SDRAM device attributes: general 23 Minimum clock cycle time at CL = X − 1 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251−1443 80h 1 CK cycle 01h 1, 2, 4, and 8 0Fh 4 banks 04h 2, 3 06h 0 01h 0 01h Non-buffered/ Non-registered 00h VDD tolerance = ("10%) Burst read / write, precharge all, auto precharge 0Eh tCK = 15 ns F0h 9 SMMS690B − AUGUST 1997 − REVISED FEBRUARY 1998 serial presence detect (continued) Table 1. Serial Presence Detect Data (Continued) TM8SK64JPU-10 BYTE NO. DESCRIPTION OF FUNCTION DATA tAC = 9 ns N/A 90h N/A 00h tRP = 30 ns tRRD = 20 ns tRCD = 30 ns 1Eh tRAS =50 ns 64M Bytes 32h 30h 24 Maximum data-access time from clock at CL = X − 1 25 Minimum clock cycle time at CL = X − 2 26 Maximum data-access time from clock at CL = X − 2 27 Minimum row precharge time 28 Minimum row-active to row-active delay 29 Minimum RAS-to-CAS delay 30 Minimum RAS pulse width 31 Density of each bank on module 32 Command and address signal input setup time 33 Command and address signal input hold time 34 Data signal input setup time tIS = 3 ns tIH = 1 ns tIS = 3 ns 35 Data signal input hold time tIH = 1 ns 10h Rev. 2 02h 36 −61 00h 14h 1Eh 10h 10h 30h Superset features (may be used in the future) 62 SPD revision 63 Checksum for byte 0 −62 73 49h Manufacturer’s JEDEC ID code per JEP −106E Manufacturing location† 97 9700...00h 64 −71 72 TBD Manufacturer’s part number† Die revision code† TBD TBD 93 −94 PCB revision code† Manufacturing date† 95 −98 Assembly serial number† TBD 73 −90 91 92 TBD TBD Manufacturer specific data† 126 −127 Vendor specific data† 99 −125 128−166 167−255 TBD TBD System integrator’s specific data‡ Open TBD † TBD indicates values are determined at manufacturing time and are module dependent. ‡ These TBD values are determined and programmed by the customer (optional). 10 ITEM POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251−1443 SMMS690B − AUGUST 1997 − REVISED FEBRUARY 1998 device symbolization (TM8SK64JPU) TM8SK64JPU -SS YY MM T -SS = = = = YYMMT Year Code Month Code Assembly Site Code Speed Code NOTE A: Location of symbolization may vary. POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251−1443 11 SMMS690B − AUGUST 1997 − REVISED FEBRUARY 1998 MECHANICAL DATA BDQ (R-SODIMM-N144) SMALL OUTLINE DUAL IN-LINE MEMORY MODULE 2.665 (67,69) 2.655 (67,44) Notch 0.157 (4,00) x 0.079 (2,00) Deep 2 Places 0.024 (0,61) TYP 0.044 (1,12) 0.036 (0,91) Notch 0.060 (1,52) x 0.158 (4,01) Deep 0.031 (0,79) 0.010 (0,25) MAX 0.788 (20,00) TYP 0.098 (2,49) 1.130 (28,70) 1.120 (28,45) 0.196 (4,98) 0.157 (4,00) 0.126 (3,20) 0.095 (2,41) MAX 0.150 (3,81) MAX (For Double-Sided Module Only) 4088188/A 07/97 NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Falls within JEDEC MO-190 12 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251−1443 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Amplifiers Data Converters DSP Clocks and Timers Interface Logic Power Mgmt Microcontrollers RFID RF/IF and ZigBee® Solutions amplifier.ti.com dataconverter.ti.com dsp.ti.com www.ti.com/clocks interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www.ti-rfid.com www.ti.com/lprf Applications Audio Automotive Broadband Digital Control Medical Military Optical Networking Security Telephony Video & Imaging Wireless www.ti.com/audio www.ti.com/automotive www.ti.com/broadband www.ti.com/digitalcontrol www.ti.com/medical www.ti.com/military www.ti.com/opticalnetwork www.ti.com/security www.ti.com/telephony www.ti.com/video www.ti.com/wireless Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated