To all our customers Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp. The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself. Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices and power devices. Renesas Technology Corp. Customer Support Dept. April 1, 2003 MITSUBISHI SEMICONDUCTOR 〈TRIAC〉 BCR20KM Refer to the page 6 as to the product guaranteed maximum junction temperature 150°C MEDIUM POWER USE INSULATED TYPE, PLANAR PASSIVATION TYPE BCR20KM OUTLINE DRAWING Dimensions in mm 3 ± 0.3 6.5 ± 0.3 2.8 ± 0.2 φ 3.2 ± 0.2 3.6 ± 0.3 14 ± 0.5 15 ± 0.3 10 ± 0.3 1.1 ± 0.2 1.1 ± 0.2 E 0.75 ± 0.15 ................................................................ 20A ................................................................. 600V ● IFGT !, IRGT ! , IRGT # .................................... 20mA ● Viso ................................................................. 2000V ● UL Recognized: Yellow Card No.E80276(N) File No. E80271 ➁ ● VDRM ➀ 2.6 ± 0.2 ➀➁➂ ● IT (RMS) 0.75 ± 0.15 2.54 ± 0.25 4.5 ± 0.2 2.54 ± 0.25 ✽ Measurement point of case temperature ➀ T1 TERMINAL ➁ T2 TERMINAL ➂ ➂ GATE TERMINAL TO-220FN APPLICATION Vacuum cleaner, light dimmer, copying machine, other control of motor and heater MAXIMUM RATINGS Symbol VDRM VDSM Voltage class Parameter Repetitive peak off-state Non-repetitive peak off-state voltage✽1 Symbol Parameter Unit 12 600 720 voltage✽1 Conditions IT (RMS) ITSM RMS on-state current Surge on-state current Commercial frequency, sine full wave 360° conduction, Tc=85°C 60Hz sinewave 1 full cycle, peak value, non-repetitive I2t I2t for fusing Value corresponding to 1 cycle of half wave 60Hz, surge on-state current PGM Peak gate power dissipation PG (AV) VGM IGM Tj Tstg Average gate power dissipation Peak gate voltage Peak gate current Junction temperature Storage temperature — Viso Weight Isolation voltage Typical value Ta=25°C, AC 1 minute, T1 · T2 · G terminal to case V V Ratings 20 Unit 200 A A 167 A 2s 5 0.5 10 W W V 2 –40 ~ +125 –40 ~ +125 A °C °C 2.0 2000 g V ✽1. Gate open. Mar. 2002 MITSUBISHI SEMICONDUCTOR 〈TRIAC〉 BCR20KM MEDIUM POWER USE INSULATED TYPE, PLANAR PASSIVATION TYPE Refer to the page 6 as to the product guaranteed maximum junction temperature 150°C ELECTRICAL CHARACTERISTICS Symbol Parameter IDRM VTM Repetitive peak off-state current On-state voltage VFGT ! VRGT ! Gate trigger voltage ✽2 Rth (j-c) (dv/dt)c Tj=125°C, VDRM applied Tc=25°C, ITM=30A, Instantaneous measurement ! @ Tj=25°C, VD=6V, RL=6Ω, RG=330Ω # VRGT # IFGT ! IRGT ! IRGT # VGD Limits Test conditions ! Gate trigger current ✽2 @ Tj=25°C, VD=6V, RL=6Ω, RG=330Ω # Gate non-trigger voltage Thermal resistance Tj=125°C, VD=1/2VDRM Junction to case ✽3 Critical-rate of rise off-state commutating voltage✽4 Tj=125°C Min. — — Typ. — — — — — — — — — — — — 0.2 — — — — — 10 — Max. 2.0 1.5 1.5 1.5 1.5 Unit mA V V V 20 20 20 — V mA mA mA V 2.0 — °C/ W V/µs ✽2. Measurement using the gate trigger characteristics measurement circuit. ✽3. The contact thermal resistance Rth (c-f) in case of greasing is 0.5°C/W. ✽4. Test conditions of the critical-rate of rise of off-state commutating voltage is shown in the table below. Commutating voltage and current waveforms (inductive load) Test conditions SUPPLY VOLTAGE 1. Junction temperature Tj=125°C 2. Rate of decay of on-atate commutating current (di/dt)c=–10A/ms TIME (di/dt)c MAIN CURRENT 3. Peak off-state voltage VD=400V TIME MAIN VOLTAGE (dv/dt)c TIME VD PERFORMANCE CURVES RATED SURGE ON-STATE CURRENT MAXIMUM ON-STATE CHARACTERISTICS 103 ON-STATE CURRENT (A) 3 2 102 7 5 Tj = 125°C 3 2 101 7 5 3 2 Tj = 25°C 100 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 ON-STATE VOLTAGE (V) SURGE ON-STATE CURRENT (A) 240 7 5 200 160 120 80 40 0 100 2 3 5 7 101 2 3 5 7 102 CONDUCTION TIME (CYCLES AT 60Hz) Mar. 2002 MITSUBISHI SEMICONDUCTOR 〈TRIAC〉 BCR20KM MEDIUM POWER USE INSULATED TYPE, PLANAR PASSIVATION TYPE Refer to the page 6 as to the product guaranteed maximum junction temperature 150°C 102 GATE VOLTAGE (V) 7 5 3 2 VGM = 10V PGM = 5W 101 7 5 3 2 VGT = 1.5V PG(AV) = 0.5W IGM = 2A 100 7 5 IFGT I, IRGT I, IRGT III 3 2 VGD = 0.2V 10–1 1 10 2 3 5 7102 2 3 5 7 103 2 3 5 7 104 GATE TRIGGER CURRENT (Tj = t°C) GATE TRIGGER CURRENT (Tj = 25°C) 100 (%) GATE CHARACTERISTICS (Ι, ΙΙ AND ΙΙΙ) GATE TRIGGER CURRENT VS. JUNCTION TEMPERATURE 103 3 2 102 3 102 7 5 4 3 2 101 –60 –40 –20 0 20 40 60 80 100 120 140 TRANSIENT THERMAL IMPEDANCE (°C/W) TYPICAL EXAMPLE IRGT III 101 –60 –40 –20 0 20 40 60 80 100 120 140 MAXIMUM TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (JUNCTION TO CASE) 102 2 3 5 7103 2 3 5 7 104 2 3 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 10–1 2 3 5 7100 2 3 5 7 101 2 3 5 7 102 JUNCTION TEMPERATURE (°C) CONDUCTION TIME (CYCLES AT 60Hz) MAXIMUM ON-STATE POWER DISSIPATION ALLOWABLE CASE TEMPERATURE VS. RMS ON-STATE CURRENT 160 40 CASE TEMPERATURE (°C) 100 (%) GATE TRIGGER VOLTAGE (Tj = t°C) GATE TRIGGER VOLTAGE (Tj = 25°C) ON-STATE POWER DISSIPATION (W) IRGT I 2 JUNCTION TEMPERATURE (°C) GATE TRIGGER