IRAUDAMP11 120W x 3 Channel Class D Audio Power Amplifier Using the IRS2053M and IRF6665 By Jun Honda, Liwei Zheng CAUTION: International Rectifier suggests the following guidelines for safe operation and handling of IRAUDAMP11 Demo board; Always wear safety glasses whenever operating Demo Board Avoid personal contact with exposed metal surfaces when operating Demo Board Turn off Demo Board when placing or removing measurement probes www.irf.com IRAUDAMP11 REV 1.0 Page 1 of 35 TABLE OF CONTENTS PAGE INTRODUCTION............................................................................................................................................... 3 SPECIFICATIONS ............................................................................................................................................ 3 CONNECTION SETUP ..................................................................................................................................... 5 CONNECTOR DESCRIPTION ......................................................................................................................... 5 TEST PROCEDURES....................................................................................................................................... 6 PERFORMANCE AND TEST GRAPHS .......................................................................................................... 7 CLIPPING CHARACTERISTICS.................................................................................................................... 10 SOFT CLIPPING............................................................................................................................................. 10 EFFICIENCY................................................................................................................................................... 12 THERMAL CONSIDERATIONS ..................................................................................................................... 12 THERMAL INTERFACE MATERIAL’S PRESSURE CONTROL ................................................................................. 13 POWER SUPPLY REJECTION RATIO (PSRR)............................................................................................ 15 SHORT CIRCUIT PROTECTION RESPONSE .............................................................................................. 16 IRAUDAMP11 OVERVIEW ............................................................................................................................ 17 FUNCTIONAL DESCRIPTIONS..................................................................................................................... 19 IRS2053 GATE DRIVER IC ............................................................................................................................ 19 SELF-OSCILLATING FREQUENCY .................................................................................................................... 20 ADJUSTMENTS OF SELF-OSCILLATING FREQUENCY ......................................................................................... 20 SELECTABLE DEAD-TIME ................................................................................................................................ 21 PROTECTION SYSTEM OVERVIEW ............................................................................................................ 22 CLICK AND POP NOISE REDUCTION ......................................................................................................... 24 BUS PUMPING............................................................................................................................................... 24 INPUT SIGNAL AND GAIN SETTING ........................................................................................................... 26 GAIN SETTING............................................................................................................................................... 26 IRAUDAMP11 FABRICATION MATERIALS................................................................................................. 28 IRAUDAMP11 HARDWARE .......................................................................................................................... 31 IRAUDAMP11 PCB SPECIFICATIONS......................................................................................................... 32 REVISION CHANGES DESCRIPTIONS........................................................................................................ 35 www.irf.com IRAUDAMP11 REV 1.0 Page 2 of 35 Introduction The IRAUDAMP11 Demo board is a reference design which uses only one IC (IRS2053M) to derive appropriate input signals, amplify the audio input, and achieve a three-channel 120 W/ch (4Ω, THD+N=1%) half-bridge Class D audio power amplifier. The reference design demonstrates how to use the IRS2053M Class D audio controller and gate driver IC, implement protection circuits, and design an optimum PCB layout using IRF6665 DirectFET MOSFETs. The reference design contains all the required housekeeping power supplies for ease of use. The three-channel design is scalable, for power and number of channels. Applications AV receivers Home theater systems Mini component stereos Powered speakers Sub-woofers Musical Instrument amplifiers Automotive after market amplifiers Features Output Power: Residual Noise: Distortion: Efficiency: Multiple Protection Features: PWM Modulator: 120W x 3 channels (4Ω, THD+N=1%) or 170W x 3 channels (4Ω, THD+N=10%) 220V, IHF-A weighted, AES-17 filter 0.02% THD+N @ 60W, 4Ω 90% @ 120W, 4Ω, single-channel driven, Class D stage Over-current protection (OCP), high side and low side Over-voltage protection (OVP), Under-voltage