PD - 96900 IRF6665 DIGITAL AUDIO MOSFET Features Key Parameters 100 • Latest MOSFET Silicon technology VDS • Key parameters optimized for Class-D audio amplifier applications RDS(on) typ. @ VGS = 10V Qg typ. RG(int) typ. • Low RDS(on) for improved efficiency • Low Qg for better THD and improved efficiency • Low Qrr for better THD and lower EMI 53 8.7 V m: nC 1.9 • Low package stray inductance for reduced ringing and lower EMI • Can deliver up to 100W per channel into 8Ω with no heatsink • Dual sided cooling compatible · Compatible with existing surface mount technologies · Lead and Bromide Free SH DirectFET ISOMETRIC Applicable DirectFET Outline and Substrate Outline (see p. 6, 7 for details) SQ SX ST SH MQ MX MT MN Description This Digital Audio MOSFET is specifically designed for Class-D audio amplifier applications. This MOSFET utilizes the latest processing techniques to achieve low on-resistance per silicon area. Furthermore, gate charge, body-diode reverse recovery and internal gate resistance are optimized to improve key Class-D audio amplifier performance factors such as efficiency, THD, and EMI. The IRF6665 device utilizes DirectFET TM packaging technology. DirectFET TM packaging technology offers lower parasitic inductance and resistance when compared to conventional wirebonded SOIC packaging. Lower inductance improves EMI performance by reducing the voltage ringing that accompanies fast current transients. The DirectFET TM package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing method and processes. The DirectFET TM package also allows dual sided cooling to maximize thermal transfer in power systems, improving thermal resistance and power dissipation. These features combine to make this MOSFET a highly efficient, robust and reliable device for Class-D audio amplifier applications. Absolute Maximum Ratings Max. Units VDS Drain-to-Source Voltage Parameter 100 V VGS Gate-to-Source Voltage ± 20 ID @ TC = 25°C ID @ TA = 25°C Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V 19 4.2 ID @ TA = 70°C Continuous Drain Current, VGS @ 10V 3.4 IDM Pulsed Drain Current 34 PD @TC = 25°C c Maximum Power Dissipation 42 Power Dissipation 2.2 PD @TA = 70°C e Power Dissipation e TJ Linear Derating Factor Operating Junction and TSTG Storage Temperature Range PD @TA = 25°C A W 1.4 0.017 -40 to + 150 W/°C °C Thermal Resistance Parameter RθJA RθJA RθJA RθJC RθJ-PCB ek Junction-to-Ambient hk Junction-to-Ambient ik Junction-to-Case jk Junction-to-Ambient Junction-to-PCB Mounted Notes through are on page 2 www.irf.com Typ. Max. Units °C/W ––– 58 12.5 ––– 20 ––– ––– 3.0 1.4 ––– 1 10/11/04 IRF6665 Static @ TJ = 25°C (unless otherwise specified) Parameter Conditions Min. Typ. Max. Units V(BR)DSS Drain-to-Source Breakdown Voltage 100 ––– ––– V ∆V(BR)DSS/∆TJ RDS(on) Breakdown Voltage Temp. Coefficient ––– 0.12 ––– V/°C Reference to 25°C, ID = 1mA Static Drain-to-Source On-Resistance ––– 53 62 VGS = 10V, ID = 5.0A VGS(th) Gate Threshold Voltage 3.0 ––– 5.0 mΩ V IDSS Drain-to-Source Leakage Current ––– ––– 20 µA VDS = 100V, VGS = 0V ––– ––– 250 Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 Internal Gate Resistance ––– 1.9 2.9 Ω Typ. Max. Units IGSS RG(int) VGS = 0V, ID = 250µA f VDS = VGS, ID = 250µA VDS = 80V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V Dynamic @ TJ = 25°C (unless otherwise specified) Parameter gfs Qg Min. S Conditions VDS = 10V, ID = 5.0A Forward Transconductance 6.6 ––– ––– Total Gate Charge ––– 8.7 11.7 VDS = 50V VGS = 10V Qgs1 Pre-Vth Gate-to-Source Charge ––– 2.1 ––– Qgs2 Post-Vth Gate-to-Source Charge ––– 0.58 ––– Qgd Gate-to-Drain Charge ––– 2.8 ––– Qgodr ––– 3.2 ––– Qsw Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– 3.38 ––– td(on) Turn-On Delay Time ––– 7.4 ––– VDD = 50V tr Rise Time ––– 2.8 ––– ID = 5.0A