VSMG3700 Datasheet

VSMG3700
www.vishay.com
Vishay Semiconductors
High Speed Infrared Emitting Diode, 850 nm,
GaAlAs Double Hetero
FEATURES
• Package type: surface mount
• Package form: PLCC-2
• Dimensions (L x W x H in mm): 3.5 x 2.8 x 1.75
• Peak wavelength: λp = 850 nm
• High reliability
• High radiant power
• High radiant intensity
948553
• Angle of half intensity: ϕ = ± 60°
• Low forward voltage
• Suitable for high pulse current operation
• High modulation band width: fc = 18 MHz
DESCRIPTION
• Good spectral matching with Si photodetectors
VSMG3700 is an infrared, 850 nm emitting diode in GaAlAs
double hetero (DH) technology with high radiant power and
high speed, molded in a PLCC-2 package for surface
mounting (SMD).
• Floor life: 168 h, MSL 3, acc. J-STD-020
• Lead (Pb)-free reflow soldering
• AEC-Q101 qualified
• Material categorization: For definitions of compliance
please see www.vishay.com/doc?99912
APPLICATIONS
• Infrared radiation source for operation with CMOS
cameras (illumination)
• High speed IR data transmission
PRODUCT SUMMARY
COMPONENT
Ie (mW/sr)
ϕ (deg)
λp (nm)
tr (ns)
10
± 60
850
20
VSMG3700
Note
• Test conditions see table “Basic Characteristics”
ORDERING INFORMATION
ORDERING CODE
PACKAGING
REMARKS
PACKAGE FORM
VSMG3700-GS08
Tape and reel
MOQ: 7500 pcs, 1500 pcs/reel
PLCC-2
VSMG3700-GS18
Tape and reel
MOQ: 8000 pcs, 8000 pcs/reel
PLCC-2
Note
• MOQ: minimum order quantity
Rev. 1.5, 24-Sep-13
Document Number: 81471
1
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
VSMG3700
www.vishay.com
Vishay Semiconductors
ABSOLUTE MAXIMUM RATINGS (Tamb = 25 °C, unless otherwise specified)
PARAMETER
TEST CONDITION
SYMBOL
VALUE
UNIT
VR
5
V
Reverse voltage
Forward current
IF
100
mA
Peak forward current
tp/T = 0.5, tp = 100 μs
IFM
200
mA
Surge forward current
tp = 100 μs
IFSM
1.5
A
PV
180
mW
Power dissipation
Junction temperature
Operating temperature range
Tj
100
°C
Tamb
-40 to +85
°C
Storage temperature range
Soldering temperature
Thermal resistance junction/ambient
Tstg
-40 to +100
°C
acc. figure 8, J-STD-020
Tsd
260
°C
J-STD-051, soldered on PCB
RthJA
250
K/W
120
200
IF - Forward Current (mA)
PV - Power Dissipation (mW)
180
160
140
120
100
RthJA = 250 K/W
80
60
40
100
80
60
RthJA = 250 K/W
40
20
20
0
0
0
10
21339
20
30
40
50
60
70 80
0
90 100
Tamb - Ambient Temperature (°C)
10
Fig. 1 - Power Dissipation Limit vs. Ambient Temperature
20 30 40
50 60 70 80
90 100
Tamb - Ambient Temperature (°C)
21340
Fig. 2 - Forward Current Limit vs. Ambient Temperature
BASIC CHARACTERISTICS (Tamb = 25 °C, unless otherwise specified)
PARAMETER
Forward voltage
Temperature coefficient of VF
Reverse current
Junction capacitance
Radiant intensity
Radiant power
Temperature coefficient of φe
TEST CONDITION
SYMBOL
MIN.
TYP.
MAX.
UNIT
1.8
V
IF = 100 mA, tp = 20 ms
VF
1.5
IF = 1 A, tp = 100 μs
VF
2.3
V
IF = 1 mA
TKVF
-1.8
mV/K
VR = 5 V
IR
VR = 0 V, f = 1 MHz, E = 0
Cj
IF = 100 mA, tp = 20 ms
Ie
10
μA
22
mW/sr
125
6
10
pF
IF = 1 A, tp = 100 μs
Ie
100
mW/sr
IF = 100 mA, tp = 20 ms
φe
40
mW
IF = 100 mA
TKφe
-0.35
%/K
ϕ
± 60
deg
nm
Angle of half intensity
Peak wavelength
IF = 100 mA
λp
850
Spectral bandwidth
IF = 100 mA
Δλ
40
nm
Temperature coefficient of λp
IF = 100 mA
TKλp
0.25
nm/K
Rise time
IF = 100 mA
tr
20
ns
Fall time
IF = 100 mA
tf
13
ns
IDC = 70 mA, IAC = 30 mA pp
fc
18
MHz
d
0.44
mm
Cut-off frequency
Virtual source diameter
Rev. 1.5, 24-Sep-13
Document Number: 81471
2
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
VSMG3700
www.vishay.com
Vishay Semiconductors
BASIC CHARACTERISTICS (Tamb = 25 °C, unless otherwise specified)
1.25
10 000
0.01
1000
0.02
0.05
100
0.2
0.5
DC
0.1
10
1
0.01
0.75
0.5
0.25
0
0.1
1
10
100
tp - Pulse Length (ms)
95 9985
1.0
800
Fig. 6 - Relative Radiant Power vs. Wavelength
0°
1000
10°
20°
30°
Ie, rel - Relative Radiant Sensitivity
IF - Forward Current (mA)
900
λ- Wavelength (nm)
16972
Fig. 3 - Pulse Forward Current vs. Pulse Duration
850
100
tp = 100 µs
tp/T = 0.001
10
40°
1.0
0.9
50°
0.8
60°
70°
0.7
ϕ - Angular Displacement
IF - Forward Current (mA)
tp/T = 0.005
Φe, rel - Relative Radiant Power
Tamb < 60 °C
80°
1
0
1
2
3
0.6
4
0.4
0.2
0
94 8013
VF - Forward Voltage (V)
18873_1
Fig. 4 - Forward Current vs. Forward Voltage
Fig. 7 - Relative Radiant Intensity vs. Angular Displacement
Ie - Radiant Intensity (mW/sr)
100
10
tp = 1 µs
1
0.1
1
18874
10
100
1000
IF - Forward Pulse Current (mA)
Fig. 5 - Radiant Intensity vs. Forward Current
Rev. 1.5, 24-Sep-13
Document Number: 81471
3
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
VSMG3700
www.vishay.com
Vishay Semiconductors
PACKAGE DIMENSIONS in millimeters
0.9
1.75±0.1
3.5±0.2
