IRAUDAMP11 - International Rectifier

IRAUDAMP11
120W x 3 Channel Class D Audio Power Amplifier
Using the IRS2053M and IRF6665
By
Jun Honda, Liwei Zheng
CAUTION:
International Rectifier suggests the following guidelines for safe operation and handling of
IRAUDAMP11 Demo board;
 Always wear safety glasses whenever operating Demo Board
 Avoid personal contact with exposed metal surfaces when operating Demo Board
 Turn off Demo Board when placing or removing measurement probes
www.irf.com
IRAUDAMP11 REV 1.0
Page 1 of 35
TABLE OF CONTENTS
PAGE
INTRODUCTION............................................................................................................................................... 3
SPECIFICATIONS ............................................................................................................................................ 3
CONNECTION SETUP ..................................................................................................................................... 5
CONNECTOR DESCRIPTION ......................................................................................................................... 5
TEST PROCEDURES....................................................................................................................................... 6
PERFORMANCE AND TEST GRAPHS .......................................................................................................... 7
CLIPPING CHARACTERISTICS.................................................................................................................... 10
SOFT CLIPPING............................................................................................................................................. 10
EFFICIENCY................................................................................................................................................... 12
THERMAL CONSIDERATIONS ..................................................................................................................... 12
THERMAL INTERFACE MATERIAL’S PRESSURE CONTROL ................................................................................. 13
POWER SUPPLY REJECTION RATIO (PSRR)............................................................................................ 15
SHORT CIRCUIT PROTECTION RESPONSE .............................................................................................. 16
IRAUDAMP11 OVERVIEW ............................................................................................................................ 17
FUNCTIONAL DESCRIPTIONS..................................................................................................................... 19
IRS2053 GATE DRIVER IC ............................................................................................................................ 19
SELF-OSCILLATING FREQUENCY .................................................................................................................... 20
ADJUSTMENTS OF SELF-OSCILLATING FREQUENCY ......................................................................................... 20
SELECTABLE DEAD-TIME ................................................................................................................................ 21
PROTECTION SYSTEM OVERVIEW ............................................................................................................ 22
CLICK AND POP NOISE REDUCTION ......................................................................................................... 24
BUS PUMPING............................................................................................................................................... 24
INPUT SIGNAL AND GAIN SETTING ........................................................................................................... 26
GAIN SETTING............................................................................................................................................... 26
IRAUDAMP11 FABRICATION MATERIALS................................................................................................. 28
IRAUDAMP11 HARDWARE .......................................................................................................................... 31
IRAUDAMP11 PCB SPECIFICATIONS......................................................................................................... 32
REVISION CHANGES DESCRIPTIONS........................................................................................................ 35
www.irf.com
IRAUDAMP11 REV 1.0
Page 2 of 35
Introduction
The IRAUDAMP11 Demo board is a reference design which uses only one IC (IRS2053M) to derive
appropriate input signals, amplify the audio input, and achieve a three-channel 120 W/ch (4Ω, THD+N=1%)
half-bridge Class D audio power amplifier. The reference design demonstrates how to use the IRS2053M
Class D audio controller and gate driver IC, implement protection circuits, and design an optimum PCB
layout using IRF6665 DirectFET MOSFETs. The reference design contains all the required housekeeping
power supplies for ease of use. The three-channel design is scalable, for power and number of channels.
Applications







AV receivers
Home theater systems
Mini component stereos
Powered speakers
Sub-woofers
Musical Instrument amplifiers
Automotive after market amplifiers
Features
Output Power:
Residual Noise:
Distortion:
Efficiency:
Multiple Protection Features:
PWM Modulator:
120W x 3 channels (4Ω, THD+N=1%)
or 170W x 3 channels (4Ω, THD+N=10%)
220V, IHF-A weighted, AES-17 filter
0.02% THD+N @ 60W, 4Ω
90% @ 120W, 4Ω, single-channel driven, Class D stage
Over-current protection (OCP), high side and low side
Over-voltage protection (OVP),
Under-voltage protection (UVP), high side and low side
Over-temperature protection (OTP)
Self-oscillating half-bridge topology with optional clock synchronization
Specifications
General Test Conditions (unless otherwise noted)
Supply Voltages
±35V
Load Impedance
4Ω
Self-Oscillating Frequency
400kHz
Gain Setting
28dB
Notes / Conditions
No input signal, Adjustable
1Vrms input yields rated power
Electrical Data
IR Devices Used
Typical
Notes / Conditions
IRS2053M Audio Controller and Gate-Driver,
IRF6665 DirectFET MOSFETs
Modulator
Self-oscillating, second order sigma-delta modulation, analog input
Power Supply Range
± 25V to ±35V
Bipolar power supply
Output Power CH1-3: (1% THD+N)
120W
1kHz, ±35V
Output Power CH1-3: (10% THD+N)
170W
1kHz, ±35V
www.irf.com
IRAUDAMP11 REV 1.0
Page 3 of 35
Rated Load Impedance
Standby Supply Current
Total Idle Power Consumption
Channel Efficiency
8-4Ω
+75/-95mA
6W
90%
Resistive load
No input signal
No input signal
Single-channel driven,
120W, Class D stage
.
Audio Performance
Class D
Output
THD+N, 1W
THD+N, 10W
THD+N, 60W
THD+N, 100W
0.015%
0.01%
0.02%
0.03%
Dynamic Range
101dB
Residual Noise, 22Hz - 20kHzAES17
220V
Damping Factor
Channel Separation
67
75dB
75dB
70dB
±1dB
±3dB
Frequency Response : 20Hz-20kHz
: 20Hz-35kHz
Physical Specifications
Dimensions
Notes / Conditions
1kHz, Single-channel driven
A-weighted, AES-17 filter,
Single-channel operation
Self-oscillating – 400kHz
1kHz, relative to 4Ω load
100Hz
1kHz
10kHz
1W, 4Ω - 8Ω Load
Weight
3.94”(L) x 2.83”(W) x 0.85”(H)
100 mm (L) x 72 mm (W) x 21.5 mm(H)
0.130kgm
www.irf.com
IRAUDAMP11 REV 1.0
Page 4 of 35
Connection Setup
Audio Signal Generator
CH1 CH2 CH3
Input
Frequency adjustor
VR1
DS1
VCC INDICATOR
IRS2053M
IRF6665
Output
Output
CH2 CH1 +B GND -B CH3
G
35 V, 5 A DC supply
250W, 4Ω,
Non-inductive Resistors
35 V, 5 A DC supply
Fig 1 Typical Test Setup
Connector Description
CH1 IN
CH2 IN
CH3 IN
SUPPLY
CH1 OUT
CH2 OUT
CH3 OUT
www.irf.com
CN1
CN1
CN1
P1
P2
P2
P3
Analog input for CH1
Analog input for CH2
Analog input for CH3
Positive and negative supply (+B / -B)
Output for CH1
Output for CH2
Output for CH3
IRAUDAMP11 REV 1.0
Page 5 of 35
Test Procedures
Test Setup:
1. Connect 4-200 W dummy loads to 3 output connectors (P2 and P3 as shown on Fig 1)
and an Audio Precision analyzer (AP).
2. Connect the Audio Signal Generator to CN1 for CH1~CH3 respectively (AP).
3. Set up the dual power supply with voltages of ±35V; current limit to 5A.
4. TURN OFF the dual power supply before connecting to On of the unit under test (UUT).
5. Connect the dual power supply to P1. as shown on Fig 1
Power up:
6. Turn ON the dual power supply. The ±B supplies must be applied and removed at the
same time.
7. The Blue LED should turn ON immediately and stay ON
8. Quiescent current for the positive supply should be 75mA 10mA at +35V.
9. Quiescent current for the negative supply should be 95mA 10mA at –35V.
Switching Frequency test
10. With an Oscilloscope, monitor the switching waveform at test points VS1~VS3. Adjust VR1
to set the self oscillating frequency to 400 kHz  25 kHz when DUT in clock synchronize
mode.
