AON6230 40V N-Channel MOSFET General Description Product Summary VDS The AON6230 uses trench MOSFET technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of RDS(ON), Ciss and Coss. This device is ideal for boost converters and synchronous rectifiers for consumer, telecom, industrial power supplies and LED backlighting. 40V 85A ID (at VGS=10V) RDS(ON) (at VGS=10V) < 1.44mΩ RDS(ON) (at VGS=4.5V) < 2.1mΩ 100% UIS Tested 100% Rg Tested DFN5X6 Top View D Top View Bottom View 1 8 2 7 3 6 4 5 G S PIN1 Absolute Maximum Ratings TA=25°C unless otherwise noted Parameter Symbol Drain-Source Voltage VDS Gate-Source Voltage VGS TC=25°C Continuous Drain Current G Pulsed Drain Current C Avalanche Current C Avalanche energy L=0.1mH C TC=25°C Power Dissipation B TA=25°C Power Dissipation A Junction and Storage Temperature Range Thermal Characteristics Parameter Maximum Junction-to-Ambient A Maximum Junction-to-Ambient A D Maximum Junction-to-Case Rev.1.0: February 2013 IAS 90 A EAS 405 mJ 104 Steady-State Steady-State W 42 7.4 RθJA RθJC W 4.7 TJ, TSTG Symbol t ≤ 10s A 45.5 PDSM TA=70°C A 57.5 PD TC=100°C V 235 IDSM TA=70°C ±20 66 IDM TA=25°C Continuous Drain Current Units V 85 ID TC=100°C Maximum 40 -55 to 150 Typ 14 40 1 www.aosmd.com °C Max 17 55 1.2 Units °C/W °C/W °C/W Page 1 of 6 AON6230 Electrical Characteristics (TJ=25°C unless otherwise noted) Symbol Parameter STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage Conditions Min ID=250µA, VGS=0V IGSS Gate-Body leakage current VDS=0V, VGS=±20V VGS(th) Gate Threshold Voltage VDS=VGS, ID=250µA 1.2 ID(ON) On state drain current VGS=10V, VDS=5V 235 TJ=55°C ±100 nA 1.75 2.3 V 1.22 1.44 1.74 2.1 VGS=4.5V, ID=20A 1.62 2.1 mΩ 1 V 85 A Static Drain-Source On-Resistance TJ=125°C A gFS Forward Transconductance VDS=5V, ID=20A 124 VSD Diode Forward Voltage IS=1A,VGS=0V 0.67 IS Maximum Body-Diode Continuous Current G DYNAMIC PARAMETERS Ciss Input Capacitance Crss Reverse Transfer Capacitance Rg Gate resistance µA 5 VGS=10V, ID=20A Output Capacitance Units V 1 Zero Gate Voltage Drain Current Coss Max 40 VDS=40V, VGS=0V IDSS RDS(ON) Typ VGS=0V, VDS=20V, f=1MHz mΩ S 6050 pF 1640 pF 105 pF 1.1 1.7 Ω SWITCHING PARAMETERS Qg(10V) Total Gate Charge 81 114 nC Qg(4.5V) Total Gate Charge 35 50 Qgs Gate Source Charge Qgd Gate Drain Charge tD(on) Turn-On DelayTime tr Turn-On Rise Time tD(off) Turn-Off DelayTime VGS=0V, VDS=0V, f=1MHz VGS=10V, VDS=20V, ID=20A VGS=10V, VDS=20V, RL=1Ω, RGEN=3Ω 0.5 nC 14 nC 13 nC 12 ns 6.5 ns 59 ns tf Turn-Off Fall Time 11.5 ns trr Body Diode Reverse Recovery Time IF=20A, dI/dt=500A/µs 28 Qrr Body Diode Reverse Recovery Charge IF=20A, dI/dt=500A/µs 98 ns nC A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The Power dissipation PDSM is based on R θJA t ≤ 10s and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design. B. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C. Ratings are based on low frequency and duty cycles to keep initial TJ =25°C. D. The RθJA is the sum of the thermal impedance from junction to case RθJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse rating. G. The maximum current rating is package limited. H. These tests are performed with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C. THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Rev.1.0: February 2013 www.aosmd.com Page 2 of 6 AON6230 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 