0.8
Technical drawings
according to DIN
specifications
A
C
2.2
2.8±0.15
Pin identification
Dimensions in mm
Drawing-No.: 6.541-5067.01-4
Issue: 6; 23.09.13
Ø2.4
3
+0.15
Mounting Pad Layout
Area covered
with solderresist
4
2.6 (2.8)
1.2
1.6 (1.9)
4
Dimensions: Reflow and vapor phase (wave soldering)
SOLDER PROFILE
DRYPACK
300
255 °C
240 °C
217 °C
250
Temperature (°C)
max. 260 °C
245 °C
FLOOR LIFE
200
max. 30 s
150
max. 100 s
max. 120 s
100
max. ramp up 3 °C/s max. ramp down 6 °C/s
50
Devices are packed in moisture barrier bags (MBB) to
prevent the products from moisture absorption during
transportation and storage. Each bag contains a desiccant.
Floor life (time between soldering and removing from MBB)
must not exceed the time indicated on MBB label:
Floor life: 168 h
Conditions: Tamb < 30 °C, RH < 60 %
Moisture sensitivity level 3, acc. to J-STD-020.
DRYING
0
0
19841
50
100
150
200
250
300
Time (s)
Fig. 8 - Lead (Pb)-free Reflow Solder Profile acc. J-STD-020
Rev. 1.5, 24-Sep-13
In case of moisture absorption devices should be baked
before soldering. Conditions see J-STD-020 or label.
Devices taped on reel dry using recommended conditions
192 h at 40 °C (+ 5 °C), RH < 5 %.
Document Number: 81471
4
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
VSMG3700
www.vishay.com
Vishay Semiconductors
TAPE AND REEL
PLCC-2 components are packed in antistatic blister tape
(DIN IEC (CO) 564) for automatic component insertion.
Cavities of blister tape are covered with adhesive tape.
10.0
9.0
120°
4.5
3.5
13.00
12.75
2.5
1.5
63.5
60.5
Adhesive tape
Identification
Label:
Vishay
type
group
tape code
production
code
quantity
Blister tape
Component cavity
14.4 max.
180
178
94 8665
Fig. 12 - Dimensions of Reel-GS08
94 8670
Fig. 9 - Blister Tape
10.4
8.4
120°
2.2
2.0
3.5
3.1
4.5
3.5
5.75
5.25
3.6
3.4
8.3
7.7
1.85
1.65
1.6
1.4
4.1
3.9
4.1
3.9
0.25
2.05
1.95
94 8668
Fig. 10 - Tape Dimensions in mm for PLCC-2
13.00
12.75
2.5
1.5
4.0
3.6
Identification
Label:
Vishay
type
group
tape code
production
code
quantity
62.5
60.0
321
329
14.4 max.
18857
Fig. 13 - Dimensions of Reel-GS18
MISSING DEVICES
A maximum of 0.5 % of the total number of components per
reel may be missing, exclusively missing components at the
beginning and at the end of the reel. A maximum of three
consecutive components may be missing, provided this gap
is followed by six consecutive components.
De-reeling direction
COVER TAPE REMOVAL FORCE
The removal force lies between 0.1 N and 1.0 N at a removal
speed of 5 mm/s. In order to prevent components from
popping out of the blisters, the cover tape must be pulled off
at an angle of 180° with regard to the feed direction.
94 8158
> 160 mm
Tape leader
40 empty
compartments
min. 75 empty
compartments
Carrier leader
Carrier trailer
Fig. 11 - Beginning and End of Reel
The tape leader is at least 160 mm and is followed by a
carrier tape leader with at least 40 empty compartments.
The tape leader may include the carrier tape as long as the
cover tape is not connected to the carrier tape. The least
component is followed by a carrier tape trailer with a least
75 empty compartments and sealed with cover tape.
Rev. 1.5, 24-Sep-13
Document Number: 81471
5
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Legal Disclaimer Notice
www.vishay.com
Vishay
Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other
disclosure relating to any product.
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular
purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular
product with the properties described in the product specification is suitable for use in a particular application. Parameters
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All
operating parameters, including typical parameters, must be validated for each customer application by the customer’s
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,
including but not limited to the warranty expressed therein.
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please
contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
Material Category Policy
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the
definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council
of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment
(EEE) - recast, unless otherwise specified as non-compliant.
Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that
all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free
requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference
to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21
conform to JEDEC JS709A standards.
Revision: 02-Oct-12
1
Document Number: 91000