Functionality Audio Tests:
11. Set the signal generator to 1kHz, 20 mVRMS output.
12. Connect the audio signal generator to CN1(Input of CH1,CH2,CH3)
13. Sweep the audio signal voltage from 15 mVRMS to 1 VRMS.
14. Monitor the output signals at P2/P3 with an oscilloscope. The waveform must be a non
distorted sinusoidal signal.
15. Observe that a 1 VRMS input generates an output voltage of 25.52 VRMS(CH1/CH2). The
ratio, R4x/(R3x) and R30x/(R31x), determines the voltage gain of IRAUDAMP11.
Test Setup using Audio Precision (Ap):
16. Use an unbalanced-floating signal from the generator outputs.
17. Use balanced inputs taken across output terminals, P2 and P3.
18. Connect Ap frame ground to GND at terminal P1.
19. Select the AES-17 filter(pull-down menu) for all the testing except frequency response.
20. Use a signal voltage sweep range from 15 mVRMS to 1 VRMS.
21. Run Ap test programs for all subsequent tests as shown in Fig 2- Fig 7below.
www.irf.com
IRAUDAMP11 REV 1.0
Page 6 of 35
Performance and test graphs
10
5
2
1
0.5
0.2
0.1
%
0.05
0.02
0.01
0.005
0.002
0.001
100m
200m
500m
1
2
5
10
20
50
100
200
W
S weep
Trac e
Color
Line S ty le
Thic k
Data
A x is
Com m ent
1
1
2
1
3
3
Red
B lue
G reen
S olid
S olid
S olid
2
2
2
A nlr.THD+ N Ratio
A nlr.THD+ N Ratio
A nlr.THD+ N Ratio
Left
Left
Left
CH1
CH2
±B Supply = ±35V, 4 Ω Resistive Load
Fig 2 IRAUDAMP11, THD+N versus Power, Stereo, 4 Ω
.
+4
T
+3
+2
+1
-0
-1
d
B
r
-2
A
-4
-3
-5
-6
-7
-8
-9
-10
20
50
100
200
500
1k
2k
5k
10k
20k
50k
100k 200k
Hz
CH1-Blue; CH2-Yellow; CH3-Red
±B Supply = ±35V, 4 Ω Resistive Load
Fig 3 IRAUDAMP11, Frequency response
www.irf.com
IRAUDAMP11 REV 1.0
Page 7 of 35
Red
Blue
CH1, 10W Output
CH1, 50W Output
Fig 4 THD+N Ratio vs. Frequency
+0
-20
d
B
V
-40
-60
-80
-100
20
50
100
200
500
1k
2k
5k
10k
Hz
Sweep
Trace
Color
Line Style
1
1
2
1
2
1
Yellow Solid
Blue
Solid
Red
Solid
Thick
Data
Axis
Comment
2
2
2
Fft.Ch.1 Ampl
Fft.Ch.2 Ampl
Fft.Ch.1 Ampl
Left
Left
Left
CH2
CH3
CH1
Fig 5, 1V output Frequency Spectrum
www.irf.com
IRAUDAMP11 REV 1.0
Page 8 of 35
20k
+0
-25
d
B
V
-50
-75
-100
-125
-150
10
20
50
100
200
500
1k
2k
5k
10k
20k
Hz
Sweep
Trace
Color
Line Style
Thick
Data
Axis
Comment
1
1
2
1
2
1
Red
Blue
Yellow
Solid
Solid
Solid
2
2
2
Fft.Ch.1 Ampl
Fft.Ch.2 Ampl
Fft.Ch.1 Ampl
Left
Left
Left
CH1
CH3
CH2
No signal, Self Oscillator @ 400kHz
Fig 6, IRAUDAMP11 Noise Floor
.
+0
-1 0
-2 0
-3 0
d
B
r
-4 0
A
-6 0
-5 0
-7 0
-8 0
-9 0
-1 0 0
20
50
100
200
500
1k
2k
5k
10k
20k
Hz
S weep
Tra c e
C o lo r
L in e S t y le
Th ic k
D ata
A x is
Com m ent
1
3
4
5
6
7
1
1
1
1
1
1
Cy an
Y e llo w
Red
M agenta
B lu e
Cy an
S o lid
S o lid
S o lid
S o lid
S o lid
S o lid
2
2
2
2
1
1
A n lr. A m p l
A n lr. A m p l
A n lr. A m p l
A n lr. A m p l
A n lr. A m p l
A n lr. A m p l
L e ft
L e ft
L e ft
L e ft
L e ft
L e ft
C H 3 _ o n ; C H 1 _ o ff
C H 1 _ o n ; C H 3 _ o ff
C H 2 _ o n ; C H 3 _ o ff
C H 3 _ o n ; C H 2 _ o ff
C H 2 _ o n ; C H 1 _ o ff
C h 1 _ o n ; C H 2 _ o ff
Fig 7, Channel separation vs. frequency
www.irf.com
IRAUDAMP11 REV 1.0
Page 9 of 35
Clipping characteristics
Red Trace: Total Distortion + Noise Voltage
Green Trace: Output Voltage
60W / 4, 1kHz, THD+N=0.02%
174W / 4, 1kHz, THD+N=10%
Measured Output and Distortion Waveforms(CH1/CH2)
Fig 8 Clipping Characteristics
.
Soft Clipping
IRS2053M has Clipping detection function, it monitors error voltage in COMP pin with a window
comparator and pull an open drain nmos referenced to GND. Threshold to detect is at 10% and
90% of VAA-VSS. Each channel has independent CLIP outputs. Once IRS2053M detects
Clipping, the CLIP pin will generate pulses to trigger soft clipping circuit as Fig 9, which limits
output’s maximum power.
Fig10 shows 20Hz and 20 kHz THD+N versus Power graph in CH3; it shows limitation of output’s
power with different frequency.
www.irf.com
IRAUDAMP11 REV 1.0
Page 10 of 35
Soft Clipping
R28A
1K
C15A
10uF, 16V
C6A
1uF,50V
R5A
47K
R29A
220K
D3A
1N4148
Audio signal INPUT
C0A
R7A
470K
GND
R6A
47K
CLIP Detection
D
R27A
Q5
VAA
DTA144EKA
10uF,50V 3.3K
G
R3A
S
Q6
MMBFJ112
1K
IN-
C5A
10uF, 50V
VSS
GND
Fig 9 Soft Clipping Circuit
10
5
2
1
0.5
0.2
%
0.1
0.05
0.02
0.01
0.005
0.002
0.001
100m
200m
500m
1
2
5
10
20
50
100
300
W
Sweep
Trace
Color
Line Style
Thick
Data
Axis
Comment
1
2
1
1
Red
Blue
Solid
Solid
2
2
Anlr.THD+N Ratio
Anlr.THD+N Ratio
Left
Left
20Hz
20kHz
±B Supply = ±35V, 4 Ω Resistive Load
Fig 10 IRAUDAMP11/CH3, THD+N versus Power, Stereo, 4 Ω
www.irf.com
IRAUDAMP11 REV 1.0
Page 11 of 35
Efficiency
Fig 11 shows efficiency characteristics of the IRAUDAMP11. The high efficiency is achieved by
following major factors:
1) Low conduction loss due to the DirectFETs offering low RDS(ON)
2) Low switching loss due to the DirectFETs offering low input capacitance for fast rise and
fall times
Secure dead-time provided by the IRS2053M, avoiding cross-conduction.