100 100 4.5V VDS=5V 80 80 10V 60 ID(A) ID (A) 60 3V 40 40 125°C 20 20 VGS=2.5V 25°C 0 0 0 1 2 3 4 0 5 2 2 3 4 5 6 1.6 1.8 Normalized On-Resistance VGS=4.5V 1.6 RDS(ON) (mΩ Ω) 1 VGS(Volts) Figure 2: Transfer Characteristics (Note E) VDS (Volts) Fig 1: On-Region Characteristics (Note E) 1.4 1.2 VGS=10V 1 0.8 0.6 0.4 VGS=10V ID=20A 1.4 17 5 2 VGS=4.5V 10 ID=20A 1.2 1 0.8 0 5 10 15 20 25 30 0 25 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E) 50 75 100 125 150 0 Temperature (°C) Figure 4: On-Resistance vs. Junction 18Temperature (Note E) 4 1.0E+02 ID=20A 1.0E+01 40 1.0E+00 IS (A) RDS(ON) (mΩ Ω) 3 125°C 2 125°C 1.0E-01 1.0E-02 104 25°C 41.5 1.0E-03 1 25°C 1.0E-04 1.0E-05 0 2 4 6 8 10 VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage (Note E) Rev.1.0: February 2013 www.aosmd.com 0.0 0.2 0.4 0.6 0.8 1.0 1.2 VSD (Volts) Figure 6: Body-Diode Characteristics (Note E) Page 3 of 6 AON6230 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 10 8000 VDS=20V ID=20A 7000 Ciss 8 Capacitance (pF) VGS (Volts) 6000 6 4 5000 Coss 4000 3000 2000 2 Crss 1000 0 0 0 10 20 30 40 50 60 70 80 90 0 10 Qg (nC) Figure 7: Gate-Charge Characteristics RDS(ON) limited 10µs DC 40 100µs 1ms 10ms 10.0 1.0 TJ(Max)=150°C TC=25°C 0.1 TJ(Max)=150°C TC=25°C 400 10µs Power (W) ID (Amps) 30 500 1000.0 100.0 20 VDS (Volts) Figure 8: Capacitance Characteristics 17 5 2 10 300 200 100 0.0 0.01 0.1 1 10 100 0 0.0001 0.001 0.01 0.1 1 10 0 Pulse Width (s) 18 Figure 10: Single Pulse Power Rating Junction-to-Case VDS (Volts) Figure 9: Maximum Forward Biased Safe Operating Area (Note F) (Note F) Zθ JC Normalized Transient Thermal Resistance 10 D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 40 RθJC=1.2°C/W 1 0.1 104 41.5 Single Pulse PD Ton T 0.01 1E-05 0.0001 0.001 0.01 0.1 1 10 100 Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F) Rev.1.0: February 2013 www.aosmd.com Page 4 of 6 AON6230 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 150 TA=25°C 100 TA=100°C Power Dissipation (W) IAR (A) Peak Avalanche Current 1000 TA=150°C TA=125°C 10 1 120 90 60 30 0 1 10 100 1000 0 25 Time in avalanche, tA (µ µs) Figure 12: Single Pulse Avalanche capability (Note C) 75 100 125 150 TCASE (°C) Figure 13: Power De-rating (Note F) 10000 100 TA=25°C 80 1000 Power (W) Current rating ID(A) 50 60 40 17 5 2 10 100 10 20 1 1E-05 0 0 25 50 75 100 125 150 TCASE (°C) Figure 14: Current De-rating (Note F) 0.001 0.1 100 1000 Pulse Width (s) 18 Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H) Zθ JA Normalized Transient Thermal Resistance 10 D=Ton/T TJ,PK=TA+PDM.ZθJA.RθJA 1 In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 40 RθJA=55°C/W 0.1 104 41.5 0.01 PD Ton Single Pulse 0.001 0.0001 0.001 0.01 T 0.1 1 10 100 1000 Pulse Width (s) Figure 16: Normalized Maximum Transient Thermal Impedance (Note H) Rev.1.0: February 2013 www.aosmd.com Page 5 of 6 AON6230 Gate Charge Test Circuit & Waveform Vgs Qg 10V + + Vds VDC - Qgs Qgd VDC - DUT Vgs Ig Charge Resistive Switching Test Circuit & Waveforms RL Vds Vds 90% + Vdd DUT Vgs VDC - Rg 10% Vgs Vgs t d(on) tr t d(off) t on tf toff Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L 2 E AR = 1/2 LIAR Vds BVDSS Vds Id + Vdd Vgs Vgs I AR VDC - Rg Id DUT Vgs Vgs Diode Recovery Test Circuit & Waveforms Q rr = - Idt Vds + DUT Vds Isd Vgs Ig Vgs L Isd t rr IF dI/dt + Vdd I RM Vdd VDC - Vds 1 Rev.1.0: February 2013 www.aosmd.com 1.2 Page 6 of 6