VOLTAGE VS. JUNCTION TEMPERATURE 30 360° CONDUCTION RESISTIVE, INDUCTIVE 20 LOADS 10 0 IFGT I 7 5 GATE CURRENT (mA) 103 7 5 4 3 2 TYPICAL EXAMPLE 7 5 0 5 10 15 20 25 RMS ON-STATE CURRENT (A) 30 CURVES APPLY REGARDLESS 140 OF CONDUCTION ANGLE 120 100 80 60 360° 40 CONDUCTION RESISTIVE, 20 INDUCTIVE LOADS 0 0 5 10 15 20 25 30 RMS ON-STATE CURRENT (A) Mar. 2002 MITSUBISHI SEMICONDUCTOR 〈TRIAC〉 BCR20KM MEDIUM POWER USE INSULATED TYPE, PLANAR PASSIVATION TYPE 40 20 5 10 15 20 25 7 5 3 2 102 –60 –40 –20 0 20 40 60 80 100 120 140 100 (%) REPETITIVE PEAK OFF-STATE CURRENT (Tj = t°C) REPETITIVE PEAK OFF-STATE CURRENT (Tj = 25°C) TYPICAL EXAMPLE 40 20 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 103 7 5 4 3 TYPICAL EXAMPLE IH(typ) = 20mA 2 102 7 5 4 3 2 101 –60 –40 –20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (°C) JUNCTION TEMPERATURE (°C) LACHING CURRENT VS. JUNCTION TEMPERATURE BREAKOVER VOLTAGE VS. JUNCTION TEMPERATURE 103 LACHING CURRENT (mA) 60 HOLDING CURRENT VS. JUNCTION TEMPERATURE 103 DISTRIBUTION 3 2 T2+, G– TYPICAL EXAMPLE 102 7 5 3 2 101 3 2 80 REPETITIVE PEAK OFF-STATE CURRENT VS. JUNCTION TEMPERATURE 7 5 3 2 7 5 100 RMS ON-STATE CURRENT (A) 104 7 5 120 RMS ON-STATE CURRENT (A) 105 7 5 3 2 NATURAL CONVECTION NO FINS CURVES APPLY REGARDLESS OF CONDUCTION ANGLE RESISTIVE, INDUCTIVE LOADS 140 0 30 HOLDING CURRENT (Tj = t°C) HOLDING CURRENT (Tj = 25°C) 0 T2+, G+ TYPICAL T2– , G– EXAMPLE 100 –60 –40 –20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (°C) 100 (%) 100 (%) 0 ALLOWABLE AMBIENT TEMPERATURE VS. RMS ON-STATE CURRENT 160 AMBIENT TEMPERATURE (°C) ALLOWABLE AMBIENT TEMPERATURE VS. RMS ON-STATE CURRENT 160 ALL FINS ARE BLACK PAINTED ALUMINUM AND GREASED 140 NATURAL CONVECTION 120 160 160 t 2.3 100 100 100 t 2.3 80 60 60 t 2.3 60 BREAKOVER VOLTAGE (Tj = t°C) BREAKOVER VOLTAGE (Tj = 25°C) AMBIENT TEMPERATURE (°C) Refer to the page 6 as to the product guaranteed maximum junction temperature 150°C 160 TYPICAL EXAMPLE 140 120 100 80 60 40 20 0 –60 –40 –20 0 20 40 60 80 100120 140 JUNCTION TEMPERATURE (°C) Mar. 2002 MITSUBISHI SEMICONDUCTOR 〈TRIAC〉 BCR20KM MEDIUM POWER USE INSULATED TYPE, PLANAR PASSIVATION TYPE Refer to the page 6 as to the product guaranteed maximum junction temperature 150°C BREAKOVER VOLTAGE (dv/dt = xV/µs ) BREAKOVER VOLTAGE (dv/dt = 1V/µs ) 140 120 TYPICAL EXAMPLE Tj = 125°C 100 III QUADRANT CRITICAL RATE OF RISE OF OFF-STATE COMMUTATING VOLTAGE (V/µs) 100 (%) BREAKOVER VOLTAGE VS. RATE OF RISE OF OFF-STATE VOLTAGE 80 60 40 I QUADRANT 