Efficiency (%)
100%
90%
Efficiency (%)
80%
70%
60%
AMP11 35V 4ohms
50%
40%
30%
20%
10%
0%
0
50
100
150
Output power (W)
Fig 11, IRAUDAMP11 4 ohms load Stereo, ±B supply = ±35V
Thermal Considerations
With this high efficiency, the IRAUDAMP11 design can handle one-eighth of the continuous rated
power, which is generally considered to be a normal operating condition for safety standards,
without additional heatsinks or forced air-cooling.
www.irf.com
IRAUDAMP11 REV 1.0
Page 12 of 35
Thermal Interface Material’s Pressure Control
The pressure between DirectFET & TIM (Thermal Interface Material) is controlled by depth of Heat
Spreader’s groove. Choose TIM which is recommended by IR. (Refer to AN-1035 for more
details). TIM’s manufacturer thickness, conductivity, & etc. determine pressure requirement.
Below shows selection options recommended:
Fig 12 TIM Information
www.irf.com
IRAUDAMP11 REV 1.0
Page 13 of 35
Check the TIM’s compression deflection with constant rate of strain (example as Fig.13) base on
manufacturer’s datasheet. According to the stress requirement, find strain range for the TIM. Then,
calculate heat spreader groove depth as below:
Groove Depth=DirectFET’s Height +TIM’s Thickness*strain
**DirectFET’s height should be measured from PCB to the top of DirectFET after reflow. The
average height of IRF6665 is 0.6mm.
Fig 13 compression deflection with constant rate of strain
www.irf.com
IRAUDAMP11 REV 1.0
Page 14 of 35
Power Supply Rejection Ratio (PSRR)
The IRAUDAMP11 obtains good power supply rejection ratio of -68 dB at 1kHz shown in Fig 14.
With this high PSRR, IRAUDAMP11 accepts any power supply topology when the supply voltages
fit between the min and max range.
+0
-10
-20
-30
d
B
V
-40
-50
-60
-70
-80
-90
20
50
100
200
500
1k
2k
5k
10k
20k
40k
Hz
Sweep
Trace
Color
Line Style
Thick
Data
Axis
1
1
Magenta
Solid
2
Anlr.Ampl
Left
Comment
Fig 14 Power Supply Rejection Ratio (PSRR)
www.irf.com
IRAUDAMP11 REV 1.0
Page 15 of 35
Short Circuit Protection Response
Figs 15-16 show over current protection reaction time of the IRAUDAMP11 in a short circuit event.
As soon as the IRS2053M detects an over current condition, it shuts down PWM. After one
second, the IRS2053M tries to resume the PWM. If the short circuit persists, the IRS2053M
repeats try and fail sequences until the short circuit is removed.
Short Circuit in Positive and Negative Load Current
CSD pin
CSD pin
VS pin
VS pin
Load current
Load current
Positive OCP
Negative OCP
Fig 15 Positive and Negative OCP Waveforms
.
OCP Waveforms Showing CSD Trip and Hiccup
CSD pin
CSD pin
VS pin
VS pin
Load current
Load current
Fig 16 OCP Response with Continuous Short Circuit
www.irf.com
IRAUDAMP11 REV 1.0
Page 16 of 35
IRAUDAMP11 Overview
The IRAUDAMP11 features a 3CH self-oscillating type PWM modulator for the smallest space,
highest performance and robust design. This topology represents an analog version of a secondorder sigma-delta modulation having a Class D switching stage inside the loop. The benefit of the
sigma-delta modulation, in comparison to the carrier-signal based modulation, is that all the error
in the audible frequency range is shifted to the inaudible upper-frequency range by nature of its
operation. Also, sigma-delta modulation allows a designer to apply a sufficient amount of error
correction.
The IRAUDAMP11 self-oscillating topology consists of following essential functional blocks.
 Front-end integrator
 PWM comparator
 Level shifters
 Gate drivers and MOSFETs
 Output LPF
Integrator
Referring to Fig 17 below, the input operational amplifier of the IRS2053M forms a front-end
second-order integrator with R3x, C2x, C3x, and R2x. The integrator that receives a rectangular
feedback signal from the PWM output via R4x and audio input signal via R3x generates a
quadratic carrier signal at the COMP pin. The analog input signal shifts the average value of the
quadratic waveform such that the duty cycle varies according to the instantaneous voltage of the
analog input signal.
PWM Comparator
The carrier signal at the COMP pin is converted to a PWM signal by an internal comparator that
has a threshold at middle point between VAA and VSS. The comparator has no hysteresis in its
input threshold.
Level Shifters
The internal input level-shifter transfers the PWM signal down to the low-side gate driver section.
The gate driver section has another level-shifter that level shifts up the high-side gate signal to the
high-side gate driver section.
www.irf.com
IRAUDAMP11 REV 1.0
Page 17 of 35
Gate Drivers and DirectFETs
The received PWM signal is sent to the dead-time generation block where a programmable
amount of dead time is added into the PWM signal between the two gate output signals of LO and
HO to prevent potential cross conduction across the output power DirectFETs. The high-side levelshifter shifts up the high-side gate drive signal out of the dead-time block.
Each channel of the IRS2053M’s drives two DirectFETs, high- and low-sides, in the power stage
providing the amplified PWM waveform.
Output LPF
The amplified PWM output is reconstructed back to an analog signal by the output LC LPF.
Demodulation LC low-pass filter (LPF) formed by L1 and C13, filters out the Class D switching
carrier signal leaving the audio output at the speaker load. A single stage output filter can be used
with switching frequencies of 400 kHz and greater; a design with a lower switching frequency may
require an additional stage of LPF.
Fig 17 Simplified Block Diagram of IRAUDAMP11 Class D Amplifier
www.irf.com
IRAUDAMP11 REV 1.0
Page 18 of 35
Functional Descriptions
IRS2053M Gate Driver IC
The IRAUDAMP11 uses the IRS2053M, a 3 Channel high-voltage (up to 200 V), high-speed
power MOSFET driver with internal dead-time and protection functions specifically designed for
Class D audio amplifier applications. These functions include OCP and UVP. The IRS2053M
integrates bi-directional over current protection for both high-side and low-side MOSFETs. The
dead-time can be selected for optimized performance according to the size of the MOSFET,
minimizing dead-time while preventing shoot-through. As a result, there is no gate-timing
adjustment required externally. Selectable dead-time through the DT pin voltage is an easy and
reliable function which requires only two external resistors, R12 and R13 as shown on Fig 18 or
Fig 24 below.
The IRS2053M offers the following functions.
 PWM modulator
 Dead-time insertion
 Over current protection
 Under voltage protection
 Level shifters
Refer to IRS2053M datasheet and AN-1158 for more details.
