reflection

AFM/STM Microscopy
Overcoming the challenges of the Micro and
nano scale materials and devices
characterization and measurement.
Hassan Tanbakuchi
Agilent Technologies
Didier Pellerin
ScienTec
1
Logo et nom de marque
AFM/STM Microscopy
ScienTec
• Scientec: headquarters in Les Ulis (Paris)
Metrology & Surface Analisis
AFM / STM (Agilent Technologies)
Profilers (KLA-Tencor)
Interferometer (IDE-KLA / Sensofar)
SNOM/AFM/Raman (Nanonics)
Nano-Indenter ( MTS - Agilent)
2
Logo et nom de marque
AFM/STM Microscopy
Show Room
Dark Room
3
Logo et nom de marque
AFM/STM Microscopy
Richard Feynman
“There is Plenty of Room at the Bottom”
4
Logo et nom de marque
AFM/STM Microscopy
Outline
•
•
•
•
•
•
STM
Contact AFM
Non Contact AFM
Phase Measurements
Vector Network Analyzer (VNA)
VNA and AFM coupling
– Technical Solutions
– Results
• Next generation
5
Logo et nom de marque
AFM/STM Microscopy
History
• STM (Scanning Tunneling Microscope)
• Developped in1981 by Gerd Binnig et Heinrich
Rohrer (Nobel Price in 1986)
– And then Contact AFM, SNOM, Non Contact
AFM, MFM, EFM…
6
Logo et nom de marque
AFM/STM Microscopy
Scanning Probe Microscope
Basic Principles
Tip/Probe/Cantilever – Responds to a
particular surface property as it is scanned
over the surface.
Feedback – Z position controlled to keep
particular property constant.
STM – Current
AFM - Deflection
AC Mode – Amplitude
Applications limited mostly by
experimenter’s imagination.
7
Logo et nom de marque
AFM/STM Microscopy
Basic Principles - STM
Measures Tunneling Current
Exponentially relation between
separation and current.
At low bias the image reflects the
local electronic structure of the
sample surface.
Imaging Modes
Constant Height
Constant Current
Spectroscopy
I/V, I/S
8
Logo et nom de marque
AFM/STM Microscopy
Basic Principles - AFM
Tip motion is monitored by the laser spot
reflected into the photo detector.
Topography signal derived from voltage
applied to piezo to keep tip deflection
constant times piezo sensitivity parameter.
Contact mode force (≈0.1 to 1000nN)
controlled by cantilever stiffness and
deflection.
9
Logo et nom de marque
AFM/STM Microscopy
Schematic - Feedback Loop
Photo-diode
Z High
Voltage
ADC
Topo
Hybrid
Servo
A
B
D
C
Servo Gain
Settings
(Software)
Deflection (AFM)
Amplitude (AC Mode)
+
-
ADC In
DAC Out
Setpoint
10
Logo et nom de marque
AFM/STM Microscopy
Contact Mode
• Advantages
– Easy set up
– Fast imaging
– Friction signal
– Force vs. distance measurements
• Disadvantages
– Lower resolution
– Possible tip and/or sample damage
• Mode choice usually dictated by sample.
11
Logo et nom de marque
AFM/STM Microscopy
Current Sensing AFM (CSAFM™)
Principle:
A bias is applied to the sample; current
flows through the conducting cantilever to
preamp.
Allows simultaneous probing of
conductivity and topography.
Preamplifiers with different sensitivities
are available:
- 10 nA/V (noise ≈ 30 pA rms)
- 1.0 nA/V (noise ≈ 3 pA rms)
12
Logo et nom de marque
AFM/STM Microscopy
AC Methods - Acoustic Drive
(AAC)
A piezoelectric transducer shakes the
cantilever holder at or near the
resonant frequency of the cantilever
(100 - 400 kHz typically).
Interaction with the sample reduces
the oscillation amplitude. This
reduced amplitude is used as the
feedback signal.
13
Logo et nom de marque
AFM/STM Microscopy
AC Methods – Magnetic AC
(MAC) Mode
The cantilever is coated on the
top side with a proprietary
magnetic film.
A solenoid applies an oscillating
magnetic field which is used to
vibrate the cantilever.
Since only the cantilever is
oscillating, fewer resonances are
excited.