20 0 101 2 3 5 7 102 2 3 5 7 103 2 3 5 7104 RATE OF RISE OF OFF-STATE VOLTAGE (V/µs) COMMUTATION CHARACTERISTICS 102 SUPPLY VOLTAGE 7 5 MAIN VOLTAGE (dv/dt)c 3 2 TYPICAL EXAMPLE Tj = 125°C IT = 4A τ = 500µs VD = 200V f = 3Hz TIME MAIN CURRENT (di/dt)c TIME TIME VD 101 7 5 III QUADRANT MINIMUM CHARACTERISTICS VALUE I QUADRANT 3 2 100 7 3 5 7 101 2 3 5 7 102 RATE OF DECAY OF ON-STATE COMMUTATING CURRENT (A/ms) GATE TRIGGER CURRENT VS. GATE CURRENT PULSE WIDTH 100 (%) 103 TYPICAL EXAMPLE GATE TRIGGER CURRENT (tw) GATE TRIGGER CURRENT (DC) 7 5 3 IRGT I 2 IFGT I IRGT III 102 7 5 3 2 101 0 10 2 5 7 101 3 2 3 5 7 102 GATE TRIGGER PULSE WIDTH (µs) GATE TRIGGER CHARACTERISTICS TEST CIRCUITS 6Ω 6Ω A 6V V A 6V 330Ω TEST PROCEDURE 1 V 330Ω TEST PROCEDURE 2 6Ω A 6V V 330Ω TEST PROCEDURE 3 Mar. 2002 MITSUBISHI SEMICONDUCTOR 〈TRIAC〉 BCR20KM The product guaranteed maximum junction temperature 150°C (See warning.) MEDIUM POWER USE INSULATED TYPE, PLANAR PASSIVATION TYPE BCR20KM OUTLINE DRAWING Dimensions in mm 3 ± 0.3 6.5 ± 0.3 2.8 ± 0.2 φ 3.2 ± 0.2 3.6 ± 0.3 14 ± 0.5 15 ± 0.3 10 ± 0.3 1.1 ± 0.2 1.1 ± 0.2 E 0.75 ± 0.15 ................................................................ 20A ................................................................. 600V ● IFGT !, IRGT ! , IRGT # .................................... 20mA ● Viso ................................................................. 2000V ● UL Recognized: Yellow Card No.E80276(N) File No. E80271 ● VDRM ➁ ➀ 2.6 ± 0.2 ➀➁➂ ● IT (RMS) 0.75 ± 0.15 2.54 ± 0.25 4.5 ± 0.2 2.54 ± 0.25 ✽ Measurement point of case temperature ➀ T1 TERMINAL ➁ T2 TERMINAL ➂ ➂ GATE TERMINAL TO-220FN APPLICATION Vacuum cleaner, light dimmer, copying machine, other control of motor and heater (Warning) 1. Refer to the recommended circuit values around the triac before using. 2. Be sure to exchange the specification before using. If not exchanged, general triacs will be supplied. MAXIMUM RATINGS Symbol VDRM VDSM Voltage class Parameter Repetitive peak off-state Non-repetitive peak off-state voltage✽1 Symbol Parameter Unit 12 600 720 voltage✽1 Conditions IT (RMS) ITSM RMS on-state current Surge on-state current Commercial frequency, sine full wave 360° conduction, Tc=110°C 60Hz sinewave 1 full cycle, peak value, non-repetitive I2t I2t for fusing Value corresponding to 1 cycle of half wave 60Hz, surge on-state current PGM Peak gate power dissipation PG (AV) VGM IGM Tj Tstg Average gate power dissipation Peak gate voltage Peak gate current Junction temperature Storage