L1A
CH3 OUTPUT
D4
1N4148
R4 0R0 or N/A
D1C
SD
R15B
10K
R18B
R17B
10K
R16B
3.9K
VAA
+5v
0.1uF,100V
5
4
C41
N/A
2
3
4
1A VCC
1B
1Y
2Y
2B
GND 2A
R43
R47
330R,1W
R45
330R,1W
R51
10k Z7
R52
10k
R21A
0.1uF, 63V 10R,1W
C14A
0.1uF, 63V
39V
Z8
R25A
100K
R25B
100K
39V
R25C
OVP
-B
100K
CH1 OUTPUT
P2
CH1 OUTPUT
GND
GND
CH2 OUTPUT
R46
8
-5v
1
2
3
4
CH2 OUTPUT
ZX5T953
33k
R44
4CH2
3
2
1CH1
510R,1W
Z2
R36
7
R54
10k
6
R57
47k
R56
47k
5
5.1k
Z4
18V
Q3
MMBT5551
DS1
R58
47k
R55
47k
OVP
L5
220uH
C35
2.2nF,50V
R31
5.1k
Q4
MMBT5551
0.01uF, 50V
15V
R37
47k
IC9
VCC
R50
47k
Z3
39V R53
10k
R61
0.1uF, 63V
GND
GND
CH3 OUTPUT
CH3 OUTPUT
IC8
TC7W00FFCT-ND
C61
C14C
P3
1N4148
Z6
5.6V
Q9
1
-B
D1B
R42
3.3k
C37
22uF, 16V
VCC OUT
GND
SET DIT
C17B
1000uF,35V
R12C
N/A
Z5
5.6V
C40
N/A
IC2
LTC1799
1
2
3
R21B
10R,1W
GND
R23B
100k
C17D
0.1uF,50V
22R
4.7R
33k
VR1
10K
C17A
1000uF,35V
+B
Q8 ZX5T853
0.1uF,50V
R3
22k
R21C
10R,1W
0.47uF, 400V
C13A
1R
1R
R19B
R19C
Q2C
IRF6665
R23A
100k
C17C
0.1uF,50V
R12B
N/A
R22B 10K
C1
C14B
+B
Q1C
IRF6665
R9C
D2B
1N4148
0.1uF,50V
0.47uF, 400V
C13C
Q2B
IRF6665
22R
22R
C19B
VS1
R9B
R20C
DSA DSB DSC PROT
C10B
0.47uF, 400V
C13B
C19A R19A
D1A 1N4148
4.7R
R16C
3.9K
R17C
R15C 10K
10K
12
NC
VS2
HO2
VB2
9
8
11
0.1uF,50V
0
-B
R22C
10K
25
C10A
0.1uF,50V
26
NC
VS3
OTP1
OTP2
VCC
COM
OTP3
DT
VREF
HO3
1N4148
13
0.1uF,100V
C8
10uF, 16V
R4C
100K 1%
R4B
100K 1%
CH1 OUTPUT
14
HO1
GND
22R
C19C
CSD
2.2K
Q1B
IRF6665
R18C
1N4148
0R0 or N/A
2.2K
R24C
CH2 OUTPUT
L1C
22uH
D2C
VB1
10
CSD
R22
10R
GND
R24B
22uH
R20B
15
CSH1
COMP1
48
GND
4.7R
17
16
C10C
47
L1B
C9B
10uF,16V
R14B
19
LO2
IN1
1nF,50V
CSH2
C3C
2.2nF,50V
1N4148 4.7R
18
NC
NC
C4C
120R
R32
1k
R49 10R
C34
0.01uF, 25V
R41
120k
C36
0.01uF, 50V
Q1
1
2
3
4
D7
R40
100k
SW
VIN
BST
VCC
RCL
RON/SD
RTN
FB
8
7
Q2
R39
100k
6
MMBT5401
FX491
5
P1
C32
2.2uF, 50V
LM5007
C33
0.1uF, 50V
Z1
24V
R38
10R
+B
GND
-B
3
2
1
UVP
10k
C62
0.01uF, 50V
R62 10k
GND
GND
For EMI
Fig 18 System-level View of IRAUDAMP11
www.irf.com
2.2K
20
LO1
DCP
R2C
2.2nF,50V
R18A
D2A
21
VCC2
COMP2
46
R1
-B
3.9K
22
LO3
COM2
IN2
7
C2C
VAA
45
6
100pF, 50V
C3B
2.2nF,50V
FAULT
10uF, 16V
R1C
22K
C1C
2.2nF,50V
1nF,50V
VSS
VAA
43
4.7uF,10V
44
C4B
Q2A
IRF6665
22R
R15A
10K R17A
10K
R16A
24
23
NC
5
120R
100pF, 50V
R3C
5.6K
C5C
R2B
OCSET
NC
C2B
C7
22R
R9A
IC1
R12A
N/A
1R
95C
Q1A
IRF6665
R20A
0.1uF,100V
RpC
R22A
10K
C16B
0.01uF
C16C
0.01uF
10R
27
28
29
NC
C16A
0.01uF
1K
C9A
10uF,16V
R13
31
30
2.2K
35
33
36
R32C
100uF,4V
R15
10R
95C
IRS2053
C9
C11
4.7uF,10V
RpB
VB3
GND
VSS
42
CLIP1
4.7uF,10V
GND
R14
10R
R7 10R
5.6K
10uF, 16V
R1B
22K
4.7uF,10V
CLIP2
C1B
CH1 INPUT
C10
GND
10R
GND
41
C6
CLIP3
220pF
R32B
CSH3
4
C5B
R30C 15K
RpA 95C
IN3
40
R3B
10K
C12C
10uF, 16V
R6 10R
TLC084
R31C
10R
COMP3
39
G
CH2 INPUT
DS
38
3
C5A
C4A
1nF,50V
2
8 GND
9
10
11
12
13
14
R2A 120R
1K
1
GND
3OUT
3IN3IN+
GND
4IN+
4IN4OUT
R3A
10K
GND
2OUT
2IN2IN+
VDD
1IN+
1IN1OUT
37
C3A 2.2nF,50V
22K
100pF, 50V
R104
IC3
7
6
5
4
3
2
1
GND
C2A 2.2nF,50V
C1A
R24A
GND
R32A
GND
47K
R26C 10K
15K
C12B
GND
220pF
1N4148
CH3 INPUT
3.3K
1N4148
10K
CN1
CH3 6
GND 5
GND 4
CH2 3
GND 2
CH1 1
10uF, 16V
R1A
R27A
R26B 10K
R30B
D3
R30A 10K
R31B
47K
1uF,50V
D3A
R6A
470K
C15A
R29A
220K
R31A 10K
MMBFJ112 Q6
S
D
220pF
R26A 10K
GND
C12A
R4A
100K 1%
R5A
34
DTA144EKA
R11 8.2K
1K
C6A
R7A
R12
Q5
32
R28A
R10
22uH
R14A 4.7R
IRAUDAMP11 REV 1.0
Page 19 of 35
Self-Oscillating Frequency
Self-oscillating frequency is determined by the total delay time along the control loop of the
system; the propagation delay of the IRS2053M, the DirectFETs switching speed, the timeconstant of front-end integrator (R2, R3, R4, C2, C3 ). Variations in +B and –B supply voltages
also affect the self-oscillating frequency.
The self-oscillating frequency changes with the duty ratio. The frequency is highest at idling. It
drops as duty cycle varies away from 50%.
Adjustments of Self-Oscillating Frequency
Use R2 to set different self-oscillating frequencies. The PWM switching frequency in this type of
self-oscillating switching scheme greatly impacts the audio performance, both in absolute
frequency and frequency relative to the other channels. In absolute terms, at higher frequencies,
distortion due to switching-time becomes significant, while at lower frequencies, the bandwidth of
the amplifier suffers. In relative terms, interference between channels is most significant if the
relative frequency difference is within the audible range.
Normally, when adjusting the self-oscillating frequency of the different channels, it is suggested to
either match the frequencies accurately, or have them separated by at least 25kHz. Under the
normal operating condition with no audio input signal, the switching-frequency is set around
400kHz in the IRAUDAMP11.
www.irf.com
IRAUDAMP11 REV 1.0
Page 20 of 35
Selectable Dead-time
The dead-time of the IRS2053 is set based on the voltage applied to the DT pin. Fig 19 lists the
suggested component value for each programmable dead-time between 45 and 105 ns.
All the IRAUDAMP11 models use DT1 (45ns) dead-time.
Dead-time Mode
DT1
DT2
DT3
DT4
R1
<10k
5.6k
8.2k
Open
R2
Open
4.7k
3.3k
<10k
DT/SD Voltage
Vcc
0.46 x Vcc
0.29 x Vcc
COM
Recommended Resistor Values for Dead Time Selection
Dead- time
IRS2053M
45nS
>0.5mA
65nS
Vcc
R1
85nS
DT
105nS
R2
0.23xVcc
0.36xVcc
0.57xVcc
Vcc
VDT
COM
Fig 19 Dead-time Settings vs. VDT Voltage
www.irf.com
IRAUDAMP11 REV 1.0
Page 21 of 35
Protection System Overview
The IRS2053M integrates over current protection (OCP) inside the IC. The rest of the protections,
such as over-voltage protection (OVP), under-voltage protection (UVP), and over temperature
protection (OTP), are detected externally to the IRS2053M (Fig 20).
