IRF IRF6665

PD - 96900
IRF6665
DIGITAL AUDIO MOSFET
Features
Key Parameters
100
• Latest MOSFET Silicon technology
VDS
• Key parameters optimized for Class-D audio amplifier applications
RDS(on) typ. @ VGS = 10V
Qg typ.
RG(int) typ.
• Low RDS(on) for improved efficiency
• Low Qg for better THD and improved efficiency
• Low Qrr for better THD and lower EMI
53
8.7
V
m:
nC
1.9
• Low package stray inductance for reduced ringing and lower EMI
• Can deliver up to 100W per channel into 8Ω with no heatsink Š
• Dual sided cooling compatible
· Compatible with existing surface mount technologies
· Lead and Bromide Free
SH
DirectFET™ ISOMETRIC
Applicable DirectFET Outline and Substrate Outline (see p. 6, 7 for details)
SQ
SX
ST
SH
MQ
MX
MT
MN
Description
This Digital Audio MOSFET is specifically designed for Class-D audio amplifier applications. This MOSFET utilizes the latest processing
techniques to achieve low on-resistance per silicon area. Furthermore, gate charge, body-diode reverse recovery and internal gate
resistance are optimized to improve key Class-D audio amplifier performance factors such as efficiency, THD, and EMI.
The IRF6665 device utilizes DirectFET TM packaging technology. DirectFET TM packaging technology offers lower parasitic inductance and
resistance when compared to conventional wirebonded SOIC packaging. Lower inductance improves EMI performance by reducing the voltage
ringing that accompanies fast current transients. The DirectFET TM package is compatible with existing layout geometries used in power
applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is
followed regarding the manufacturing method and processes. The DirectFET TM package also allows dual sided cooling to maximize thermal
transfer in power systems, improving thermal resistance and power dissipation. These features combine to make this MOSFET a highly efficient,
robust and reliable device for Class-D audio amplifier applications.
Absolute Maximum Ratings
Max.
Units
VDS
Drain-to-Source Voltage
Parameter
100
V
VGS
Gate-to-Source Voltage
± 20
ID @ TC = 25°C
ID @ TA = 25°C
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
19
4.2
ID @ TA = 70°C
Continuous Drain Current, VGS @ 10V
3.4
IDM
Pulsed Drain Current
34
PD @TC = 25°C
c
Maximum Power Dissipation
42
Power Dissipation
2.2
PD @TA = 70°C
e
Power Dissipation e
TJ
Linear Derating Factor
Operating Junction and
TSTG
Storage Temperature Range
PD @TA = 25°C
A
W
1.4
0.017
-40 to + 150
W/°C
°C
Thermal Resistance
Parameter
RθJA
RθJA
RθJA
RθJC
RθJ-PCB
ek
Junction-to-Ambient hk
Junction-to-Ambient ik
Junction-to-Case jk
Junction-to-Ambient
Junction-to-PCB Mounted
Notes  through Š are on page 2
www.irf.com
Typ.
Max.
Units
°C/W
–––
58
12.5
–––
20
–––
–––
3.0
1.4
–––
1
10/11/04
IRF6665
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Conditions
Min.
Typ.
Max.
Units
V(BR)DSS
Drain-to-Source Breakdown Voltage
100
–––
–––
V
∆V(BR)DSS/∆TJ
RDS(on)
Breakdown Voltage Temp. Coefficient
–––
0.12
–––
V/°C
Reference to 25°C, ID = 1mA
Static Drain-to-Source On-Resistance
–––
53
62
VGS = 10V, ID = 5.0A
VGS(th)
Gate Threshold Voltage
3.0
–––
5.0
mΩ
V
IDSS
Drain-to-Source Leakage Current
–––
–––
20
µA
VDS = 100V, VGS = 0V
–––
–––
250
Gate-to-Source Forward Leakage
–––
–––
100
Gate-to-Source Reverse Leakage
–––
–––
-100
Internal Gate Resistance
–––
1.9
2.9
Ω
Typ.