temperature — Viso Weight Isolation voltage Typical value Ta=25°C, AC 1 minute, T1 · T2 · G terminal to case V V Ratings 20 Unit 200 A A 167 A 2s 5 0.5 10 W W V 2 –40 ~ +150 –40 ~ +150 A °C °C 2.0 2000 g V ✽1. Gate open. Mar. 2002 MITSUBISHI SEMICONDUCTOR 〈TRIAC〉 BCR20KM MEDIUM POWER USE INSULATED TYPE, PLANAR PASSIVATION TYPE The product guaranteed maximum junction temperature 150°C (See warning.) ELECTRICAL CHARACTERISTICS Symbol Parameter IDRM VTM Repetitive peak off-state current On-state voltage VFGT ! VRGT ! Gate trigger voltage ✽2 Rth (j-c) (dv/dt)c Tj=125°C/150°C, VDRM applied Tc=25°C, ITM=30A, Instantaneous measurement ! @ Tj=25°C, VD=6V, RL=6Ω, RG=330Ω # VRGT # IFGT ! IRGT ! IRGT # VGD Limits Test conditions ! Gate trigger current ✽2 @ Tj=25°C, VD=6V, RL=6Ω, RG=330Ω # Gate non-trigger voltage Thermal resistance Tj=125°C/150°C, VD=1/2VDRM Junction to case ✽3 Critical-rate of rise off-state commutating voltage✽4 Tj=125°C/150°C Min. — — Typ. — — — — — — — — — — — — 0.2/0.1 — — — — — 10/1 — Max. 2.0/3.0 1.5 1.5 1.5 1.5 Unit mA V V V 20 20 20 — V mA mA mA V 2.0 — °C/ W V/µs ✽2. Measurement using the gate trigger characteristics measurement circuit. ✽3. The contact thermal resistance Rth (c-f) in case of greasing is 0.5°C/W. ✽4. Test conditions of the critical-rate of rise of off-state commutating voltage is shown in the table below. Commutating voltage and current waveforms (inductive load) Test conditions SUPPLY VOLTAGE 1. Junction temperature Tj=125°C/150°C TIME (di/dt)c 2. Rate of decay of on-atate commutating current (di/dt)c=–10A/ms MAIN CURRENT 3. Peak off-state voltage VD=400V MAIN VOLTAGE (dv/dt)c TIME TIME VD PERFORMANCE CURVES RATED SURGE ON-STATE CURRENT MAXIMUM ON-STATE CHARACTERISTICS 103 240 SURGE ON-STATE CURRENT (A) ON-STATE CURRENT (A) 7 5 3 2 102 7 5 Tj = 150°C 3 2 101 7 5 Tj = 25°C 3 2 100 0.5 1.0 1.5 2.0 2.5 3.0 3.5 ON-STATE VOLTAGE (V) 4.0 200 160 120 80 40 0 100 2 3 5 7 101 2 3 5 7 102 CONDUCTION TIME (CYCLES AT 60Hz) Mar. 2002 MITSUBISHI SEMICONDUCTOR 〈TRIAC〉 BCR20KM MEDIUM POWER USE INSULATED TYPE, PLANAR PASSIVATION TYPE The product guaranteed maximum junction temperature 150°C (See warning.) 