The external shutdown circuit will disable the output by pulling down CSD pins, (Fig 21). If the
fault condition persists, the protection circuit stays in shutdown until the fault is removed.
R60
15k
SD
GND
Q5
MMBT5551
R54
10k
Z4
18V
R57
47k
R56
47k
R51
22k
R50
47k
Z3
39V R53
R59
22k
Q3
MMBT5551
10k
5
4
IC6
LM26CIM5-XHA
1
OS
HT
2
GND
3
VCC VT
OTP
R52
15k
D51
4.7V
Q4
MMBT5551
R58
47k
R55
47k
OVP
UVP
-B
Fig 20 DCP, OTP, UVP and OVP Protection Circuits
.
Fig 21 Simplified Functional Diagram of OCP
www.irf.com
IRAUDAMP11 REV 1.0
Page 22 of 35
Over-Current Protection (OCP)
Low-Side Current Sensing
The low-side current sensing feature protects the low side DirectFET from an overload condition
from negative load current by measuring drain-to-source voltage across RDS(ON) during its on state.
OCP shuts down the switching operation if the drain-to-source voltage exceeds a preset trip level.
The voltage setting on the OCSET pin programs the threshold for low-side over-current sensing.
When the VS voltage becomes higher than the OCSET voltage during low-side conduction, the
IRS2053 turns the outputs off and pulls CSD down to -VSS.
High-Side Current Sensing
The high-side current sensing protects the high side DirectFET from an overload condition from
positive load current by measuring drain-to-source voltage across RDS(ON) during its on state. OCP
shuts down the switching operation if the drain-to-source voltage exceeds a preset trip level.
High-side over-current sensing monitors drain-to-source voltage of the high-side DirectFET during
the on state through the CSH and VS pins. The CSH pin detects the drain voltage with reference
to the VS pin, which is the source of the high-side DirectFET. In contrast to the low-side current
sensing, the threshold of the CSH pin to trigger OC protection is internally fixed at 1.2V. An
external resistive divider R15, R16 and R17 are used to program a threshold as shown in Fig 20.
An external reverse blocking diode D1 is required to block high voltage feeding into the CSH pin
during low-side conduction. By subtracting a forward voltage drop of 0.6V at D1, the minimum
threshold which can be set for the high-side is 0.6V across the drain-to-source.
Over-Voltage Protection (OVP)
OVP is provided externally to the IRS2053M. OVP shuts down the amplifier if the bus voltage
between GND and -B exceeds 39V. The threshold is determined by a Zener diode Z3. OVP
protects the board from harmful excessive supply voltages, such as due to bus pumping at very
low frequency-continuous output in stereo mode.
Under-Voltage Protection (UVP)
UVP is provided externally to the IRS2053M. UVP prevents unwanted audible noise output from
unstable PWM operation during power up and down. UVP shuts down the amplifier if the bus
voltage between GND and -B falls below a voltage set by Zener diode Z4.
www.irf.com
IRAUDAMP11 REV 1.0
Page 23 of 35
Offset Null (DC Offset) Adjustment
The IRAUDAMP11 requires no output-offset adjustment. DC offsets are tested to be less than ±20
mV.
Over-Temperature Protection (OTP)
A Preset Thermostat IC, IC6 in Fig 19, is placed in close proximity to the heatsink which has 6
DirectFETs under it; and monitors heatsink temperature. If the heatsink temperature rises above
100 C, the OTP shuts down all 3 channels by pulling down the CSD pins of the IRS2053M. OTP
recovers once the temperature has cooled down.
Click and POP Noise Reduction
Thanks to the click and pop elimination function built into the IRS2053M, the IRAUDAMP11 does
not require any additional components for this function.
Power Supply Requirements
For convenience, the IRAUDAMP11 has all the necessary housekeeping power supplies onboard
and only requires a pair of symmetric power supplies. Or use the IRAUDPS1 reference design
which is a 12 volt systems Audio Power Supply for automotive applications designed to provide
voltage rails (+B and –B) for Class D audio power amplifiers .
House Keeping Power Supply
The internally-generated housekeeping power supplies include ±5V for analog signal processing,
and +12V supply (VCC) referred to the negative supply rail -B for DirectFET gate drive. The gate
driver section of the IRS2053M uses VCC to drive gates of the DirectFETs. VCC is referenced to –
B (negative power supply). D2, R18 and C10 form a bootstrap floating supply for the HO gate
driver.
Bus Pumping
When the IRAUDAMP11 is running in stereo mode, the bus pumping effect takes place with low
frequency, high output. Since the energy flowing in the Class D switching stage is bi-directional,
there is a period where the Class D amplifier feeds energy back to the power supply. The majority
of the energy flowing back to the supply is from the energy stored in the inductor in the output LPF.
www.irf.com
IRAUDAMP11 REV 1.0
Page 24 of 35
Usually, the power supply has no way to absorb the energy coming back from the load.
Consequently the bus voltage is pumped up, creating bus voltage fluctuations.
Following conditions make bus pumping worse:
1. Lower output frequencies (bus-pumping duration is longer per half cycle)
2. Higher power output voltage and/or lower load impedance (more energy transfers between
supplies)
3. Smaller bus capacitance (the same energy will cause a larger voltage increase)
The OVP protects IRAUDAMP11 from failure in case of excessive bus pumping. One of the
easiest counter measures of bus pumping is to drive both of the channels in a stereo configuration
out-of-phase so that one channel consumes the energy flow from the other and does not return it
to the power supply. Bus voltage detection monitors only +B supply, assuming the bus pumping
on the supplies is symmetric in +B and -B supplies.
Blue: VS of CH3;Cyan: VS of CH2;Magenta: Voltage of +B;Green:Current of C13A
Fig 22 Auto-phase sync clock’s BUS Pumping when idling
www.irf.com
IRAUDAMP11 REV 1.0
Page 25 of 35
Load Impedance
Each channel is optimized for a 4 Ω speaker load in half bridge.
Input Signal and Gain Setting
A proper input signal is an analog signal ranging from 20Hz to 20kHz with up to 3 VRMS amplitude
with a source impedance of no more than 600 Ω. Input signal with frequencies from 30kHz to
60kHz may cause LC resonance in the output LPF, causing a large reactive current flowing
through the switching stage, especially with greater than 8 Ω load impedances, and the LC
resonance can activate OCP.
The IRAUDAMP11 has an RC network called a Zobel network (R21 and C14) to damp the
resonance and prevent peaking frequency response with light loading impedance. (Fig 23)
Fig 23 Output Low Pass Filter and Zobel Network
Gain Setting
The ratio of resistors R4A~C/R1A~C in Fig 24 sets voltage gain. The IRAUDAMP11 has no on board
volume control. To change the voltage gain, change the input resistor term R1A~C. Changing R4A~C
affects PWM control loop design and may result poor audio performance.