protection (UVP), high side and low side Over-temperature protection (OTP) Self-oscillating half-bridge topology with optional clock synchronization Specifications General Test Conditions (unless otherwise noted) Supply Voltages ±35V Load Impedance 4Ω Self-Oscillating Frequency 400kHz Gain Setting 28dB Notes / Conditions No input signal, Adjustable 1Vrms input yields rated power Electrical Data IR Devices Used Typical Notes / Conditions IRS2053M Audio Controller and Gate-Driver, IRF6665 DirectFET MOSFETs Modulator Self-oscillating, second order sigma-delta modulation, analog input Power Supply Range ± 25V to ±35V Bipolar power supply Output Power CH1-3: (1% THD+N) 120W 1kHz, ±35V Output Power CH1-3: (10% THD+N) 170W 1kHz, ±35V www.irf.com IRAUDAMP11 REV 1.0 Page 3 of 35 Rated Load Impedance Standby Supply Current Total Idle Power Consumption Channel Efficiency 8-4Ω +75/-95mA 6W 90% Resistive load No input signal No input signal Single-channel driven, 120W, Class D stage . Audio Performance Class D Output THD+N, 1W THD+N, 10W THD+N, 60W THD+N, 100W 0.015% 0.01% 0.02% 0.03% Dynamic Range 101dB Residual Noise, 22Hz - 20kHzAES17 220V Damping Factor Channel Separation 67 75dB 75dB 70dB ±1dB ±3dB Frequency Response : 20Hz-20kHz : 20Hz-35kHz Physical Specifications Dimensions Notes / Conditions 1kHz, Single-channel driven A-weighted, AES-17 filter, Single-channel operation Self-oscillating – 400kHz 1kHz, relative to 4Ω load 100Hz 1kHz 10kHz 1W, 4Ω - 8Ω Load Weight 3.94”(L) x 2.83”(W) x 0.85”(H) 100 mm (L) x 72 mm (W) x 21.5 mm(H) 0.130kgm www.irf.com IRAUDAMP11 REV 1.0 Page 4 of 35 Connection Setup Audio Signal Generator CH1 CH2 CH3 Input Frequency adjustor VR1 DS1 VCC INDICATOR IRS2053M IRF6665 Output Output CH2 CH1 +B GND -B CH3 G 35 V, 5 A DC supply 250W, 4Ω, Non-inductive Resistors 35 V, 5 A DC supply Fig 1 Typical Test Setup Connector Description CH1 IN CH2 IN CH3 IN SUPPLY CH1 OUT CH2 OUT CH3 OUT www.irf.com CN1 CN1 CN1 P1 P2 P2 P3 Analog input for CH1 Analog input for CH2 Analog input for CH3 Positive and negative supply (+B / -B) Output for CH1 Output for CH2 Output for CH3 IRAUDAMP11 REV 1.0 Page 5 of 35 Test Procedures Test Setup: 1. Connect 4-200 W dummy loads to 3 output connectors (P2 and P3 as shown on Fig 1) and an Audio Precision analyzer (AP). 2. Connect the Audio Signal Generator to CN1 for CH1~CH3 respectively (AP). 3. Set up the dual power supply with voltages of ±35V; current limit to 5A. 4. TURN OFF the dual power supply before connecting to On of the unit under test (UUT). 5. Connect the dual power supply to P1. as shown on Fig 1 Power up: 6. Turn ON the dual power supply. The ±B supplies must be applied and removed at the same time. 7. The Blue LED should turn ON immediately and stay ON 8. Quiescent current for the positive supply should be 75mA 10mA at +35V. 9. Quiescent current for the negative supply should be 95mA 10mA at –35V. Switching Frequency test 10. With an Oscilloscope, monitor the switching waveform at test points VS1~VS3. Adjust VR1 to set the self oscillating frequency to 400 kHz 25 kHz when DUT in clock synchronize mode. Functionality Audio Tests: 11. Set the signal generator to 1kHz, 20 mVRMS output. 12. Connect the audio signal generator to CN1(Input of CH1,CH2,CH3) 13. Sweep the audio signal voltage from 15 mVRMS to 1 VRMS. 14. Monitor the output signals at P2/P3 with an oscilloscope. The waveform must be a non distorted sinusoidal signal. 15. Observe that a 1 VRMS input generates an output voltage of 25.52 VRMS(CH1/CH2). The ratio, R4x/(R3x) and R30x/(R31x), determines the voltage gain of IRAUDAMP11. Test Setup using Audio Precision (Ap): 16. Use an unbalanced-floating signal from the generator outputs. 17. Use balanced inputs taken across output terminals, P2 and P3. 18. Connect Ap frame ground to GND at terminal P1. 19. Select the AES-17 filter(pull-down menu) for all the testing except frequency response. 20. Use a signal voltage sweep range from 15 mVRMS to 1 VRMS. 21. Run Ap test programs for all subsequent tests as shown in Fig 2- Fig 7below. www.irf.com IRAUDAMP11 REV 1.0 Page 6 of 35 Performance and test graphs 10 5 2 1 0.5 0.2 0.1 % 0.05 0.02 0.01 0.005 0.002 0.001 100m 200m 500m 1 2 5 10 20 50 100 200 W S weep Trac e Color Line S ty le Thic k Data A x is Com m ent 1 1 2 1 3 3 Red B lue G reen S olid S olid S olid 2 2 2 A nlr.THD+ N Ratio A nlr.THD+ N Ratio A nlr.THD+ N Ratio Left Left Left CH1 CH2 ±B Supply = ±35V, 4 Ω Resistive Load Fig 2 IRAUDAMP11, THD+N versus Power, Stereo, 4 Ω . +4 T +3 +2 +1 -0 -1 d B r -2 A -4 -3 -5 -6 -7 -8 -9 -10 20 50 100 200 500 1k 2k 5k 10k 20k 50k 100k 200k Hz CH1-Blue; CH2-Yellow; CH3-Red ±B Supply = ±35V, 4 Ω Resistive Load Fig 3 IRAUDAMP11, Frequency response www.irf.com IRAUDAMP11 REV 1.0 Page 7 of 35 Red Blue CH1, 10W Output CH1, 50W Output Fig 4 THD+N Ratio vs. Frequency +0 -20 d B V -40 -60 -80 -100 20 50 100 200 500 1k 2k 5k 10k Hz Sweep Trace Color Line Style 1 1 2 1 2 1 Yellow Solid Blue Solid Red Solid Thick Data Axis Comment 2 2 2 Fft.Ch.1 Ampl Fft.Ch.2 Ampl Fft.Ch.1 Ampl Left Left Left CH2 CH3 CH1 Fig 5, 1V output Frequency Spectrum www.irf.com IRAUDAMP11 REV 1.0 Page 8 of 35 20k +0 -25 d B V -50 -75 -100 -125 -150 10 20 50 100 200 500 1k 2k 5k 10k 20k Hz Sweep Trace Color Line Style Thick Data Axis Comment 1 1 2 1 2 1 Red Blue Yellow Solid Solid Solid 2 2 2 Fft.Ch.1 Ampl Fft.Ch.2 Ampl Fft.Ch.1 Ampl Left Left Left CH1 CH3 CH2 No signal, Self Oscillator @ 400kHz Fig 6, IRAUDAMP11 Noise Floor . +0 -1 0 -2 0 -3 0 d B r -4 0 A -6 0 -5 0 -7 0 -8 0 -9 0 -1 0 0 20 50 100 200 500 1k 2k 5k 10k 20k Hz S weep Tra c e C o lo r L in e S t y le Th ic k D ata A x is Com m ent 1 3 4 5 6 7 1 1 1 1 1 1 Cy an Y e llo w Red M agenta B lu e Cy an S o lid S o lid S o lid S o lid S o lid S o lid 2 