14
Logo et nom de marque
AFM/STM Microscopy
Advantages of AC modes
•
•
•
•
Soft surfaces stiffened by viscoelastic response
Impact predominantly vertical
Pull-off from sticky (contaminated) surfaces
Instrumental advantage (1/f noise)
15
Logo et nom de marque
AFM/STM Microscopy
Higher Resolution
• Gentler contact
preserves asperities same tip gives better
resolution
• Functionalized tips
survive
• More control of
interactions
Plasmid DNA in water. (a) MAC (b)
Contact - same tip
16
Logo et nom de marque
AFM/STM Microscopy
Polymers
Phase imaging
• Topography / Phase
Topography
Phase Measurement
17
Logo et nom de marque
Magnetic Fields
AFM/STM Microscopy
Magnetic
tip
1 st scan (Topography)
2 nd scan (Magnetic field Measurement)
30 µm scan – MFM measurement - Hard disk
18
Logo et nom de marque
Electric Fields
AFM/STM Microscopy
conductive
tip
1 st scan (Topography)
2 nd scan ( Electric field Measurement)
2 µm scan – EFM measurement -Squares made by elctric charge deposition
on SiO2, only revealed by EFM
19
Logo et nom de marque
AFM/STM Microscopy
Electric Field Measurements (EFM)
Topography
EFM
MFM
EFM measurement on active circuit
20
Logo et nom de marque
AFM/STM Microscopy
Nanoscale Electronic Devices Characterization
All MW measurement system have 50 Ohms characteristic
impedance.
Classical nano devices impedances can conveniently be
expressed as multiples of the resistance quantum,
R0 ≡ h/2e^2 = 12.96kΩ.
21
Logo et nom de marque
AFM/STM Microscopy
Traditional SCM
VCO
Detector
• Scanning only
• qualitative
• poor sensitivity
• limited 1015-1020 Atoms/cm3
• No Conductors/Insulators
dV
dC
22
Logo et nom de marque
AFM/STM Microscopy
Network Analyzer Basics
Oct 2008
Logo et nom de marque
Agilent private/key customers
Page 23
AFM/STM Microscopy
What is a Vector Network Analyzer?
S21
Transmission
• Vector network analyzers (VNAs)…
DUT
– Are stimulus-response test systems
Reflection
S11
S22
S12
– Characterize forward and reverse reflection and transmission responses (Sparameters) of RF and microwave components
– Quantify linear magnitude and phase
Magnitude
– Are very fast for swept measurements
– Provide the highest level
of measurement accuracy
RF Source
Phase
LO
R1
A
Test port 1
R2
B
Test port 2
24
Logo et nom de marque
AFM/STM Microscopy
Lightwave Analogy to RF Energy
Incident
Reflected
Transmitted
Lightwave
DUT
RF
25
Logo et nom de marque
AFM/STM Microscopy
Transmission Line Terminated with Zo
Zs = Zo
Zo = characteristic impedance
of transmission line
Zo
V inc
Vrefl = 0! (all the incident power
is absorbed in the load)
For reflection, a transmission line terminated in Zo
behaves like an infinitely long transmission line
26
Logo et nom de marque
AFM/STM Microscopy
Transmission Line Terminated with Short, Open
Zs = Zo
V inc
o
Vrefl In-phase (0 ) for open,
o
out-of-phase (180 ) for short
For reflection, a transmission line terminated in a short
or open reflects all power back to source
27
Logo et nom de marque
AFM/STM Microscopy
Transmission Line Terminated with 25 W
Zs = Zo
ZL = 25 W
V inc
Vrefl
Standing wave pattern does not go to
zero as with short or open
28
Logo et nom de marque
AFM/STM Microscopy
High-Frequency Device Characterization
Incident
Transmitted
R
B
Reflected
A
TRANSMISSION
REFLECTION
Reflected
Incident
SWR
S-Parameters
S11, S22
Transmitted
A
=
R
Reflection
Coefficient
G, r
Incident
Return
Loss
Impedance,
Admittance
R+jX,
G+jB
B
=
R
Group
Delay
Gain / Loss
S-Parameters
S21, S12
Transmission
Coefficient
T,t
Insertion
Phase
29
Logo et nom de marque
AFM/STM Microscopy
Standard Vector Network Analyzer
as a reflectometer
Very small capacitor
High SNR
Low Resolution
kW
Source
A
LO
A/D
S11 
Z L  Z0
Z L  Z0
B
LO
A/D
Probe
Highly resistive load
High SNR
Low Resolution
Load close to 50 Ohms
Low SNR
High Resolution
Figure 1: reflection coefficient
vs.. impedance
Low resistive load
High SNR
Low Resolution
30
Logo et nom de marque
AFM/STM Microscopy
Fully Automated Proposal
•
•
•
System drift correction via ECAL
Phase shifting and Attenuation are done through DSP
Low IF frequency, and High speed ADC are chosen to minimize the computational round off error in DSP.