www.irf.com
IRAUDAMP11 REV 1.0
Page 26 of 35
Schematic
L1A
CH3 OUTPUT
D4
1N4148
R4 0R0 or N/A
SD
D2B
1N4148
10K
3.9K
+5v
1R
R19B
1R
VCC OUT
GND
SET DIT
5
4
C41
N/A
2
3
4
1A VCC
1B
1Y
2Y
2B
GND 2A
R43
R47
330R,1W
R45
330R,1W
R51
10k Z7
R52
10k
39V
R25B
100K
R21A
0.1uF, 63V 10R,1W
C14A
0.1uF, 63V
C14C
0.1uF, 63V
R21C
10R,1W
OVP
-B
R25C
100K
CH2 OUTPUT
CH1 OUTPUT
P2
CH1 OUTPUT
GND
GND
CH2 OUTPUT
33k
R44
-5v
ZX5T953
4CH2
3
2
1CH1
510R,1W
Z2
R36
7
R54
10k
6
R57
47k
R56
47k
5
5.1k
Z4
18V
Q3
MMBT5551
DS1
R58
47k
R55
47k
OVP
L5
R42
3.3k
R32
1k
C34
R41
120k
C36
0.01uF, 50V
UVP
0.01uF, 50V
R62 10k
GND
For EMI
Fig 24 IRAUDAMP11 Schematic
Page 27 of 35
R49 10R
0.01uF, 25V
10k
C62
IRAUDAMP11 REV 1.0
220uH
C35
2.2nF,50V
R31
5.1k
Q4
MMBT5551
0.01uF, 50V
15V
R37
47k
IC9
VCC
R50
47k
Z3
39V R53
C61
www.irf.com
39V
Z8
R46
8
1
2
3
4
CH3 OUTPUT
10k
GND
C14B
GND
GND
CH3 OUTPUT
R25A 100K
IC8
TC7W00FFCT-ND
R61
R21B
10R,1W
P3
1N4148
Z6
5.6V
Q9
1
-B
R12C
N/A
C37
22uF, 16V
1
2
3
C17B
1000uF,35V
22R
4.7R
33k
VR1
10K
R23B
100k
C17D
0.1uF,50V
D1B
Z5
5.6V
C40
N/A
IC2
LTC1799
0.47uF, 400V
C13C
R12B
N/A
+B
Q8 ZX5T853
0.1uF,50V
R3
22k
C17A
1000uF,35V
GND
0.1uF,100V
Q2C
IRF6665
R23A
100k
C17C
0.1uF,50V
R22B 10K
C1
0.47uF, 400V
C13B
1R
+B
Q1C
IRF6665
22R
R18B
R17B
10K
R16B
VAA
0.1uF,100V
C19A R19A
R20C
Q2B
IRF6665
22R
R9C
0.1uF,50V
0.47uF, 400V
C13A
R22A
10K
R22C
10K
R9B
R19C
NC
VS1
12
VS2
HO2
R16C
3.9K
R17C
R15C 10K
10K
D1C
13
1N4148
0
D1A 1N4148
25
C10A
0.1uF,50V
VS3
HO3
NC
OTP1
OTP3
DT
VCC
COM
OTP2
9
22R
DSA DSB DSC PROT
R15B
GND
4.7R
14
HO1
C10B
2.2K
Q1B
IRF6665
R18C
D2C
1N4148
C19B
C8
10uF, 16V
R4B
100K 1%
R24C
CH1 OUTPUT
0.1uF,100V
CSD
R4C
100K 1%
2.2K
CH2 OUTPUT
L1C
R20B
16
15
VB1
11
R22
10R
0R0 or N/A
-B
CSD
10
R1
OCSET
VREF
COMP1
48
GND
R24B
22uH
4.7R
0.1uF,50V
47
L1B
22uH
17
CSH1
VB2
C3C
2.2nF,50V
18
NC
IN1
CSH2
120R
2.2nF,50V
19
VCC2
COMP2
46
1nF,50V
1N4148 4.7R
C9B
10uF,16V
R14B
C10C
45
C4C
R18A
D2A
GND
20
LO2
8
C3B
2.2nF,50V
R2C
7
100pF, 50V
C2C
-B
3.9K
22
21
LO1
NC
C1C
120R
2.2nF,50V
24
COM2
IN2
DCP
10uF, 16V
R1C
22K
VAA
FAULT
100pF, 50V
R3C
5.6K
C5C
R2B
VSS
VAA
43
4.7uF,10V
44
1nF,50V C4B
C7
Q2A
IRF6665
22R
R15A
10K R17A
10K
R16A
C19C
C16C
0.01uF
28
27
26
C16A
0.01uF
NC
R12
C16B
0.01uF
10uF,16V
29
30
C9A
1K
31
R13
R11 8.2K
35
34
36
C1B
C2B
IRS2053
6
R15
10R
10uF, 16V
R1B
22K
GND
VSS
42
5
C11
4.7uF,10V
5.6K
C5B
4.7uF,10V
100uF,4V
4.7uF,10V
GND
R14
10R
R7 10R
C6
R12A
N/A
22R
23
LO3
IC1
41
Q1A
IRF6665
R20A
R9A
NC
C9
C10
GND
RpC 95C
GND
CLIP1
CH1 INPUT
RpB 95C
10R
VB3
4
R30C 15K
220pF
NC
R3B
10K
10R
R32C
IN3
40
R6 10R
TLC084
R31C
C12C
10uF, 16V
G
CH2 INPUT
R32B
CSH3
3
8 GND
9
10
11
12
13
14
RpA 95C
COMP3
39
10K
GND
3OUT
3IN3IN+
GND
4IN+
4IN4OUT
DS
38
10K
GND
2OUT
2IN2IN+
VDD
1IN+
1IN1OUT
37
C4A
1nF,50V
R104
7
6
5
4
3
2
1
GND
R2A 120R
1K
R26C
CH3 6
GND 5
GND 4
CH2 3
GND 2
CH1 1
IC3
R3A
C5A
C3A 2.2nF,50V
22K
100pF, 50V
CLIP3
C12B
GND
220pF
CN1
C2A 2.2nF,50V
C1A
2
15K
47K
1
10K
1N4148
R1A
3.3K
10K
R30B
10uF, 16V
CH3 INPUT
R26B
R31B
R27A
1N4148
R30A 10K
R26A 10K
R31A 10K
MMBFJ112 Q6
S
D
220pF
R24A 2.2K
GND
R32A 10R
GND
D3
C12A
R5A
47K
1uF,50V
D3A R6A
CLIP2
C6A
R7A
470K
C15A
R29A
220K
R4A
100K 1%
33
DTA144EKA
GND
2.2K
Q5
1K
32
R28A
R10
22uH
R14A 4.7R
Q1
1
2
3
4
D7
R40
100k
SW
VIN
BST
VCC
RCL
RON/SD
RTN
FB
8
7
Q2
R39
100k
6
MMBT5401
FX491
P1
5
C32
2.2uF, 50V
LM5007
C33
0.1uF, 50V
Z1
24V
R38
10R
+B
GND
-B
3
2
1
IRAUDAMP11 Fabrication Materials
Table 1 IRAUDAMP11 Electrical Bill of Materials
Quantity
Value
1
0.1uF,50V
3
100pF, 50V
7
2.2nF,50V
3
1nF,50V
3
10uF, 16V
4
4.7uF,10V
1
1uF,50V
2
10uF, 16V
1
100uF,4V
2
10uF,16V
3
0.1uF,50V
3
220pF
3
0.47uF, 400V
3
0.1uF, 63V
4
0.01uF, 25V
2
1000uF,35V
2
0.1uF,50V
3
0.1uF,100V
1
2.2uF, 50V
1
0.1uF, 50V
1
1
2
N/A
Description
CAP CER .1UF 50V 10% X7R
0603
CAP CERAMIC 100PF 50V NP0
0603
CAP CER 2200PF 50V 10%
X7R 0603
CAP 1000PF 50V
CERAMICX7R 0603
Designator
Part Number
C1
490-1519-1-ND
Vender
Murata Electronics
North America
C1A, C1B, C1C
C2A, C2B, C2C,
C3A, C3B,
C3C, C35
399-1061-1-ND
Kemet
490-1500-1-ND
Murata Electronics
North America
C4A, C4B, C4C
399-1082-1-ND
Kemet
C5A, C5B, C5C
PCE4179CT-ND
Panasonic - ECG
C6, C7, C10, C11
478-1429-1-ND
C6A
490-4736-1-ND
AVX Corporation
Murata Electronics
North America
C8, C15A
445-1601-1-ND
TDK Corporation
C9
493-2079-1-ND
C9A, C9B
490-3347-1-ND
