PD - 97175B IRLR3110ZPbF IRLU3110ZPbF Features l l l l l HEXFET® Power MOSFET Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax D VDSS = 100V RDS(on) = 14mΩ G Description Specifically designed for Industrial applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Industrial applications and a wide variety of other applications. S D-Pak I-Pak IRLR3110ZPbF IRLU3110ZPbF Absolute Maximum Ratings ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C VGS EAS (Thermally limited) EAS (Tested ) IAR EAR TJ TSTG Parameter Max. Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Package Limited) 63 45 42 250 140 c Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Single Pulse Avalanche Energy Tested Value Avalanche Current Repetitive Avalanche Energy Operating Junction and Storage Temperature Range Reflow Soldering Temperature, for 10 seconds Mounting Torque, 6-32 or M3 screw d c h g Thermal Resistance RθJC RθJA RθJA j Parameter Junction-to-Case Junction-to-Ambient (PCB mount) Junction-to-Ambient j ij Units A W 0.95 ±16 110 140 See Fig.12a, 12b, 15, 16 W/°C V mJ A mJ -55 to + 175 °C 300 10 lbf in (1.1N m) y y Typ. Max. Units ––– ––– ––– 1.05 40 110 °C/W HEXFET® is a registered trademark of International Rectifier. www.irf.com 1 11/30/09 IRLR/U3110ZPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance VGS(th) Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Min. Typ. Max. Units Conditions Qg Qgs Qgd td(on) tr td(off) tf LD Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance 100 ––– ––– ––– 1.0 52 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 0.077 11 12 ––– ––– ––– ––– ––– ––– 34 10 15 24 110 33 48 4.5 ––– ––– 14 16 2.5 ––– 20 250 200 -200 48 ––– ––– ––– ––– ––– ––– ––– LS Internal Source Inductance ––– 7.5 ––– 6mm (0.25in.) from package Ciss Coss Crss Coss Coss Coss eff. Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance ––– ––– ––– ––– ––– ––– 3980 310 130 1820 170 320 ––– ––– ––– ––– ––– ––– S and center of die contact VGS = 0V VDS = 25V ƒ = 1.0MHz VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz VGS = 0V, VDS = 80V, ƒ = 1.0MHz VGS = 0V, VDS = 0V to 80V gfs IDSS IGSS V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 38A VGS = 4.5V, ID = 32A V VDS = VGS, ID = 100µA S VDS = 25V, ID = 38A µA VDS = 100V, VGS = 0V VDS = 100V, VGS = 0V, TJ = 125°C nA VGS = 16V VGS = -16V ID = 38A nC VDS = 50V VGS = 4.5V VDD = 50V ID = 38A ns RG = 3.7Ω VGS = 4.5V D Between lead, e e e e nH pF G f Source-Drain Ratings and Characteristics Parameter Min. Typ. Max. Units IS Continuous Source Current ––– ––– 63 ISM (Body Diode) Pulsed Source Current ––– ––– 250 VSD trr Qrr ton (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time ––– ––– ––– ––– 34 42 1.3 51 63 2 c Conditions MOSFET symbol A V ns nC D showing the integral reverse G S p-n junction diode. TJ = 25°C, IS = 38A, VGS = 0V TJ = 25°C, IF = 38A, VDD = 50V di/dt = 100A/µs e e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.irf.com IRLR/U3110ZPbF 1000 1000 TOP ID, Drain-to-Source Current (A) 100 BOTTOM 10 1 0.1 2.5V TOP ID, Drain-to-Source Current (A) VGS 15V 10V 8.0V 4.5V 3.5V 3.0V 2.7V 2.5V 100 BOTTOM 10 2.5V ≤60µs PULSE WIDTH ≤60µs PULSE WIDTH Tj = 175°C Tj = 25°C 0.01 0.1 1 10 1 100 0.1 1000 1 10 100 1000 V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 150 Gfs, Forward Transconductance (S) ID, Drain-to-Source Current (Α) VGS 15V 10V 8.0V 4.5V 3.5V 3.0V 2.7V 2.5V T J = 175°C 100 10 T J = 25°C 1 VDS = 25V ≤60µs PULSE WIDTH 0.1 T J = 25°C 125 100 T J = 175°C 75 50 V DS = 10V 300µs PULSE WIDTH 25 0 0 2 4 6 8 10 12 14 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 16 0 25 50 75 ID,Drain-to-Source Current (A) Fig 4. Typical Forward Transconductance vs. Drain Current 3 IRLR/U3110ZPbF 100000 VGS, Gate-to-Source Voltage (V) ID= 38A C oss = C ds + C gd 10000 C, Capacitance(pF) 5.