2 2 2 1 1 A n lr. A m p l A n lr. A m p l A n lr. A m p l A n lr. A m p l A n lr. A m p l A n lr. A m p l L e ft L e ft L e ft L e ft L e ft L e ft C H 3 _ o n ; C H 1 _ o ff C H 1 _ o n ; C H 3 _ o ff C H 2 _ o n ; C H 3 _ o ff C H 3 _ o n ; C H 2 _ o ff C H 2 _ o n ; C H 1 _ o ff C h 1 _ o n ; C H 2 _ o ff Fig 7, Channel separation vs. frequency www.irf.com IRAUDAMP11 REV 1.0 Page 9 of 35 Clipping characteristics Red Trace: Total Distortion + Noise Voltage Green Trace: Output Voltage 60W / 4, 1kHz, THD+N=0.02% 174W / 4, 1kHz, THD+N=10% Measured Output and Distortion Waveforms(CH1/CH2) Fig 8 Clipping Characteristics . Soft Clipping IRS2053M has Clipping detection function, it monitors error voltage in COMP pin with a window comparator and pull an open drain nmos referenced to GND. Threshold to detect is at 10% and 90% of VAA-VSS. Each channel has independent CLIP outputs. Once IRS2053M detects Clipping, the CLIP pin will generate pulses to trigger soft clipping circuit as Fig 9, which limits output’s maximum power. Fig10 shows 20Hz and 20 kHz THD+N versus Power graph in CH3; it shows limitation of output’s power with different frequency. www.irf.com IRAUDAMP11 REV 1.0 Page 10 of 35 Soft Clipping R28A 1K C15A 10uF, 16V C6A 1uF,50V R5A 47K R29A 220K D3A 1N4148 Audio signal INPUT C0A R7A 470K GND R6A 47K CLIP Detection D R27A Q5 VAA DTA144EKA 10uF,50V 3.3K G R3A S Q6 MMBFJ112 1K IN- C5A 10uF, 50V VSS GND Fig 9 Soft Clipping Circuit 10 5 2 1 0.5 0.2 % 0.1 0.05 0.02 0.01 0.005 0.002 0.001 100m 200m 500m 1 2 5 10 20 50 100 300 W Sweep Trace Color Line Style Thick Data Axis Comment 1 2 1 1 Red Blue Solid Solid 2 2 Anlr.THD+N Ratio Anlr.THD+N Ratio Left Left 20Hz 20kHz ±B Supply = ±35V, 4 Ω Resistive Load Fig 10 IRAUDAMP11/CH3, THD+N versus Power, Stereo, 4 Ω www.irf.com IRAUDAMP11 REV 1.0 Page 11 of 35 Efficiency Fig 11 shows efficiency characteristics of the IRAUDAMP11. The high efficiency is achieved by following major factors: 1) Low conduction loss due to the DirectFETs offering low RDS(ON) 2) Low switching loss due to the DirectFETs offering low input capacitance for fast rise and fall times Secure dead-time provided by the IRS2053M, avoiding cross-conduction. Efficiency (%) 100% 90% Efficiency (%) 80% 70% 60% AMP11 35V 4ohms 50% 40% 30% 20% 10% 0% 0 50 100 150 Output power (W) Fig 11, IRAUDAMP11 4 ohms load Stereo, ±B supply = ±35V Thermal Considerations With this high efficiency, the IRAUDAMP11 design can handle one-eighth of the continuous rated power, which is generally considered to be a normal operating condition for safety standards, without additional heatsinks or forced air-cooling. www.irf.com IRAUDAMP11 REV 1.0 Page 12 of 35 Thermal Interface Material’s Pressure Control The pressure between DirectFET & TIM (Thermal Interface Material) is controlled by depth of Heat Spreader’s groove. Choose TIM which is recommended by IR. (Refer to AN-1035 for more details). TIM’s manufacturer thickness, conductivity, & etc. determine pressure requirement. Below shows selection options recommended: Fig 12 TIM Information www.irf.com IRAUDAMP11 REV 1.0 Page 13 of 35 Check the TIM’s compression deflection with constant rate of strain (example as Fig.13) base on manufacturer’s datasheet. According to the stress requirement, find strain range for the TIM. Then, calculate heat spreader groove depth as below: Groove Depth=DirectFET’s Height +TIM’s Thickness*strain **DirectFET’s height should be measured from PCB to the top of DirectFET after reflow. The average height of IRF6665 is 0.6mm. Fig 13 compression deflection with constant rate of strain www.irf.com IRAUDAMP11 REV 1.0 Page 14 of 35 Power Supply Rejection Ratio (PSRR) The IRAUDAMP11 obtains good power supply rejection ratio of -68 dB at 1kHz shown in Fig 14. With this high PSRR, IRAUDAMP11 accepts any power supply topology when the supply voltages fit between the min and max range. +0 -10 -20 -30 d B V -40 -50 -60 -70 -80 -90 20 50 100 200 500 1k 2k 5k 10k 20k 40k Hz Sweep Trace Color Line Style Thick Data Axis 1 1 Magenta Solid 2 Anlr.Ampl Left Comment Fig 14 Power Supply Rejection Ratio (PSRR) www.irf.com IRAUDAMP11 REV 1.0 Page 15 of 35 Short Circuit Protection Response Figs 15-16 show over current protection reaction time of the IRAUDAMP11 in a short circuit event. As soon as the IRS2053M detects an over current condition, it shuts down PWM. After one second, the IRS2053M tries to resume the PWM. If the short circuit persists, the IRS2053M repeats try and fail sequences until the short circuit is removed. Short Circuit in Positive and Negative Load Current CSD pin CSD pin VS pin VS pin Load current Load current Positive OCP Negative OCP Fig 15 Positive and Negative OCP Waveforms . OCP Waveforms Showing CSD Trip and Hiccup CSD pin CSD pin VS pin VS pin Load current Load current Fig 16 OCP Response with Continuous Short Circuit www.irf.com IRAUDAMP11 REV 1.0 Page 16 of 35 IRAUDAMP11 Overview The IRAUDAMP11 features a 3CH self-oscillating type PWM modulator for the smallest space, highest performance and robust design. This topology represents an analog version of a secondorder sigma-delta modulation having a Class D switching stage inside the loop. The benefit of the sigma-delta modulation, in comparison to the carrier-signal based modulation, is that all the error in the audible frequency range is shifted to the inaudible upper-frequency range by nature of its operation. Also, sigma-delta modulation allows a designer to apply a sufficient amount of error correction. The IRAUDAMP11 self-oscillating topology consists of following essential functional blocks. Front-end integrator PWM comparator Level shifters Gate drivers and MOSFETs Output LPF Integrator Referring to Fig 17 below, the input operational amplifier of the IRS2053M