Nichicon
Murata Electronics
North America
C10A, C10B, C10C
311-1140-1-ND
C12A, C12B, C12C
490-1483-1-ND
C13A, C13B, C13C
495-1315-ND
C14A, C14B, C14C
C16A, C16B,
C16C,C34
BC2054-ND
EPCOS Inc
Vishay/BC
Components
PCC1763CT-ND
Panasonic - ECG
C17A, C17B
565-1086-ND
United Chemi-Con
C17C, C17D
399-1249-1-ND
Kemet
C19A, C19B, C19C
445-1418-1-ND
C32
490-3367-1-ND
C33
490-1666-1-ND
0.01uF, 50V
CAP CER 2.2UF 50V X7R 1206
CAP CER .1UF 50V 10% X7R
0805
CAP CER 10000PF 50V 20%
X7R 0603
C36
490-1511-1-ND
TDK Corporation
Murata Electronics
North America
Murata Electronics
North America
Murata Electronics
North America
22uF, 16V
CAP CER 22UF 16V X7R 1210
C37
445-3945-1-ND
TDK Corporation
C40, C41
N/A
C61, C62
399-1091-1-ND
CN1
D1A, D1B, D1C,
D2A, D2B, D2C,
D3, D3A, D4
ED1518-ND
Kemet
On Shore Technology
Inc
1N4148W-FDICT-ND
Diodes Inc
D7
DS1, DSA, DSB,
DSC
10MQ100NPBFCT-ND
Vishay/Semiconductors
160-1646-1-ND
Lite-On Inc
IC1
International Rectifier
IC2
IR2053MPBF
LTC1799CS5#TRMPBFCTND
IC3
296-7287-1-ND
Texas Instruments
2
0.01uF, 50V
1
Header 6
9
1N4148
1
DIODE1
4
BLUE LED
1
IRS2053
1
LTC1799
1
TLC084
www.irf.com
CAP 10UF 16V HA ELECT SMD
CAP CERM 4.7UF 10V Y5V
0805
CAP CER 1UF 50V X7R 0805
CAP CER 10UF 16V X7R 20%
1206
CAP 100UF 4V ELECT WX
SMD
CAP CER 10UF 16V Y5V 0805
CAP .10UF 50V CERAMIC X7R
0805
CAP CER 220PF 50V 10% X7R
0603
CAP .47UF 400V METAL
POLYPRO
CAP FILM MKP .1UF 63VDC
2%
CAP 10000PF 25V CERM X7R
0603
CAP 1000UF 35V ELECT SMG
RAD
CAP .10UF 50V CERAMIC X7R
1206
CAP CER .10UF 100V X7R
10% 0805
CAP 10000PF 50V CERAMIC
X7R 0603
TERMINAL BLOCK 3.5MM
6POS PCB
DIODE SWITCH 100V 400MW
SOD-123
DIODE SCHOTTKY 100V 1.5A
SMA
LED 468NM BLUE CLEAR 0603
SMD
3ch Audio Class D Controller
IC OSCILLATOR RES SET
TSOT23-5
IC OPAMP GP 10MHZ QUAD
14SOIC
IRAUDAMP11 REV 1.0
Page 28 of 35
Yageo
Murata Electronics
North America
Linear Technology
1
TC7W00FFCTND
IC GATE NAND DUAL 2INPUT
8-SOP
IC8
TC7W00FFCT-ND
1
LM5007
IC BUCK ADJ .5A 8LLP
IC9
LM5007SDCT-ND
3
22uH
L1A, L1B, L1C
7G14A-220M-B
1
220uH
L5
308-1538-1-ND
1
Header 3
Class D inductor, 22uH
POWER INDUCTOR 220UH
0.49A SMD
CONN TERM BLOCK PCB
5.0MM 3POS
TERMINAL BLOCK 3.5MM
4POS PCB
P1
281-1415-ND
P2, P3
ED1516-ND
Weidmuller
On Shore Technology
Inc
LED RED CLEAR 0603 SMD
TRANS HP NPN 60V 1000MA
SOT23-3
PROT
160-1181-1-ND
Lite-On Inc
Q1
Q1A, Q1B, Q1C,
Q2A,
Q2B, Q2C
FMMT491CT-ND
Diodes/Zetex
IRF6665
International Rectifier
Q2
MMBT5401-FDICT-ND
Diodes Inc
Q3, Q4
MMBT5551-FDICT-ND
Diodes Inc
Q5
DTA144EKAT146CT-ND
Q6
MMBFJ112CT-ND
Rohm Semiconductor
Fairchild
Semiconductor
Q8
ZX5T853ZCT-ND
Diodes/Zetex
Q9
ZX5T953ZCT-ND
Diodes/Zetex
R1
P0.0GCT-ND
Panasonic - ECG
R1A, R1B, R1C, R3
RHM22KGCT-ND
Rohm Semiconductor
R2A, R2B, R2C
RHM120GCT-ND
Rohm Semiconductor
R3A, R13, R32
RHM1.0KGCT-ND
Rohm Semiconductor
R3B, R3C
RHM5.6KGCT-ND
Rohm Semiconductor
R4A, R4B, R4C
R5A, R6A, R37,
R50, R55, R56,
R57, R58
R6, R7, R14, R15,
R22,
R32A, R32B,
R32C, R38, R49
RHM100KCRCT-ND
Rohm Semiconductor
RHM47KGCT-ND
Rohm Semiconductor
RHM10GCT-ND
Rohm Semiconductor
R7A
R9A, R9B, R9C,
R20A,
R20B, R20C
RHM470KGCT-ND
Rohm Semiconductor
RHM22GCT-ND
Rohm Semiconductor
R10
RHM2.2KGCT-ND
Rohm Semiconductor
R11
RHM8.2KGCT-ND
Rohm Semiconductor
R12
N/A
R12A, R12B, R12C
R14A, R14B, R18A,
R18B, R18C
R15A, R15B, R15C,
R17A, R17B,
R17C,R22A, R22B,
R22C, R28A, R29A,
R30A,R31A, R31B,
R31C, R51, R52,
N/A
2
SP OUT
1
RED LED
1
FX491
6
IRF6665
1
MMBT5401
2
MMBT5551
1
DTA144EKA
1
MMBFJ112
1
ZX5T853
1
ZX5T953
1
0R0
4
22K
3
120R
3
1K
2
5.6K
3
100K 1%
RES 0.0 OHM 1/10W 0603 SMD
RES 22K OHM 1/10W 5% 0603
SMD
RES 120 OHM 1/10W 5% 0603
SMD
RES 1.0K OHM 1/10W 5% 0603
SMD
RES 5.6K OHM 1/10W 5% 0603
SMD
RES 100K OHM 1/8W 1% 0805
SMD
8
47K
RES 47K OHM 1/10W 5% 0603
SMD
10
10R
1
470K
6
22R
1
2.2K
1
8.2K
1
NC
3
N/A
MOSFET N-CH 100V 4.2A
DIRECTFET
TRANS PNP 150V 350MW
SMD SOT23-3
TRANS NPN 160V 350MW
SMD SOT23-3
TRAN DIGITL PNP 50V 30MA
SOT-346
IC SWITCH ANALOG N-CH
SOT-23
TRANSISTOR 4.5A 100V SOT89
TRANSISTOR PNP 3.5A 100V
SOT-89
RES 10 OHM 1/10W 5% 0603
SMD
RES 470K OHM 1/10W 5%
0603 SMD
RES 22 OHM 1/10W 5% 0603
SMD
RES 2.2K OHM 1/10W 5% 0603
SMD
RES 8.2K OHM 1/10W 5% 0603
SMD
5
4.7R
RES 4.7 OHM 1/10W 5% 0603
SMD
25
10K
RES 10K OHM 1/10W 5% 0603
SMD
www.irf.com
IRAUDAMP11 REV 1.0
Toshiba
National
Semiconductor
Inductors,Inc.