Max.
Units
IGSS
RG(int)
VGS = 0V, ID = 250µA
f
VDS = VGS, ID = 250µA
VDS = 80V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
VGS = -20V
Dynamic @ TJ = 25°C (unless otherwise specified)
Parameter
gfs
Qg
Min.
S
Conditions
VDS = 10V, ID = 5.0A
Forward Transconductance
6.6
–––
–––
Total Gate Charge
–––
8.7
11.7
VDS = 50V
VGS = 10V
Qgs1
Pre-Vth Gate-to-Source Charge
–––
2.1
–––
Qgs2
Post-Vth Gate-to-Source Charge
–––
0.58
–––
Qgd
Gate-to-Drain Charge
–––
2.8
–––
Qgodr
–––
3.2
–––
Qsw
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
3.38
–––
td(on)
Turn-On Delay Time
–––
7.4
–––
VDD = 50V
tr
Rise Time
–––
2.8
–––
ID = 5.0A
td(off)
tf
Turn-Off Delay Time
Fall Time
–––
–––
14
4.3
–––
–––
Ciss
Input Capacitance
–––
530
–––
Coss
Output Capacitance
–––
110
–––
Crss
Reverse Transfer Capacitance
–––
29
–––
Coss
Output Capacitance
–––
510
–––
ƒ = 1.0MHz
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Coss
Output Capacitance
–––
67
–––
VGS = 0V, VDS = 80V, ƒ = 1.0MHz
Coss eff.
Effective Output Capacitance
–––
130
–––
VGS = 0V, VDS = 0V to 80V
ID = 5.0A
nC
ns
See Fig.6 and 16
RG = 6.0Ω
VGS = 10V
VGS = 0V
f
VDS = 25V
pF
g
Avalanche Characteristics
Parameter
EAS
Single Pulse Avalanche Energy
IAR
Avalanche Current
c
d
Typ.
Max.
Units
–––
11
mJ
–––
5.0
A
Diode Characteristics
Parameter
Continuous Source Current
IS
Min.
Typ.
Max.
–––
–––
4.2
–––
–––
34
(Body Diode)
ISM
Pulsed Source Current
c
Units
Conditions
MOSFET symbol
A
D
showing the
G
integral reverse
p-n junction diode.
(Body Diode)
S
VSD
Diode Forward Voltage
–––
–––
1.3
V
TJ = 25°C, IS = 5.0A, VGS = 0V
trr
Reverse Recovery Time
–––
31
–––
ns
Qrr
Reverse Recovery Charge
–––
37
–––
nC
TJ = 25°C, IF = 5.0A, VDD = 25V
di/dt = 100A/µs
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature.
‚ Starting TJ = 25°C, L = 0.89mH, RG = 25Ω, IAS = 5.0A.
ƒ Surface mounted on 1 in. square Cu board.
„ Pulse width ≤ 400µs; duty cycle ≤ 2%.
… Coss eff. is a fixed capacitance that gives the same
charging time as Coss while VDS is rising from 0 to 80% VDSS.
2
f
f
† Used double sided cooling , mounting pad.
‡ Mounted on minimum footprint full size board with
metalized back and with small clip heatsink.
ˆ TC measured with thermal couple mounted to top
(Drain) of part.
‰ Rθ is measured at TJ of approximately 90°C.
Š Based on testing done using a typical device & evaluation board
at Vbus=±45V, fSW=400KHz, and TA=25°C. The delta case
temperature ∆TC is 55°C.