forms a front-end second-order integrator with R3x, C2x, C3x, and R2x. The integrator that receives a rectangular feedback signal from the PWM output via R4x and audio input signal via R3x generates a quadratic carrier signal at the COMP pin. The analog input signal shifts the average value of the quadratic waveform such that the duty cycle varies according to the instantaneous voltage of the analog input signal. PWM Comparator The carrier signal at the COMP pin is converted to a PWM signal by an internal comparator that has a threshold at middle point between VAA and VSS. The comparator has no hysteresis in its input threshold. Level Shifters The internal input level-shifter transfers the PWM signal down to the low-side gate driver section. The gate driver section has another level-shifter that level shifts up the high-side gate signal to the high-side gate driver section. www.irf.com IRAUDAMP11 REV 1.0 Page 17 of 35 Gate Drivers and DirectFETs The received PWM signal is sent to the dead-time generation block where a programmable amount of dead time is added into the PWM signal between the two gate output signals of LO and HO to prevent potential cross conduction across the output power DirectFETs. The high-side levelshifter shifts up the high-side gate drive signal out of the dead-time block. Each channel of the IRS2053M’s drives two DirectFETs, high- and low-sides, in the power stage providing the amplified PWM waveform. Output LPF The amplified PWM output is reconstructed back to an analog signal by the output LC LPF. Demodulation LC low-pass filter (LPF) formed by L1 and C13, filters out the Class D switching carrier signal leaving the audio output at the speaker load. A single stage output filter can be used with switching frequencies of 400 kHz and greater; a design with a lower switching frequency may require an additional stage of LPF. Fig 17 Simplified Block Diagram of IRAUDAMP11 Class D Amplifier www.irf.com IRAUDAMP11 REV 1.0 Page 18 of 35 Functional Descriptions IRS2053M Gate Driver IC The IRAUDAMP11 uses the IRS2053M, a 3 Channel high-voltage (up to 200 V), high-speed power MOSFET driver with internal dead-time and protection functions specifically designed for Class D audio amplifier applications. These functions include OCP and UVP. The IRS2053M integrates bi-directional over current protection for both high-side and low-side MOSFETs. The dead-time can be selected for optimized performance according to the size of the MOSFET, minimizing dead-time while preventing shoot-through. As a result, there is no gate-timing adjustment required externally. Selectable dead-time through the DT pin voltage is an easy and reliable function which requires only two external resistors, R12 and R13 as shown on Fig 18 or Fig 24 below. The IRS2053M offers the following functions. PWM modulator Dead-time insertion Over current protection Under voltage protection Level shifters Refer to IRS2053M datasheet and AN-1158 for more details. L1A CH3 OUTPUT D4 1N4148 R4 0R0 or N/A D1C SD R15B 10K R18B R17B 10K R16B 3.9K VAA +5v 0.1uF,100V 5 4 C41 N/A 2 3 4 1A VCC 1B 1Y 2Y 2B GND 2A R43 R47 330R,1W R45 330R,1W R51 10k Z7 R52 10k R21A 0.1uF, 63V 10R,1W C14A 0.1uF, 63V 39V Z8 R25A 100K R25B 100K 39V R25C OVP -B 100K CH1 OUTPUT P2 CH1 OUTPUT GND GND CH2 OUTPUT R46 8 -5v 1 2 3 4 CH2 OUTPUT ZX5T953 33k R44 4CH2 3 2 1CH1 510R,1W Z2 R36 7 R54 10k 6 R57 47k R56 47k 5 5.1k Z4 18V Q3 MMBT5551 DS1 R58 47k R55 47k OVP L5 220uH C35 2.2nF,50V R31 5.1k Q4 MMBT5551 0.01uF, 50V 15V R37 47k IC9 VCC R50 47k Z3 39V R53 10k R61 0.1uF, 63V GND GND CH3 OUTPUT CH3 OUTPUT IC8 TC7W00FFCT-ND C61 C14C P3 1N4148 Z6 5.6V Q9 1 -B D1B R42 3.3k C37 22uF, 16V VCC OUT GND SET DIT C17B 1000uF,35V R12C N/A Z5 5.6V C40 N/A IC2 LTC1799 1 2 3 R21B 10R,1W GND R23B 100k C17D 0.1uF,50V 22R 4.7R 33k VR1 10K C17A 1000uF,35V +B Q8 ZX5T853 0.1uF,50V R3 22k R21C 10R,1W 0.47uF, 400V C13A 1R 1R R19B R19C Q2C IRF6665 R23A 100k C17C 0.1uF,50V R12B N/A R22B 10K C1 C14B +B Q1C IRF6665 R9C D2B 1N4148 0.1uF,50V 0.47uF, 400V C13C Q2B IRF6665 22R 22R C19B VS1 R9B R20C DSA DSB DSC PROT C10B 0.47uF, 400V C13B C19A R19A D1A 1N4148 4.7R R16C 3.9K R17C R15C 10K 10K 12 NC VS2 HO2 VB2 9 8 11 0.1uF,50V 0 -B R22C 10K 25 C10A 0.1uF,50V 26 NC VS3 OTP1 OTP2 VCC COM OTP3 DT VREF HO3 1N4148 13 0.1uF,100V C8 10uF, 16V R4C 100K 1% R4B 100K 1% CH1 OUTPUT 14 HO1 GND 22R C19C CSD 2.2K Q1B IRF6665 R18C 1N4148 0R0 or N/A 2.2K R24C CH2 OUTPUT L1C 22uH D2C VB1 10 CSD R22 10R GND R24B 22uH R20B 15 CSH1 COMP1 48 GND 4.7R 17 16 C10C 47 L1B C9B 10uF,16V R14B 19 LO2 IN1 1nF,50V CSH2 C3C 2.2nF,50V 1N4148 4.7R 18 NC NC C4C 120R R32 1k R49 10R C34 0.01uF, 25V R41 120k C36 0.01uF, 50V Q1 1 2 3 4 D7 R40 100k SW VIN BST VCC RCL RON/SD RTN FB 8 7 Q2 R39 100k 6 MMBT5401 FX491 5 P1 C32 2.2uF, 50V LM5007 C33 0.1uF, 50V Z1 24V R38 10R +B GND -B 3 2 1 UVP 10k C62 0.01uF, 50V R62 10k GND GND For EMI Fig 18 System-level View of IRAUDAMP11 www.irf.com 2.2K 20 LO1 DCP R2C 2.2nF,50V R18A D2A 21 VCC2 COMP2 46 R1 -B 3.9K 22 LO3 COM2 IN2 7 C2C VAA 45 6 100pF, 50V C3B 2.2nF,50V FAULT 10uF, 16V R1C 22K C1C 2.2nF,50V 1nF,50V VSS VAA 43 4.7uF,10V 44 C4B Q2A IRF6665 22R R15A 10K R17A 10K R16A 24 23 NC 5 120R 100pF, 50V R3C 5.6K C5C R2B OCSET NC C2B C7 22R R9A IC1 R12A N/A 1R 95C Q1A IRF6665 R20A 0.1uF,100V RpC R22A 10K C16B 0.01uF C16C 0.01uF 10R 27 28 29 NC C16A 0.01uF 1K C9A 10uF,16V R13 31 30 2.2K 35 33 36 R32C 100uF,4V R15 10R 95C IRS2053 C9 C11 4.7uF,10V RpB VB3 GND VSS 42 CLIP1 4.7uF,10V GND R14 10R R7 10R 5.6K 10uF, 16V R1B 22K 4.7uF,10V CLIP2 C1B CH1 INPUT C10 GND 10R GND 41 C6 CLIP3 220pF R32B CSH3 4 C5B R30C 15K RpA 95C IN3 40 R3B 10K C12C 10uF, 16V R6 10R TLC084 R31C 10R COMP3 39 G CH2 INPUT DS 38 3 C5A C4A 1nF,50V 2 8 GND 9 10 11 12 13 14 R2A 120R 1K 1 GND 3OUT 3IN3IN+ GND 4IN+ 4IN4OUT