5 GATE VOLTAGE (V) 3 2 VGM = 10V PGM = 5W 101 7 5 3 VGT = 1.5V 2 PG(AV) = 0.5W IGM = 2A 100 7 5 IFGT I, IRGT I, IRGT III 3 2 10–1 VGD = 0.1V 7 5 GATE TRIGGER CURRENT (Tj = t°C) GATE TRIGGER CURRENT (Tj = 25°C) 100 (%) GATE CHARACTERISTICS (Ι, ΙΙ AND ΙΙΙ) 101 2 3 5 7102 2 3 5 7 103 2 3 5 7 104 GATE TRIGGER CURRENT VS. JUNCTION TEMPERATURE 103 3 2 102 IFGT I 7 5 3 2 101 –60 –40 –20 0 20 40 60 80 100 120 140 160 TRANSIENT THERMAL IMPEDANCE (°C/W) 102 7 5 4 3 2 MAXIMUM TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (JUNCTION TO CASE) 102 2 3 5 7103 2 3 5 7 104 2 3 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 10–1 2 3 5 7100 2 3 5 7 101 2 3 5 7 102 JUNCTION TEMPERATURE (°C) CONDUCTION TIME (CYCLES AT 60Hz) MAXIMUM ON-STATE POWER DISSIPATION ALLOWABLE CASE TEMPERATURE VS. RMS ON-STATE CURRENT 160 40 CASE TEMPERATURE (°C) 100 (%) GATE TRIGGER VOLTAGE (Tj = t°C) GATE TRIGGER VOLTAGE (Tj = 25°C) ON-STATE POWER DISSIPATION (W) TYPICAL EXAMPLE 30 360° CONDUCTION RESISTIVE, INDUCTIVE 20 LOADS 10 0 IRGT III JUNCTION TEMPERATURE (°C) GATE TRIGGER VOLTAGE VS. JUNCTION TEMPERATURE 0 IRGT I 101 –60 –40 –20 0 20 40 60 80 100 120 140 160 GATE CURRENT (mA) 103 7 5 4 3 2 TYPICAL EXAMPLE 7 5 5 10 15 20 25 RMS ON-STATE CURRENT (A) 30 140 CURVES APPLY REGARDLESS OF CONDUCTION ANGLE 120 100 80 60 360° 40 CONDUCTION RESISTIVE, 20 INDUCTIVE LOADS 0 0 5 10 15 20 25 30 RMS ON-STATE CURRENT (A) Mar. 2002 MITSUBISHI SEMICONDUCTOR 〈TRIAC〉 BCR20KM MEDIUM POWER USE INSULATED TYPE, PLANAR PASSIVATION TYPE 80 60 160 160 t 2.3 40 100 100 t 2.3 20 60 60 t 2.3 0 0 5 10 20 25 60 40 20 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 7 5 3 2 103 7 5 3 2 102 –60 –40 –20 0 20 40 60 80 100 120 140 160 HOLDING CURRENT (Tj = t°C) HOLDING CURRENT (Tj = 25°C) TYPICAL EXAMPLE 100 (%) HOLDING CURRENT VS. JUNCTION TEMPERATURE 103 7 5 4 3 TYPICAL EXAMPLE IH(typ) = 20mA 2 102 7 5 4 3 2 101 –60 –40 –20 0 20 40 60 80 100 120 140 160 JUNCTION TEMPERATURE (°C) JUNCTION TEMPERATURE (°C) LACHING CURRENT VS. JUNCTION TEMPERATURE BREAKOVER VOLTAGE VS. JUNCTION TEMPERATURE 103 LACHING CURRENT (mA) 80 REPETITIVE PEAK OFF-STATE CURRENT VS. JUNCTION TEMPERATURE 103 DISTRIBUTION 3 2 T2+, G– TYPICAL EXAMPLE 102 7 5 3 2 101 3 2 100 RMS ON-STATE CURRENT (A) 7 5 3 2 7 5 120 NATURAL CONVECTION NO FINS CURVES APPLY REGARDLESS OF CONDUCTION ANGLE RESISTIVE, INDUCTIVE LOADS RMS ON-STATE CURRENT (A) 103 7 5 140 0 30 T2+, G+ TYPICAL T2– , G– EXAMPLE 100 –60 –40 –20 0 20 40 60 80 100 120 140 160 JUNCTION TEMPERATURE (°C) 100 (%) REPETITIVE PEAK OFF-STATE CURRENT (Tj = t°C) REPETITIVE PEAK OFF-STATE CURRENT (Tj = 25°C) 5 3 2 15 BREAKOVER VOLTAGE (Tj = t°C) BREAKOVER VOLTAGE (Tj = 25°C) 100 OF CONDUCTION ANGLE RESISTIVE, INDUCTIVE LOADS ALLOWABLE AMBIENT TEMPERATURE VS. RMS ON-STATE CURRENT 160 AMBIENT TEMPERATURE (°C) ALLOWABLE AMBIENT TEMPERATURE VS. RMS ON-STATE CURRENT 160 ALL FINS ARE BLACK PAINTED ALUMINUM AND GREASED 140 NATURAL CONVECTION CURVES APPLY REGARDLESS 120 100 (%) AMBIENT TEMPERATURE (°C) The product guaranteed maximum junction temperature 150°C (See warning.) 