www.irf.com
IRF6665
100
100
BOTTOM
10
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
9.0V
8.0V
7.0V
6.0V
6.0V
1
BOTTOM
10
6.0V
1
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 150°C
Tj = 25°C
0.1
0.1
0.1
1
10
100
1000
0.1
V DS, Drain-to-Source Voltage (V)
10
100
1000
Fig 2. Typical Output Characteristics
100
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (Α)
1
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
10
T J = -40°C
T J = 25°C
T J = 150°C
1
VDS = 25V
≤60µs PULSE WIDTH
0.1
ID = 5.0A
VGS = 10V
1.5
1.0
0.5
2
4
6
8
10
12
20 40 60 80 100 120 140 160
Fig 4. Normalized On-Resistance vs. Temperature
Fig 3. Typical Transfer Characteristics
10000
-60 -40 -20 0
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
12.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
ID= 5.0A
VGS, Gate-to-Source Voltage (V)
C rss = C gd
C oss = C ds + C gd
C, Capacitance(pF)
VGS
15V
10V
9.0V
8.0V
7.0V
6.0V
1000
Ciss
Coss
100
Crss
10.0
VDS= 80V
VDS= 50V
VDS= 20V
8.0
6.0
4.0
2.0
0.0
10
1
10
VDS, Drain-to-Source Voltage (V)
100
Fig 5. Typical Capacitance vs.Drain-to-Source Voltage
www.irf.com
0
2
4
6
8
10
QG Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage
3
IRF6665
1000
ID, Drain-to-Source Current (A)
100
Tc = 25°C
Tj = 150°C
Single Pulse
ISD, Reverse Drain Current (A)
100
10
T J = -40°C
T J = 25°C
T J = 150°C
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
10
1msec
1
DC
10msec
0.1
VGS = 0V
0.01
1
0.4
0.6
0.8
1.0
1.2
1.4
1.6
0
VSD, Source-to-Drain Voltage (V)
10
100
1000
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode Forward Voltage
5
VGS(th) Gate threshold Voltage (V)
5.5
4
ID, Drain Current (A)
1
VDS, Drain-to-Source Voltage (V)
3
2
1
5.0
4.5
4.0
3.5
ID = 250µA
ID = 1.0mA
3.0
ID = 1.0A
2.5
0
25
50
75
100
125
-75
150
-50
-25
0
25
50
75
100
125
150
T J , Temperature ( °C )
T C , Case Temperature (°C)
Fig 10. Threshold Voltage vs. Temperature
Fig 9. Maximum Drain Current vs. Case Temperature
100
Thermal Response ( Z thJA )
D = 0.50
0.20
10
0.10
0.05
τJ
0.02
1
0.01
R1
R1
τJ
τ1
R2
R2
R3
R3
R4
R4
R5
R5
Ri (°C/W)
τC
τ2
τ1
τ2
τ3
τ3
τ4
τ4
τ5
τ5
Ci= τi/Ri
Ci= τi/Ri
0.1
τ
1.6195
2.1406
0.001354
22.2887
0.375850
20.0457
7.410000
11.9144
SINGLE PULSE
( THERMAL RESPONSE )
τi (sec)
0.000126
99
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
0.01
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient ƒ
4
www.irf.com
RDS(on), Drain-to -Source On Resistance ( mΩ)
RDS(on) , Drain-to -Source On Resistance ( mΩ)
IRF6665
200
ID = 5.0A
180
160
140
120
T J = 125°C
100
80
60
40
T J = 25°C
20
0
4
6
8
10
12
14
16
120
80
Vgs = 10V
40
0
+
V
- DD
VGS
20V
A
0.01Ω
tp
Fig 14a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
EAS , Single Pulse Avalanche Energy (mJ)
D.U.T
6
8
10
50
DRIVER
IAS
4
Fig 13. On-Resistance vs. Drain Current
15V
RG
2
ID, Drain Current (A)
Fig 12. On-Resistance vs. Gate Voltage
L
T J = 25°C
60
18
VGS, Gate -to -Source Voltage (V)
VDS
T J = 125°C
100
ID
TOP
0.86A
1.3A
BOTTOM 5.0A
40
30
20
10
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 14c. Maximum Avalanche Energy vs. Drain Current
I AS
Fig 14b. Unclamped Inductive Waveforms
VDS
VGS
RD
VDS
90%
D.U.T.
RG
+
- VDD
10%
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 15a. Switching Time Test Circuit
www.irf.com
VGS
td(on)
tr
td(off)
tf
Fig 15b. Switching Time Waveforms
5
IRF6665
Current Regulator
Same Type as D.U.T.