R3A 10K GND 2OUT 2IN2IN+ VDD 1IN+ 1IN1OUT 37 C3A 2.2nF,50V 22K 100pF, 50V R104 IC3 7 6 5 4 3 2 1 GND C2A 2.2nF,50V C1A R24A GND R32A GND 47K R26C 10K 15K C12B GND 220pF 1N4148 CH3 INPUT 3.3K 1N4148 10K CN1 CH3 6 GND 5 GND 4 CH2 3 GND 2 CH1 1 10uF, 16V R1A R27A R26B 10K R30B D3 R30A 10K R31B 47K 1uF,50V D3A R6A 470K C15A R29A 220K R31A 10K MMBFJ112 Q6 S D 220pF R26A 10K GND C12A R4A 100K 1% R5A 34 DTA144EKA R11 8.2K 1K C6A R7A R12 Q5 32 R28A R10 22uH R14A 4.7R IRAUDAMP11 REV 1.0 Page 19 of 35 Self-Oscillating Frequency Self-oscillating frequency is determined by the total delay time along the control loop of the system; the propagation delay of the IRS2053M, the DirectFETs switching speed, the timeconstant of front-end integrator (R2, R3, R4, C2, C3 ). Variations in +B and –B supply voltages also affect the self-oscillating frequency. The self-oscillating frequency changes with the duty ratio. The frequency is highest at idling. It drops as duty cycle varies away from 50%. Adjustments of Self-Oscillating Frequency Use R2 to set different self-oscillating frequencies. The PWM switching frequency in this type of self-oscillating switching scheme greatly impacts the audio performance, both in absolute frequency and frequency relative to the other channels. In absolute terms, at higher frequencies, distortion due to switching-time becomes significant, while at lower frequencies, the bandwidth of the amplifier suffers. In relative terms, interference between channels is most significant if the relative frequency difference is within the audible range. Normally, when adjusting the self-oscillating frequency of the different channels, it is suggested to either match the frequencies accurately, or have them separated by at least 25kHz. Under the normal operating condition with no audio input signal, the switching-frequency is set around 400kHz in the IRAUDAMP11. www.irf.com IRAUDAMP11 REV 1.0 Page 20 of 35 Selectable Dead-time The dead-time of the IRS2053 is set based on the voltage applied to the DT pin. Fig 19 lists the suggested component value for each programmable dead-time between 45 and 105 ns. All the IRAUDAMP11 models use DT1 (45ns) dead-time. Dead-time Mode DT1 DT2 DT3 DT4 R1 <10k 5.6k 8.2k Open R2 Open 4.7k 3.3k <10k DT/SD Voltage Vcc 0.46 x Vcc 0.29 x Vcc COM Recommended Resistor Values for Dead Time Selection Dead- time IRS2053M 45nS >0.5mA 65nS Vcc R1 85nS DT 105nS R2 0.23xVcc 0.36xVcc 0.57xVcc Vcc VDT COM Fig 19 Dead-time Settings vs. VDT Voltage www.irf.com IRAUDAMP11 REV 1.0 Page 21 of 35 Protection System Overview The IRS2053M integrates over current protection (OCP) inside the IC. The rest of the protections, such as over-voltage protection (OVP), under-voltage protection (UVP), and over temperature protection (OTP), are detected externally to the IRS2053M (Fig 20). The external shutdown circuit will disable the output by pulling down CSD pins, (Fig 21). If the fault condition persists, the protection circuit stays in shutdown until the fault is removed. R60 15k SD GND Q5 MMBT5551 R54 10k Z4 18V R57 47k R56 47k R51 22k R50 47k Z3 39V R53 R59 22k Q3 MMBT5551 10k 5 4 IC6 LM26CIM5-XHA 1 OS HT 2 GND 3 VCC VT OTP R52 15k D51 4.7V Q4 MMBT5551 R58 47k R55 47k OVP UVP -B Fig 20 DCP, OTP, UVP and OVP Protection Circuits . Fig 21 Simplified Functional Diagram of OCP www.irf.com IRAUDAMP11 REV 1.0 Page 22 of 35 Over-Current Protection (OCP) Low-Side Current Sensing The low-side current sensing feature protects the low side DirectFET from an overload condition from negative load current by measuring drain-to-source voltage across RDS(ON) during its on state. OCP shuts down the switching operation if the drain-to-source voltage exceeds a preset trip level. The voltage setting on the OCSET pin programs the threshold for low-side over-current sensing. When the VS voltage becomes higher than the OCSET voltage during low-side conduction, the IRS2053 turns the outputs off and pulls CSD down to -VSS. High-Side Current Sensing The high-side current sensing protects the high side DirectFET from an overload condition from positive load current by measuring drain-to-source voltage across RDS(ON) during its on state. OCP shuts down the switching operation if the drain-to-source voltage exceeds a preset trip level. High-side over-current sensing monitors drain-to-source voltage of the high-side DirectFET during the on state through the CSH and VS pins. The CSH pin detects the drain voltage with reference to the VS pin, which is the source of the high-side DirectFET. In contrast to the low-side current sensing, the threshold of the CSH pin to trigger OC protection is internally fixed at 1.2V. An external resistive divider R15, R16 and R17 are used to program a threshold as shown in Fig 20. An external reverse blocking diode D1 is required to block high voltage feeding into the CSH pin during low-side conduction. By subtracting a forward voltage drop of 0.6V at D1, the minimum threshold which can be set for the high-side is 0.6V across the drain-to-source. Over-Voltage Protection (OVP) OVP is provided externally to the IRS2053M. OVP shuts down the amplifier if the bus voltage between GND and -B exceeds 39V. The threshold is determined by a Zener diode Z3. OVP protects the board from harmful excessive supply voltages, such as due to bus pumping at very low frequency-continuous output in stereo mode. Under-Voltage Protection (UVP) UVP is provided externally to the IRS2053M. UVP prevents unwanted audible noise output from unstable PWM operation during power up and down. UVP shuts down the amplifier if the bus voltage between GND and -B falls below a voltage set by Zener diode Z4. www.irf.com IRAUDAMP11 REV 1.0 Page 23 of 35 Offset Null (DC Offset) Adjustment The IRAUDAMP11 requires no