td(off) tf Turn-Off Delay Time Fall Time ––– ––– 14 4.3 ––– ––– Ciss Input Capacitance ––– 530 ––– Coss Output Capacitance ––– 110 ––– Crss Reverse Transfer Capacitance ––– 29 ––– Coss Output Capacitance ––– 510 ––– ƒ = 1.0MHz VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Coss Output Capacitance ––– 67 ––– VGS = 0V, VDS = 80V, ƒ = 1.0MHz Coss eff. Effective Output Capacitance ––– 130 ––– VGS = 0V, VDS = 0V to 80V ID = 5.0A nC ns See Fig.6 and 16 RG = 6.0Ω VGS = 10V VGS = 0V f VDS = 25V pF g Avalanche Characteristics Parameter EAS Single Pulse Avalanche Energy IAR Avalanche Current c d Typ. Max. Units ––– 11 mJ ––– 5.0 A Diode Characteristics Parameter Continuous Source Current IS Min. Typ. Max. ––– ––– 4.2 ––– ––– 34 (Body Diode) ISM Pulsed Source Current c Units Conditions MOSFET symbol A D showing the G integral reverse p-n junction diode. (Body Diode) S VSD Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 5.0A, VGS = 0V trr Reverse Recovery Time ––– 31 ––– ns Qrr Reverse Recovery Charge ––– 37 ––– nC TJ = 25°C, IF = 5.0A, VDD = 25V di/dt = 100A/µs Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.89mH, RG = 25Ω, IAS = 5.0A. Surface mounted on 1 in. square Cu board. Pulse width ≤ 400µs; duty cycle ≤ 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. 2 f f Used double sided cooling , mounting pad. Mounted on minimum footprint full size board with metalized back and with small clip heatsink. TC measured with thermal couple mounted to top (Drain) of part. Rθ is measured at TJ of approximately 90°C. Based on testing done using a typical device & evaluation board at Vbus=±45V, fSW=400KHz, and TA=25°C. The delta case temperature ∆TC is 55°C. www.irf.com IRF6665 100 100 BOTTOM 10 TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 9.0V 8.0V 7.0V 6.0V 6.0V 1 BOTTOM 10 6.0V 1 ≤60µs PULSE WIDTH ≤60µs PULSE WIDTH Tj = 150°C Tj = 25°C 0.1 0.1 0.1 1 10 100 1000 0.1 V DS, Drain-to-Source Voltage (V) 10 100 1000 Fig 2. Typical Output Characteristics 100 2.0 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (Α) 1 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 10 T J = -40°C T J = 25°C T J = 150°C 1 VDS = 25V ≤60µs PULSE WIDTH 0.1 ID = 5.0A VGS = 10V 1.5 1.0 0.5 2 4 6 8 10 12 20 40 60 80 100 120 140 160 Fig 4. Normalized On-Resistance vs. Temperature Fig 3. Typical Transfer Characteristics 10000 -60 -40 -20 0 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) 12.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED ID= 5.0A VGS, Gate-to-Source Voltage (V) C rss = C gd C oss = C ds + C gd C, Capacitance(pF) VGS 15V 10V 9.0V 8.0V 7.0V 6.0V 1000 Ciss Coss 100 Crss 10.0 VDS= 80V VDS= 50V VDS= 20V 8.0 6.0 4.0 2.0 0.0 10 1 10 VDS, Drain-to-Source Voltage (V) 100 Fig 5. Typical Capacitance vs.Drain-to-Source Voltage www.irf.com 0 2 4 6 8 10 QG Total Gate Charge (nC) Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage 3 IRF6665 1000 ID, Drain-to-Source Current (A) 100 Tc = 25°C Tj = 150°C Single Pulse ISD, Reverse Drain Current (A) 100 10 T J = -40°C T J = 25°C T J = 150°C OPERATION IN THIS AREA LIMITED BY R DS(on) 100µsec 10 1msec 1 DC 10msec 0.1 VGS = 0V 0.01 1 0.4 0.6 0.8 1.0 1.2 1.4 1.6 0 VSD, Source-to-Drain Voltage (V) 10 100 1000 Fig 8. Maximum Safe Operating Area Fig 7. Typical Source-Drain Diode Forward Voltage 5 VGS(th) Gate threshold Voltage (V) 5.5 4 ID, Drain Current (A) 1 VDS, Drain-to-Source Voltage (V) 3 2 1 5.0 4.5 4.0 3.5 ID = 250µA ID = 1.0mA 3.0 ID = 1.0A 2.5 0 25 50 75 100 125 -75 150 -50 -25 0 25 50 75 100 125 150 T J , Temperature ( °C ) T C , Case Temperature (°C) Fig 10. Threshold Voltage vs. Temperature Fig 9. Maximum Drain Current vs. Case Temperature 100 Thermal Response ( Z thJA ) D = 0.50 0.20 10 0.10 0.05 τJ 0.02 1 0.01 R1 R1 τJ τ1 R2 R2 R3 R3 R4 R4 R5 R5 Ri (°C/W) τC τ2 τ1 τ2 τ3 τ3 τ4 τ4 τ5 τ5 