Id
Vds
Vgs
50KΩ
12V
.2µF
.3µF
+
V
- DS
D.U.T.
VGS
Vgs(th)
3mA
IG
ID
Current Sampling Resistors
Qgs1 Qgs2
Fig 16a. Gate Charge Test Circuit
Qgd
Qgodr
Fig 16b. Gate Charge Waveform
Driver Gate Drive
D.U.T
ƒ
+
-
-
„
D.U.T. ISD Waveform
Reverse
Recovery
Current

•
•
•
•
di/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
*
+
VDD
D=
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
‚
RG
Period
P.W.
+
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
-
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 17. Diode Reverse Recovery Test Circuit for N-Channel
HEXFET® Power MOSFETs
DirectFET™ Substrate and PCB Layout, SH Outline
(Small Size Can, H-Designation).
Please see DirectFET application note AN-1035 for all details regarding PCB assembly using DirectFET. This
includes all recommendations for stencil and substrate designs.
1
5
3
2
6
1- Drain
2- Drain
3- Gate
4- Source
5- Drain
6- Drain
4
6
www.irf.com
IRF6665
DirectFET™ Outline Dimension, SH Outline
(Small Size Can, H-Designation).
Please see DirectFET application note AN-1035 for all details regarding PCB assembly using DirectFET. This
includes all recommendations for stencil and substrate designs.
Note: Controlling
dimensions are in mm.
DIMENSIONS
IMPERIAL
METRIC
MAX MIN
CODE MIN
MAX
4.85 0.187
A
0.191
4.75
3.95 0.146
B
3.70
0.156
2.85 0.108
C
2.75
0.112
0.45 0.014
D
0.35
0.018
0.62 0.023
E
0.58
0.024
0.62 0.023
F
0.024
0.58
0.67 0.025
G
0.026
0.63
0.87 0.033
H
0.83
0.034
K
0.99 1.03 0.039
0.041
2.33 0.090
L
0.092
2.29
0.58 0.019
M
0.023
0.48
0.08 0.001
N
0.003
0.03
0.17 0.003
P
0.08
0.007
DirectFET™ Part Marking
www.irf.com
7
IRF6665
DirectFET™ Tape & Reel Dimension (Showing component orientation).
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6665). For 1000 parts on 7" reel,
order IRF6665TR1
REEL DIMENSIONS
TR1 OPTION (QTY 1000)
STANDARD OPTION (QTY 4800)
IMPERIAL
IMPERIAL
METRIC
METRIC
CODE
MIN
MIN
MAX
MAX
MIN
MIN
MAX
MAX
12.992
6.9
A
N.C
N.C
330.0
177.77 N.C
N.C
B
0.795
0.75
N.C
20.2
19.06
N.C
N.C
N.C
0.504
0.53
C
0.50
0.520
12.8
13.5
12.8
13.2
D
0.059
0.059
N.C
1.5
1.5
N.C
N.C
N.C
E
3.937
2.31
N.C
100.0
58.72
N.C
N.C
N.C
F
N.C
N.C
0.53
N.C
N.C
0.724
13.50
18.4
G
0.488
0.47
12.4
11.9
N.C
0.567
12.01
14.4
H
0.469
0.47
11.9
11.9
N.C
0.606
12.01
15.4
Loaded Tape Feed Direction
NOTE: CONTROLLING
DIMENSIONS IN MM
CODE
A
B
C
D
E
F
G
H
DIMENSIONS
IMPERIAL
METRIC
MIN
MAX
MAX
MIN
0.311
0.319
8.10
7.90
0.154
0.161
4.10
3.90
0.469
0.484
12.30
11.90
0.215
0.219
5.45
5.55
0.201
0.209
5.10
5.30
0.256
0.264
6.50
6.70
0.059
N.C
1.50
N.C
0.059
1.50
1.60
0.063
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.09/04
8
www.irf.com