output-offset adjustment. DC offsets are tested to be less than ±20 mV. Over-Temperature Protection (OTP) A Preset Thermostat IC, IC6 in Fig 19, is placed in close proximity to the heatsink which has 6 DirectFETs under it; and monitors heatsink temperature. If the heatsink temperature rises above 100 C, the OTP shuts down all 3 channels by pulling down the CSD pins of the IRS2053M. OTP recovers once the temperature has cooled down. Click and POP Noise Reduction Thanks to the click and pop elimination function built into the IRS2053M, the IRAUDAMP11 does not require any additional components for this function. Power Supply Requirements For convenience, the IRAUDAMP11 has all the necessary housekeeping power supplies onboard and only requires a pair of symmetric power supplies. Or use the IRAUDPS1 reference design which is a 12 volt systems Audio Power Supply for automotive applications designed to provide voltage rails (+B and –B) for Class D audio power amplifiers . House Keeping Power Supply The internally-generated housekeeping power supplies include ±5V for analog signal processing, and +12V supply (VCC) referred to the negative supply rail -B for DirectFET gate drive. The gate driver section of the IRS2053M uses VCC to drive gates of the DirectFETs. VCC is referenced to – B (negative power supply). D2, R18 and C10 form a bootstrap floating supply for the HO gate driver. Bus Pumping When the IRAUDAMP11 is running in stereo mode, the bus pumping effect takes place with low frequency, high output. Since the energy flowing in the Class D switching stage is bi-directional, there is a period where the Class D amplifier feeds energy back to the power supply. The majority of the energy flowing back to the supply is from the energy stored in the inductor in the output LPF. www.irf.com IRAUDAMP11 REV 1.0 Page 24 of 35 Usually, the power supply has no way to absorb the energy coming back from the load. Consequently the bus voltage is pumped up, creating bus voltage fluctuations. Following conditions make bus pumping worse: 1. Lower output frequencies (bus-pumping duration is longer per half cycle) 2. Higher power output voltage and/or lower load impedance (more energy transfers between supplies) 3. Smaller bus capacitance (the same energy will cause a larger voltage increase) The OVP protects IRAUDAMP11 from failure in case of excessive bus pumping. One of the easiest counter measures of bus pumping is to drive both of the channels in a stereo configuration out-of-phase so that one channel consumes the energy flow from the other and does not return it to the power supply. Bus voltage detection monitors only +B supply, assuming the bus pumping on the supplies is symmetric in +B and -B supplies. Blue: VS of CH3;Cyan: VS of CH2;Magenta: Voltage of +B;Green:Current of C13A Fig 22 Auto-phase sync clock’s BUS Pumping when idling www.irf.com IRAUDAMP11 REV 1.0 Page 25 of 35 Load Impedance Each channel is optimized for a 4 Ω speaker load in half bridge. Input Signal and Gain Setting A proper input signal is an analog signal ranging from 20Hz to 20kHz with up to 3 VRMS amplitude with a source impedance of no more than 600 Ω. Input signal with frequencies from 30kHz to 60kHz may cause LC resonance in the output LPF, causing a large reactive current flowing through the switching stage, especially with greater than 8 Ω load impedances, and the LC resonance can activate OCP. The IRAUDAMP11 has an RC network called a Zobel network (R21 and C14) to damp the resonance and prevent peaking frequency response with light loading impedance. (Fig 23) Fig 23 Output Low Pass Filter and Zobel Network Gain Setting The ratio of resistors R4A~C/R1A~C in Fig 24 sets voltage gain. The IRAUDAMP11 has no on board volume control. To change the voltage gain, change the input resistor term R1A~C. Changing R4A~C affects PWM control loop design and may result poor audio performance. www.irf.com IRAUDAMP11 REV 1.0 Page 26 of 35 Schematic L1A CH3 OUTPUT D4 1N4148 R4 0R0 or N/A SD D2B 1N4148 10K 3.9K +5v 1R R19B 1R VCC OUT GND SET DIT 5 4 C41 N/A 2 3 4 1A VCC 1B 1Y 2Y 2B GND 2A R43 R47 330R,1W R45 330R,1W R51 10k Z7 R52 10k 39V R25B 100K R21A 0.1uF, 63V 10R,1W C14A 0.1uF, 63V C14C 0.1uF, 63V R21C 10R,1W OVP -B R25C 100K CH2 OUTPUT CH1 OUTPUT P2 CH1 OUTPUT GND GND CH2 OUTPUT 33k R44 -5v ZX5T953 4CH2 3 2 1CH1 510R,1W Z2 R36 7 R54 10k 6 R57 47k R56 47k 5 5.1k Z4 18V Q3 MMBT5551 DS1 R58 47k R55 47k OVP L5 R42 3.3k R32 1k C34 R41 120k C36 0.01uF, 50V UVP 0.01uF, 50V R62 10k GND For EMI Fig 24 IRAUDAMP11 Schematic Page 27 of 35 R49 10R 0.01uF, 25V 10k C62 IRAUDAMP11 REV 1.0 220uH C35 2.2nF,50V R31 5.1k Q4 MMBT5551 0.01uF, 50V 15V R37 47k IC9 VCC R50 47k Z3 39V R53 C61 www.irf.com 39V Z8 R46 8 1 2 3 4 CH3 OUTPUT 10k GND C14B GND GND CH3 OUTPUT R25A 100K IC8 TC7W00FFCT-ND R61 R21B 10R,1W P3 1N4148 Z6 5.6V Q9 1 -B R12C N/A C37 22uF, 16V 1 2 3 C17B 1000uF,35V 22R 4.7R 33k VR1 10K R23B 100k C17D 0.1uF,50V D1B Z5 5.6V C40 N/A IC2 LTC1799 0.47uF, 400V C13C R12B N/A +B Q8 ZX5T853 0.1uF,50V R3 22k C17A 1000uF,35V GND 0.1uF,100V Q2C IRF6665 R23A 100k C17C 0.1uF,50V R22B 10K C1 0.47uF, 400V C13B 1R +B Q1C IRF6665 22R R18B R17B 10K R16B VAA 0.1uF,100V C19A R19A R20C Q2B IRF6665 22R R9C 0.1uF,50V 0.47uF, 400V C13A R22A 10K R22C 10K R9B R19C NC VS1 12 VS2 HO2 R16C 3.9K R17C R15C 10K 10K D1C 13 1N4148 0 D1A 1N4148 25 C10A 0.1uF,50V VS3 HO3 NC OTP1 OTP3 DT VCC COM OTP2 9 22R DSA DSB DSC PROT R15B GND 4.7R 14 HO1 C10B 2.2K Q1B IRF6665 R18C D2C 1N4148 C19B C8 10uF, 16V R4B 100K 1% R24C CH1 OUTPUT 0.1uF,100V CSD R4C 100K 1% 2.2K CH2 OUTPUT L1C R20B 16 15 VB1 11 R22 10R 0R0 or N/A -B CSD 10 R1 OCSET VREF COMP1 48 GND R24B 22uH 4.7R 0.1uF,50V 47 L1B 22uH 17 CSH1 VB2 C3C 2.2nF,50V 18 NC IN1 CSH2 120R 2.2nF,50V 19 VCC2 COMP2 46 1nF,50V 1N4148 4.7R C9B 