SUMIDA AMERICA
COMPONENTS INC
RHM4.7GCT-ND
Rohm Semiconductor
RHM10KGCT-ND
Rohm Semiconductor
Page 29 of 35
R53, R54,R61, R62,
R104, R26A, R26B,
R26C
3
3.9K
3
1R
3
10R,1W
7
100k
3
2.2K
2
3.3K
2
15K
1
5.1k
1
5.1k
1
120k
2
330R,1W
1
510R,1W
2
33k
3
95C
1
10K
1
24V
1
15V
3
39V
1
18V
2
5.6V
RES 3.9K OHM 1/10W 5% 0603
SMD
RES 1.0 OHM 1/8W 5% 0805
SMD
RES 10 OHM 1W 1% 2512
SMD
RES 100K OHM 1/10W 5%
0603 SMD
RES 2.2K OHM 1/8W 5% 0805
SMD
RES 3.3K OHM 1/10W 5% 0603
SMD
RES 15K OHM 1/10W 5% 0603
SMD
RES 5.1K OHM 1/8W 5% 0805
SMD
RES 5.1K OHM 1/10W 5% 0603
SMD
RES 120K OHM 1/10W 5%
0603 SMD
RES 330 OHM 1W 5% 2512
SMD
RES 510 OHM 1W 5% 2512
SMD
RES 33K OHM 1/10W 5% 0603
SMD
THERMISTOR PTC 470 OHM
95C SMD
TRIM POT ST-32TB 10 KOHMS
DIODE ZENER 24V 500MW
SOD-123
DIODE ZENER 15V 500MW
SOD-123
DIODE ZENER 39V 500MW
SOD-123
DIODE ZENER 18V 500MW
SOD-123
DIODE ZENER 5.6V 500MW
SOD-123
R16A, R16B, R16C
RHM3.9KGCT-ND
Rohm Semiconductor
R19A, R19B, R19C
RHM1.0ARCT-ND
Rohm Semiconductor
R21A, R21B, R21C
R23A, R23B, R25A,
R25B, R25C, R39,
R40
PT10AECT-ND
Panasonic - ECG
RHM100KGCT-ND
Rohm Semiconductor
R24A, R24B, R24C
RHM2.2KARCT-ND
Rohm Semiconductor
R27A, R42
RHM3.3KGCT-ND
Rohm Semiconductor
R30B, R30C
RHM15KGCT-ND
Rohm Semiconductor
R31
RHM5.1KARCT-ND
Rohm Semiconductor
R36
RHM5.1KGCT-ND
Rohm Semiconductor
R41
RHM120KGCT-ND
Rohm Semiconductor
R43, R47
PT330XCT-ND
Panasonic - ECG
R44
PT510XCT-ND
Panasonic - ECG
R45, R46
RHM33KGCT-ND
RpA, RpB, RpC
490-2465-1-ND
VR1
ST32ETB103CT-ND
Rohm Semiconductor
Murata Electronics
North America
Vishay/BC
Components
Z1
BZT52C24-FDICT-ND
Diodes Inc
Z2
BZT52C15-FDICT-ND
Diodes Inc
Z3, Z7, Z8
BZT52C39-FDICT-ND
Diodes Inc
Z4
BZT52C18-FDICT-ND
Diodes Inc
Z5, Z6
MMSZ5V6T1GOSCT-ND
ON Semiconductor
Table 2 IRAUDAMP11 Mechanical Bill of Materials
Quantity
Value
Description
Designator
Lock washer 1, Lock washer 2,
Lock washer 3, Lock washer 4,
Lock washer 5, Lock washer 6
Lock washer 7
Digikey P/N
Vendor
7
Washer #4 SS
WASHER LOCK INTERNAL
#4 SS
H729-ND
Building
Fasteners
1
PCB
Print Circuit Board
IRAUDAM11 Rev 3.0 .PCB
PCB 1
H343-ND
Custom
7
Screw 440X5/16
SCREW MACHINE PHILLIPS
4-40X5/16
Screw 1, Screw 2, Screw 3,
Screw 4, Screw 5, Screw 6,
Screw 7,
4
Stand off 0.5"
STANDOFF HEX 440THR .500"L ALUM
Stand Off 1, Stand Off 2, Stand
Off 3, Stand Off 4
1893K-ND
1/16
AAVID 4880G
THERMAL PAD .080" 4X4"
GAPPAD
thermal pad under heatsink
BER164-ND
www.irf.com
IRAUDAMP11 REV 1.0
Page 30 of 35
Building
Fasteners
Keystone
Electronics
Thermalloy
IRAUDAMP11 Hardware
IRAUDAMP11 Heat Spreader
Note:
All dimensions are in millimeters
Tolerances are ±0.1mm
Material:ALUMINUM
All thread holes are 4-40 X 8mm dip ,minimum
4.5
3
3
4.5
16
10.5
6
1.6
12
14
12
6
8
27
27
10
Fig 25 Heat Spreader
.
Screw
H343-ND
Thermal Pad
Th
l d
Lock washer
Screw
H343-ND
Screw
H343-ND
Screw
H343-ND
Stand Off 3
1893K-ND
Lock washer
Lock washer
Stand Off 2
Lock washer 1893K-ND
Lock washer
Lock washer
Stand Off 4
1893K-ND
Lock washers
H729-ND
Screw
Screw
Screw
Stand Off 1
1893K-ND
Screws
H343-ND
Fig 26 Hardware Assemblies
www.irf.com
IRAUDAMP11 REV 1.0
Page 31 of 35
IRAUDAMP11 PCB Specifications
PCB:
1.
2.
3.
4.
5.
6.
Two Layers SMT PCB with through holes
1/16 thickness
2/0 OZ Cu
FR4 material
10 mil lines and spaces
Solder Mask to be Green enamel EMP110 DBG (CARAPACE) or Enthone Endplate
DSR-3241or equivalent.
7. Silk Screen to be white epoxy non conductive per IPC–RB 276 Standard.
8. All exposed copper must finished with TIN-LEAD Sn 60 or 63 for 100u inches thick.
9. Tolerance of PCB size shall be 0.010 –0.000 inches
10. Tolerance of all Holes is -.000 + 0.003”
11. PCB acceptance criteria as defined for class II PCB’S standards.
Gerber Files Apertures Description:
All Gerber files stored in the attached CD-ROM were generated from Protel Altium Designer
Altium Designer 6. Each file name extension means the following:
1. .gtl
2. .gbl
3. .gto
4. .gbo
5. .gts
6. .gbs
7. .gko
8. .gm1
9. .gd1
10. .gg1
11. .txt
12. .apr
Top copper, top side
Bottom copper, bottom side
Top silk screen
Bottom silk screen
Top Solder Mask
Bottom Solder Mask
Keep Out,
Mechanical1
Drill Drawing
Drill locations
CNC data
Apertures data
Additional files for assembly that may not be related with Gerber files:
13. .pcb
14. .bom
15. .cpl
16. .sch
17. .csv
18. .net
19. .bak
20. .lib
www.irf.com
PCB file
Bill of materials
Components locations
Schematic
Pick and Place Components
Net List
Back up files
PCB libraries
IRAUDAMP11 REV 1.0
Page 32 of 35
Fig 27 IRAUDAMP11 PCB Top Overlay (Top View)
www.irf.com
IRAUDAMP11 REV 1.0
Page 33 of 35
Fig 28 IRAUDAMP11 PCB Bottom Layer (Top View)
www.irf.com
IRAUDAMP11 REV 1.0
Page 34 of 35
Revision changes descriptions
Revision
Rev 1.0
Changes description
Released
Date
Oct, 08 2010
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
Data and specifications subject to change without notice. 01/29/2009
www.irf.com
IRAUDAMP11 REV 1.0
Page 35 of 35