Source
DUT
ECAL
A
B
LO1
LO1
10 KHz
IF
10 KHz
IF
LO2
LO2
A/D1
-
+
U93
DIF1
-
DAC
DSP1
DSP2
DAC
+
A/D
A/D
High resolution
amplitude
tweaker
31
Logo et nom de marque
AFM/STM Microscopy
How do we measure small things?
-SMM is a near field system. The resolution is determined by the Electric field interaction area with the sample. This is
on the order of 5-10 nm
-SMM uses a network analyzer to measure the vector reflection coefficient caused by the tip-sample interaction; this
gives information about the material properties (dielectric properties)
-While an AFM needs “contact” to make a measurement the SMM can measure without contact. You can be 1-10 nm
away from the sample and still have good sensitivity
5400 AFM
PNA network analyzer
5 nm
Tip/sample
interaction area
Nosecone assembly
Applying cantilever to
substrate holder
32
Logo et nom de marque
AFM/STM Microscopy
Electromechanical coupling
Balanced Pendulum: How Does It Work
• Laser tracking spot remains fixed
relative to Z-piezo & AFM cantilever
• Z-piezo does not bend
Y scan
Tube Design
Pendulum Design
33
Logo et nom de marque
AFM/STM Microscopy
Early Design Suffers from Abrupt Localized Bend of
Coax Connecting TIP to Diplexer
Load Diplexer
RF to PNA
Coax from the
Tip to diplexer
Scanner head
With Conductive Tip
34
Logo et nom de marque
AFM/STM Microscopy
Distribution of Electromechanical Coupling Through
Coaxial Loop
Extraction tool
Conductive Tip
Conductive Tip
Diplexer 50 Ohm CKT
Looped cable
Looped cable
•
Half Wavelength Cable
Diffusion of electrical/mechanical coupling with integration of enhanced VNA and Precision Machining
35
Logo et nom de marque
AFM/STM Microscopy
How to Interpret the Measurement
Tip and cantilever impedance
Tip ( Shank L=100 um ,Dia=20 nm)
Cantilever (L=300 um ,W=60 um)
C2 Oxide capacitance
cantilever capacitance
C3 dopant capacitance
C1
Oxide (Thickness ~2 nm)
Substrate
Dopant
C (measured Cap)= C1 II (C2 in series C3)
C1 nominal=3.18 fF with100 nm change gives 3.18 af change in capacitance.
C2 nominal=5.3 aF and tip capacitance of 2 nm dielectric over a conductor.
The tip over a silicon substrate has .53 aF effective capacitance
36
Logo et nom de marque
AFM/STM Microscopy
How to Interpret the Measurement
Tip and Cantilever
37
Logo et nom de marque
AFM/STM Microscopy
DPMM
Dopant Profile Measurement Module
DPMM approach:
Use the Flatband transfer function that
is function of dopant density ( variable
capacitor) that can be used as an AM
mixer to modulate the reflected MW
signal at the rate of Flatband drive
frequency (<100 KHz). The said AM
modulation index is function of the
dopant density.
38
Logo et nom de marque
AFM/STM Microscopy
IMEC p-type after CO2 snowjetcleaning RH~23.5% T~71.4
F
Beautiful SMM channels
39
Logo et nom de marque
AFM/STM Microscopy
Life Science Examples
AFM
Cell
SMM
AFM
Virus
SMM
40
Logo et nom de marque
AFM/STM Microscopy
41
Logo et nom de marque
AFM/STM Microscopy
SRAM
Image
42
Logo et nom de marque
AFM/STM Microscopy
Nanoscale Materials Electronic
Measurements
Available SPM-based techniques to probe materials electric properties:
Scanning near-field microwave microscopy (SNMM)
Scanning capacitance microscopy (SCM)
Scanning spreading resistance microscopy (SSRM)
Electrostatic force microscopy (EFM)
Current-sensing (or conductive) AFM (CSAFM)
Kelvin force microscopy (KFM)
More …
Scanning Probe Microscopy, edited by S. Kalinin and A. Gruverman, Springer, New York, 2007.
43
Logo et nom de marque
AFM/STM Microscopy
Nanoscale Materials Electronic
Measurements
Vector network analyzer + AFM
Scanning Microwave Microscopy (SMM)
Absolute measurements for:
impedance
capacitance
dopant density
more …
44
Logo et nom de marque
AFM/STM Microscopy
Merci
45
Logo et nom de marque