10uF,16V R14B C10C 45 C4C R18A D2A GND 20 LO2 8 C3B 2.2nF,50V R2C 7 100pF, 50V C2C -B 3.9K 22 21 LO1 NC C1C 120R 2.2nF,50V 24 COM2 IN2 DCP 10uF, 16V R1C 22K VAA FAULT 100pF, 50V R3C 5.6K C5C R2B VSS VAA 43 4.7uF,10V 44 1nF,50V C4B C7 Q2A IRF6665 22R R15A 10K R17A 10K R16A C19C C16C 0.01uF 28 27 26 C16A 0.01uF NC R12 C16B 0.01uF 10uF,16V 29 30 C9A 1K 31 R13 R11 8.2K 35 34 36 C1B C2B IRS2053 6 R15 10R 10uF, 16V R1B 22K GND VSS 42 5 C11 4.7uF,10V 5.6K C5B 4.7uF,10V 100uF,4V 4.7uF,10V GND R14 10R R7 10R C6 R12A N/A 22R 23 LO3 IC1 41 Q1A IRF6665 R20A R9A NC C9 C10 GND RpC 95C GND CLIP1 CH1 INPUT RpB 95C 10R VB3 4 R30C 15K 220pF NC R3B 10K 10R R32C IN3 40 R6 10R TLC084 R31C C12C 10uF, 16V G CH2 INPUT R32B CSH3 3 8 GND 9 10 11 12 13 14 RpA 95C COMP3 39 10K GND 3OUT 3IN3IN+ GND 4IN+ 4IN4OUT DS 38 10K GND 2OUT 2IN2IN+ VDD 1IN+ 1IN1OUT 37 C4A 1nF,50V R104 7 6 5 4 3 2 1 GND R2A 120R 1K R26C CH3 6 GND 5 GND 4 CH2 3 GND 2 CH1 1 IC3 R3A C5A C3A 2.2nF,50V 22K 100pF, 50V CLIP3 C12B GND 220pF CN1 C2A 2.2nF,50V C1A 2 15K 47K 1 10K 1N4148 R1A 3.3K 10K R30B 10uF, 16V CH3 INPUT R26B R31B R27A 1N4148 R30A 10K R26A 10K R31A 10K MMBFJ112 Q6 S D 220pF R24A 2.2K GND R32A 10R GND D3 C12A R5A 47K 1uF,50V D3A R6A CLIP2 C6A R7A 470K C15A R29A 220K R4A 100K 1% 33 DTA144EKA GND 2.2K Q5 1K 32 R28A R10 22uH R14A 4.7R Q1 1 2 3 4 D7 R40 100k SW VIN BST VCC RCL RON/SD RTN FB 8 7 Q2 R39 100k 6 MMBT5401 FX491 P1 5 C32 2.2uF, 50V LM5007 C33 0.1uF, 50V Z1 24V R38 10R +B GND -B 3 2 1 IRAUDAMP11 Fabrication Materials Table 1 IRAUDAMP11 Electrical Bill of Materials Quantity Value 1 0.1uF,50V 3 100pF, 50V 7 2.2nF,50V 3 1nF,50V 3 10uF, 16V 4 4.7uF,10V 1 1uF,50V 2 10uF, 16V 1 100uF,4V 2 10uF,16V 3 0.1uF,50V 3 220pF 3 0.47uF, 400V 3 0.1uF, 63V 4 0.01uF, 25V 2 1000uF,35V 2 0.1uF,50V 3 0.1uF,100V 1 2.2uF, 50V 1 0.1uF, 50V 1 1 2 N/A Description CAP CER .1UF 50V 10% X7R 0603 CAP CERAMIC 100PF 50V NP0 0603 CAP CER 2200PF 50V 10% X7R 0603 CAP 1000PF 50V CERAMICX7R 0603 Designator Part Number C1 490-1519-1-ND Vender Murata Electronics North America C1A, C1B, C1C C2A, C2B, C2C, C3A, C3B, C3C, C35 399-1061-1-ND Kemet 490-1500-1-ND Murata Electronics North America C4A, C4B, C4C 399-1082-1-ND Kemet C5A, C5B, C5C PCE4179CT-ND Panasonic - ECG C6, C7, C10, C11 478-1429-1-ND C6A 490-4736-1-ND AVX Corporation Murata Electronics North America C8, C15A 445-1601-1-ND TDK Corporation C9 493-2079-1-ND C9A, C9B 490-3347-1-ND Nichicon Murata Electronics North America C10A, C10B, C10C 311-1140-1-ND C12A, C12B, C12C 490-1483-1-ND C13A, C13B, C13C 495-1315-ND C14A, C14B, C14C C16A, C16B, C16C,C34 BC2054-ND EPCOS Inc Vishay/BC Components PCC1763CT-ND Panasonic - ECG C17A, C17B 565-1086-ND United Chemi-Con C17C, C17D 399-1249-1-ND Kemet C19A, C19B, C19C 445-1418-1-ND C32 490-3367-1-ND C33 490-1666-1-ND 0.01uF, 50V CAP CER 2.2UF 50V X7R 1206 CAP CER .1UF 50V 10% X7R 0805 CAP CER 10000PF 50V 20% X7R 0603 C36 490-1511-1-ND TDK Corporation Murata Electronics North America Murata Electronics North America Murata Electronics North America 22uF, 16V CAP CER 22UF 16V X7R 1210 C37 445-3945-1-ND TDK Corporation C40, C41 N/A C61, C62 399-1091-1-ND CN1 D1A, D1B, D1C, D2A, D2B, D2C, D3, D3A, D4 ED1518-ND Kemet On Shore Technology Inc 1N4148W-FDICT-ND Diodes Inc D7 DS1, DSA, DSB, DSC 10MQ100NPBFCT-ND Vishay/Semiconductors 160-1646-1-ND Lite-On Inc IC1 International Rectifier IC2 IR2053MPBF LTC1799CS5#TRMPBFCTND IC3 296-7287-1-ND Texas Instruments 2 0.01uF, 50V 1 Header 6 9 1N4148 1 DIODE1 4 BLUE LED 1 IRS2053 1 LTC1799 1 TLC084 www.irf.com CAP 10UF 16V HA ELECT SMD CAP CERM 4.7UF 10V Y5V 0805 CAP CER 1UF 50V X7R 0805 CAP CER 10UF 16V X7R 20% 1206 CAP 100UF 4V ELECT WX SMD CAP CER 10UF 16V Y5V 0805 CAP .10UF 50V CERAMIC X7R 0805 CAP CER 220PF 50V 10% X7R 0603 CAP .47UF 400V METAL POLYPRO CAP FILM MKP .1UF 63VDC 2% CAP 10000PF 25V CERM X7R 0603 CAP 1000UF 35V ELECT SMG RAD CAP .10UF 50V CERAMIC X7R 1206 CAP CER .10UF 100V X7R 10% 0805 CAP 10000PF 50V CERAMIC X7R 0603 TERMINAL BLOCK 3.5MM 6POS PCB DIODE SWITCH 100V 400MW SOD-123 DIODE SCHOTTKY 100V 1.5A SMA LED 468NM BLUE CLEAR 0603 SMD 3ch Audio Class D Controller IC OSCILLATOR RES SET TSOT23-5 IC OPAMP GP 10MHZ QUAD 14SOIC IRAUDAMP11 REV 1.0 Page 28 of 35 Yageo Murata Electronics North America Linear Technology 1 TC7W00FFCTND IC GATE NAND DUAL 2INPUT 8-SOP IC8 TC7W00FFCT-ND 1 LM5007 IC BUCK ADJ .5A 8LLP IC9 LM5007SDCT-ND 3 22uH L1A, L1B, L1C 7G14A-220M-B 1 220uH L5 308-1538-1-ND 1 Header 3 Class D inductor, 22uH POWER INDUCTOR 220UH 0.49A SMD CONN TERM BLOCK PCB 5.0MM 3POS TERMINAL BLOCK 3.5MM 4POS PCB P1 281-1415-ND P2, P3 ED1516-ND Weidmuller On Shore Technology Inc LED RED CLEAR 0603 SMD TRANS HP NPN 60V 1000MA SOT23-3 PROT 160-1181-1-ND Lite-On Inc Q1 Q1A, Q1B, Q1C, Q2A, Q2B, Q2C FMMT491CT-ND Diodes/Zetex IRF6665 International Rectifier Q2 MMBT5401-FDICT-ND Diodes Inc Q3, Q4 MMBT5551-FDICT-ND Diodes Inc Q5 DTA144EKAT146CT-ND Q6 MMBFJ112CT-ND Rohm Semiconductor Fairchild Semiconductor Q8 ZX5T853ZCT-ND Diodes/Zetex Q9 ZX5T953ZCT-ND Diodes/Zetex R1 P0.0GCT-ND Panasonic - ECG R1A, R1B, R1C, R3 RHM22KGCT-ND Rohm Semiconductor R2A, R2B, R2C RHM120GCT-ND Rohm Semiconductor R3A, R13, R32 RHM1.0KGCT-ND Rohm Semiconductor R3B, R3C RHM5.6KGCT-ND Rohm Semiconductor R4A, R4B, R4C R5A, R6A, R37, R50, R55, R56, R57, R58 R6, R7, R14, R15, R22, R32A, R32B, R32C, R38, R49 RHM100KCRCT-ND Rohm Semiconductor RHM47KGCT-ND Rohm Semiconductor RHM10GCT-ND Rohm Semiconductor R7A R9A, R9B, R9C, R20A, R20B, R20C RHM470KGCT-ND Rohm Semiconductor RHM22GCT-ND Rohm Semiconductor R10 RHM2.2KGCT-ND Rohm Semiconductor R11 RHM8.2KGCT-ND Rohm Semiconductor R12 N/A R12A, R12B, R12C R14A, R14B, R18A, R18B, R18C R15A, R15B, R15C, R17A, R17B, R17C,R22A, R22B, R22C, R28A, R29A, R30A,R31A, R31B, R31C, R51, R52, N/A 2 SP OUT 1 RED LED 1 FX491 6 IRF6665 1 