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd Ciss 1000 Coss Crss 100 4.0 VDS= 80V VDS= 50V 3.0 2.0 1.0 10 0.0 1 10 100 0 VDS, Drain-to-Source Voltage (V) 1000 T J = 175°C ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 100 20 T J = 25°C 1 100µsec 1msec 10msec 10 DC Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 0.1 1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 40 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 10 30 Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage Fig 5. Typical Capacitance vs. Drain-to-Source Voltage 1000 10 QG Total Gate Charge (nC) 0 1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRLR/U3110ZPbF 3.0 ID, Drain Current (A) 60 RDS(on) , Drain-to-Source On Resistance (Normalized) 70 Limited By Package 50 40 30 20 10 0 ID = 63A VGS = 10V 2.5 2.0 1.5 1.0 0.5 25 50 75 100 125 150 175 -60 -40 -20 0 20 40 60 80 100120140160180 T C , Case Temperature (°C) T J , Junction Temperature (°C) Fig 10. Normalized On-Resistance vs. Temperature Fig 9. Maximum Drain Current vs. Case Temperature Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.05 0.1 τJ 0.02 0.01 0.01 R1 R1 τJ τ1 R2 R2 τC τ2 τ1 τ2 τ Ri (°C/W) τi (sec) 0.383 0.000267 0.667 0.003916 Ci= τi/Ri Ci i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRLR/U3110ZPbF DRIVER L VDS D.U.T RG 20V VGS + V - DD IAS tp A 0.01Ω Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp EAS , Single Pulse Avalanche Energy (mJ) 300 15V ID 4.4A 6.5A BOTTOM 38A TOP 250 200 150 100 50 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) I AS Fig 12c. Maximum Avalanche Energy vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG QGS QGD 3.0 VG Charge Fig 13a. Basic Gate Charge Waveform L DUT 0 1K VCC VGS(th) Gate threshold Voltage (V) 10 V 2.5 2.0 1.5 1.0 ID = 100µA ID = 250µA ID = 1.0mA ID = 1.0A 0.5 0.0 -75 -50 -25 0 25 50 75 100 125 150 175 200 T J , Temperature ( °C ) Fig 13b. Gate Charge Test Circuit 6 Fig 14. Threshold Voltage vs. Temperature www.irf.com IRLR/U3110ZPbF 100 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆ Tj = 150°C and Tstart =25°C (Single Pulse) Avalanche Current (A) Duty Cycle = Single Pulse 0.01 10 0.05 0.10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current vs.Pulsewidth EAR , Avalanche Energy (mJ) 150 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 38A 125 100 75 50 25 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy vs. Temperature www.irf.com 175 Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long as neither Tjmax nor Iav (max) is exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 7 IRLR/U3110ZPbF D.U.T Driver Gate Drive + - • • • • D.U.T. ISD Waveform Reverse Recovery Current + dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period * RG D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - Period P.W. + VDD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V DS VGS RG RD D.U.T. + -VDD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com IRLR/U3110ZPbF D-Pak (TO-252AA) Package Outline D-Pak (TO-252AA) Part Marking Information (;$03/( 7+,6,6$1,5)5 :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1($ 3$57180%(5 ,17(51$7,21$/ 5(&7,),(5 /2*2 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,5)5 $ $66(0%/< /27&2'( '$7(&2'( <($5 :((. /,1($ 25 ,17(51$7,21$/ 5(&7,),(5 /2*2 3$57180%(5 ,5)5 $66(0%/< /27&2'( '$7(&2'( 3 '(6,*1$7(6/($')5(( 352'8&7237,21$/ <($5 :((. $ $66(0%/<6,7(&2'( Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9 IRLR/U3110ZPbF I-Pak (TO-251AA) Package Outline I-Pak (TO-251AA) Part Marking Information (;$03/( 7+,6,6$1,5)8 :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1($ 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 3$57180%(5 ,5)8 $ $66(0%/< /27&2'( '$7(&2'( <($5 :((. /,1($ 25 ,17(51$7,21$/ 5(&7,),(5 /2*2 3$57180%(5 ,5)8 $66(0%/< /27&2'( '$7(&2'( 3 '(6,*1$7(6/($')5(( 352'8&7237,21$/ <($5 :((. $ $66(0%/<6,7(&2'( Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 www.irf.com IRLR/U3110ZPbF D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR 16.3 ( .641 ) 15.7 ( .619 ) 12.1 ( .476 ) 11.9 ( .469 ) FEED DIRECTION TRL 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481. Notes: Repetitive rating; pulse width limited by Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive max. junction temperature. (See fig. 11). avalanche performance. Limited by TJmax, starting TJ = 25°C, L = 0.16mH This value determined from sample failure population. 100% RG = 25Ω, IAS = 38A, VGS =10V. Part not tested to this value in production. recommended for use above this value. When mounted on 1" square PCB (FR-4 or G-10 Material). Pulse width ≤ 1.0ms; duty cycle ≤ 2%. Rθ is measured at TJ approximately 90°C. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . Data and specifications subject to change without notice. This product has been designed for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.11/09 www.irf.com 11