Ci= τi/Ri Ci= τi/Ri 0.1 τ 1.6195 2.1406 0.001354 22.2887 0.375850 20.0457 7.410000 11.9144 SINGLE PULSE ( THERMAL RESPONSE ) τi (sec) 0.000126 99 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 0.01 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient 4 www.irf.com RDS(on), Drain-to -Source On Resistance ( mΩ) RDS(on) , Drain-to -Source On Resistance ( mΩ) IRF6665 200 ID = 5.0A 180 160 140 120 T J = 125°C 100 80 60 40 T J = 25°C 20 0 4 6 8 10 12 14 16 120 80 Vgs = 10V 40 0 + V - DD VGS 20V A 0.01Ω tp Fig 14a. Unclamped Inductive Test Circuit V(BR)DSS tp EAS , Single Pulse Avalanche Energy (mJ) D.U.T 6 8 10 50 DRIVER IAS 4 Fig 13. On-Resistance vs. Drain Current 15V RG 2 ID, Drain Current (A) Fig 12. On-Resistance vs. Gate Voltage L T J = 25°C 60 18 VGS, Gate -to -Source Voltage (V) VDS T J = 125°C 100 ID TOP 0.86A 1.3A BOTTOM 5.0A 40 30 20 10 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 14c. Maximum Avalanche Energy vs. Drain Current I AS Fig 14b. Unclamped Inductive Waveforms VDS VGS RD VDS 90% D.U.T. RG + - VDD 10% 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 15a. Switching Time Test Circuit www.irf.com VGS td(on) tr td(off) tf Fig 15b. Switching Time Waveforms 5 IRF6665 Current Regulator Same Type as D.U.T. Id Vds Vgs 50KΩ 12V .2µF .3µF + V - DS D.U.T. VGS Vgs(th) 3mA IG ID Current Sampling Resistors Qgs1 Qgs2 Fig 16a. Gate Charge Test Circuit Qgd Qgodr Fig 16b. Gate Charge Waveform Driver Gate Drive D.U.T + - - D.U.T. ISD Waveform Reverse Recovery Current • • • • di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period * + VDD D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer RG Period P.W. + + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent - ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 17. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs DirectFET™ Substrate and PCB Layout, SH Outline (Small Size Can, H-Designation). Please see DirectFET application note AN-1035 for all details regarding PCB assembly using DirectFET. This includes all recommendations for stencil and substrate designs. 1 5 3 2 6 1- Drain 2- Drain 3- Gate 4- Source 5- Drain 6- Drain 4 6 www.irf.com IRF6665 DirectFET Outline Dimension, SH Outline (Small Size Can, H-Designation). Please see DirectFET application note AN-1035 for all details regarding PCB assembly using DirectFET. This includes all recommendations for stencil and substrate designs. Note: Controlling dimensions are in mm. DIMENSIONS IMPERIAL METRIC MAX MIN CODE MIN MAX 4.85 0.187 A 0.191 4.75 3.95 0.146 B 3.70 0.156 2.85 0.108 C 2.75 0.112 0.45 0.014 D 0.35 0.018 0.62 0.023 E 0.58 0.024 0.62 0.023 F 0.024 0.58 0.67 0.025 G 0.026 0.63 0.87 0.033 H 0.83 0.034 K 0.99 1.03 0.039 0.041 2.33 0.090 L 0.092 2.29 0.58 0.019 M 0.023 0.48 0.08 0.001 N 0.003 0.03 0.17 0.003 P 0.08 0.007 DirectFET Part Marking www.irf.com 7 IRF6665 DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6665). For 1000 parts on 7" reel, order IRF6665TR1 REEL DIMENSIONS TR1 OPTION (QTY 1000) STANDARD OPTION (QTY 4800) IMPERIAL IMPERIAL METRIC METRIC CODE MIN MIN MAX MAX MIN MIN MAX MAX 12.992 6.9 A N.C N.C 330.0 177.77 N.C N.C B 0.795 0.75 N.C 20.2 19.06 N.C N.C N.C 0.504 0.53 C 0.50 0.520 12.8 13.5 12.8 13.2 D 0.059 0.059 N.C 1.5 1.5 N.C N.C N.C E 3.937 2.31 N.C 100.0 58.72 N.C N.C N.C F N.C N.C 0.53 N.C N.C 0.724 13.50 18.4 G 0.488 0.47 12.4 11.9 N.C 0.567 12.01 14.4 H 0.469 0.47 11.9 11.9 N.C 0.606 12.01 15.4 Loaded Tape Feed Direction NOTE: CONTROLLING DIMENSIONS IN MM CODE A B C D E F G H DIMENSIONS IMPERIAL METRIC MIN MAX MAX MIN 0.311 0.319 8.10 7.90 0.154 0.161 4.10 3.90 0.469 0.484 12.30 11.90 0.215 0.219 5.45 5.55 0.201 0.209 5.10 5.30 0.256 0.264 6.50 6.70 0.059 N.C 1.50 N.C 0.059 1.50 1.60 0.063 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.09/04 8 www.irf.com