MMBT5401 2 MMBT5551 1 DTA144EKA 1 MMBFJ112 1 ZX5T853 1 ZX5T953 1 0R0 4 22K 3 120R 3 1K 2 5.6K 3 100K 1% RES 0.0 OHM 1/10W 0603 SMD RES 22K OHM 1/10W 5% 0603 SMD RES 120 OHM 1/10W 5% 0603 SMD RES 1.0K OHM 1/10W 5% 0603 SMD RES 5.6K OHM 1/10W 5% 0603 SMD RES 100K OHM 1/8W 1% 0805 SMD 8 47K RES 47K OHM 1/10W 5% 0603 SMD 10 10R 1 470K 6 22R 1 2.2K 1 8.2K 1 NC 3 N/A MOSFET N-CH 100V 4.2A DIRECTFET TRANS PNP 150V 350MW SMD SOT23-3 TRANS NPN 160V 350MW SMD SOT23-3 TRAN DIGITL PNP 50V 30MA SOT-346 IC SWITCH ANALOG N-CH SOT-23 TRANSISTOR 4.5A 100V SOT89 TRANSISTOR PNP 3.5A 100V SOT-89 RES 10 OHM 1/10W 5% 0603 SMD RES 470K OHM 1/10W 5% 0603 SMD RES 22 OHM 1/10W 5% 0603 SMD RES 2.2K OHM 1/10W 5% 0603 SMD RES 8.2K OHM 1/10W 5% 0603 SMD 5 4.7R RES 4.7 OHM 1/10W 5% 0603 SMD 25 10K RES 10K OHM 1/10W 5% 0603 SMD www.irf.com IRAUDAMP11 REV 1.0 Toshiba National Semiconductor Inductors,Inc. SUMIDA AMERICA COMPONENTS INC RHM4.7GCT-ND Rohm Semiconductor RHM10KGCT-ND Rohm Semiconductor Page 29 of 35 R53, R54,R61, R62, R104, R26A, R26B, R26C 3 3.9K 3 1R 3 10R,1W 7 100k 3 2.2K 2 3.3K 2 15K 1 5.1k 1 5.1k 1 120k 2 330R,1W 1 510R,1W 2 33k 3 95C 1 10K 1 24V 1 15V 3 39V 1 18V 2 5.6V RES 3.9K OHM 1/10W 5% 0603 SMD RES 1.0 OHM 1/8W 5% 0805 SMD RES 10 OHM 1W 1% 2512 SMD RES 100K OHM 1/10W 5% 0603 SMD RES 2.2K OHM 1/8W 5% 0805 SMD RES 3.3K OHM 1/10W 5% 0603 SMD RES 15K OHM 1/10W 5% 0603 SMD RES 5.1K OHM 1/8W 5% 0805 SMD RES 5.1K OHM 1/10W 5% 0603 SMD RES 120K OHM 1/10W 5% 0603 SMD RES 330 OHM 1W 5% 2512 SMD RES 510 OHM 1W 5% 2512 SMD RES 33K OHM 1/10W 5% 0603 SMD THERMISTOR PTC 470 OHM 95C SMD TRIM POT ST-32TB 10 KOHMS DIODE ZENER 24V 500MW SOD-123 DIODE ZENER 15V 500MW SOD-123 DIODE ZENER 39V 500MW SOD-123 DIODE ZENER 18V 500MW SOD-123 DIODE ZENER 5.6V 500MW SOD-123 R16A, R16B, R16C RHM3.9KGCT-ND Rohm Semiconductor R19A, R19B, R19C RHM1.0ARCT-ND Rohm Semiconductor R21A, R21B, R21C R23A, R23B, R25A, R25B, R25C, R39, R40 PT10AECT-ND Panasonic - ECG RHM100KGCT-ND Rohm Semiconductor R24A, R24B, R24C RHM2.2KARCT-ND Rohm Semiconductor R27A, R42 RHM3.3KGCT-ND Rohm Semiconductor R30B, R30C RHM15KGCT-ND Rohm Semiconductor R31 RHM5.1KARCT-ND Rohm Semiconductor R36 RHM5.1KGCT-ND Rohm Semiconductor R41 RHM120KGCT-ND Rohm Semiconductor R43, R47 PT330XCT-ND Panasonic - ECG R44 PT510XCT-ND Panasonic - ECG R45, R46 RHM33KGCT-ND RpA, RpB, RpC 490-2465-1-ND VR1 ST32ETB103CT-ND Rohm Semiconductor Murata Electronics North America Vishay/BC Components Z1 BZT52C24-FDICT-ND Diodes Inc Z2 BZT52C15-FDICT-ND Diodes Inc Z3, Z7, Z8 BZT52C39-FDICT-ND Diodes Inc Z4 BZT52C18-FDICT-ND Diodes Inc Z5, Z6 MMSZ5V6T1GOSCT-ND ON Semiconductor Table 2 IRAUDAMP11 Mechanical Bill of Materials Quantity Value Description Designator Lock washer 1, Lock washer 2, Lock washer 3, Lock washer 4, Lock washer 5, Lock washer 6 Lock washer 7 Digikey P/N Vendor 7 Washer #4 SS WASHER LOCK INTERNAL #4 SS H729-ND Building Fasteners 1 PCB Print Circuit Board IRAUDAM11 Rev 3.0 .PCB PCB 1 H343-ND Custom 7 Screw 440X5/16 SCREW MACHINE PHILLIPS 4-40X5/16 Screw 1, Screw 2, Screw 3, Screw 4, Screw 5, Screw 6, Screw 7, 4 Stand off 0.5" STANDOFF HEX 440THR .500"L ALUM Stand Off 1, Stand Off 2, Stand Off 3, Stand Off 4 1893K-ND 1/16 AAVID 4880G THERMAL PAD .080" 4X4" GAPPAD thermal pad under heatsink BER164-ND www.irf.com IRAUDAMP11 REV 1.0 Page 30 of 35 Building Fasteners Keystone Electronics Thermalloy IRAUDAMP11 Hardware IRAUDAMP11 Heat Spreader Note: All dimensions are in millimeters Tolerances are ±0.1mm Material:ALUMINUM All thread holes are 4-40 X 8mm dip ,minimum 4.5 3 3 4.5 16 10.5 6 1.6 12 14 12 6 8 27 27 10 Fig 25 Heat Spreader . Screw H343-ND Thermal Pad Th l d Lock washer Screw H343-ND Screw H343-ND Screw H343-ND Stand Off 3 1893K-ND Lock washer Lock washer Stand Off 2 Lock washer 1893K-ND Lock washer Lock washer Stand Off 4 1893K-ND Lock washers H729-ND Screw Screw Screw Stand Off 1 1893K-ND Screws H343-ND Fig 26 Hardware Assemblies www.irf.com IRAUDAMP11 REV 1.0 Page 31 of 35 IRAUDAMP11 PCB Specifications PCB: 1. 2. 3. 4. 5. 6. Two Layers SMT PCB with through holes 1/16 thickness 2/0 OZ Cu FR4 material 10 mil lines and spaces Solder Mask to be Green enamel EMP110 DBG (CARAPACE) or Enthone Endplate DSR-3241or equivalent. 7. Silk Screen to be white epoxy non conductive per IPC–RB 276 Standard. 8. All exposed copper must finished with TIN-LEAD Sn 60 or 63 for 100u inches thick. 9. Tolerance of PCB size shall be 0.010 –0.000 inches 10. Tolerance of all Holes is -.000 + 0.003” 11. PCB acceptance criteria as defined for class II PCB’S standards. Gerber Files Apertures Description: All Gerber files stored in the attached CD-ROM were generated from Protel Altium Designer Altium Designer 6. Each file name extension means the following: 1. .gtl 2. .gbl 3. .gto 4. .gbo 5. .gts 6. .gbs 7. .gko 8. .gm1 9. .gd1 10. .gg1 11. .txt 12. .apr Top copper, top side Bottom copper, bottom side Top silk screen Bottom silk screen Top Solder Mask Bottom Solder Mask Keep Out, Mechanical1 Drill Drawing Drill locations CNC data Apertures data Additional files for assembly that may not be related with Gerber files: 13. .pcb 14. .bom 15. .cpl 16. .sch 17. .csv 18. .net 19. .bak 20. .lib www.irf.com PCB file Bill of materials Components locations Schematic Pick and Place Components Net List Back up files PCB libraries IRAUDAMP11 REV 1.0 Page 32 of 35 Fig 27 IRAUDAMP11 PCB Top Overlay (Top View) www.irf.com IRAUDAMP11 REV 1.0 Page 33 of 35 Fig 28 IRAUDAMP11 PCB Bottom Layer (Top View) www.irf.com IRAUDAMP11 REV 1.0 Page 34 of 35 Revision changes descriptions Revision Rev 1.0 Changes description Released Date Oct, 08 2010 WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 Data and specifications subject to change without notice. 01/29/2009 www.irf.com IRAUDAMP11 REV 1.0 Page 35 of 35