160 TYPICAL EXAMPLE 140 120 100 80 60 40 20 0 –60 –40 –20 0 20 40 60 80 100 120 140 160 JUNCTION TEMPERATURE (°C) Mar. 2002 MITSUBISHI SEMICONDUCTOR 〈TRIAC〉 BCR20KM TYPICAL EXAMPLE Tj = 125°C CRITICAL RATE OF RISE OF OFF-STATE COMMUTATING VOLTAGE (V/µs) BREAKOVER VOLTAGE (dv/dt = xV/µs ) BREAKOVER VOLTAGE (dv/dt = 1V/µs ) 140 120 III QUADRANT 100 80 60 40 I QUADRANT 20 0 101 2 3 5 7102 2 3 5 7103 2 3 5 7104 BREAKOVER VOLTAGE VS. RATE OF RISE OF OFF-STATE VOLTAGE (Tj = 150°C) 160 TYPICAL EXAMPLE Tj = 150°C 140 BREAKOVER VOLTAGE (dv/dt = xV/µs ) BREAKOVER VOLTAGE (dv/dt = 1V/µs ) 160 120 100 80 III QUADRANT 60 40 I QUADRANT 20 0 101 2 3 5 7102 2 3 5 7103 2 3 5 7104 RATE OF RISE OF OFF-STATE VOLTAGE (V/µs) RATE OF RISE OF OFF-STATE VOLTAGE (V/µs) COMMUTATION CHARACTERISTICS (Tj = 125°C) COMMUTATION CHARACTERISTICS (Tj = 150°C) 102 SUPPLY VOLTAGE 7 5 (di/dt)c TIME MAIN CURRENT MAIN VOLTAGE (dv/dt)c 3 2 TYPICAL EXAMPLE Tj = 125°C IT = 4A τ = 500µs VD = 200V f = 3Hz TIME TIME VD 101 7 5 MINIMUM III QUADRANT CHARACTERISTICS VALUE I QUADRANT 3 2 100 7 3 5 7 101 2 3 5 7 102 RATE OF DECAY OF ON-STATE COMMUTATING CURRENT (A/ms) CRITICAL RATE OF RISE OF OFF-STATE COMMUTATING VOLTAGE (V/µs) 100 (%) BREAKOVER VOLTAGE VS. RATE OF RISE OF OFF-STATE VOLTAGE (Tj = 125°C) 100 (%) MEDIUM POWER USE INSULATED TYPE, PLANAR PASSIVATION TYPE The product guaranteed maximum junction temperature 150°C (See warning.) 102 SUPPLY VOLTAGE 7 5 MAIN VOLTAGE (dv/dt)c 3 2 101 TIME VD I QUADRANT 7 5 III QUADRANT 3 2 MINIMUM CHARACTERISTICS VALUE 100 7 TYPICAL EXAMPLE Tj = 150°C IT = 4A τ = 500µs VD = 200V f = 3Hz TIME (di/dt)c TIME MAIN CURRENT 3 5 7 101 2 3 5 7 102 RATE OF DECAY OF ON-STATE COMMUTATING CURRENT (A/ms) GATE TRIGGER CURRENT (tw) GATE TRIGGER CURRENT (DC) 100 (%) GATE TRIGGER CURRENT VS. GATE CURRENT PULSE WIDTH 103 TYPICAL EXAMPLE 7 5 IRGT I 3 IRGT III 2 IFGT I 102 7 5 3 2 101 0 10 2 3 5 7 101 2 3 5 7 102 GATE TRIGGER PULSE WIDTH (µs) Mar. 2002 MITSUBISHI SEMICONDUCTOR 〈TRIAC〉 BCR20KM MEDIUM POWER USE INSULATED TYPE, PLANAR PASSIVATION TYPE The product guaranteed maximum junction temperature 150°C (See warning.) GATE TRIGGER CHARACTERISTICS TEST CIRCUITS 6Ω RECOMMENDED CIRCUIT VALUES AROUND THE TRIAC 6Ω LOAD A 6V 330Ω V TEST PROCEDURE 1 C1 A 6V V 330Ω TEST PROCEDURE 2 R1 C1 = 0.1~0.47µF R1 = 47~100Ω C0 R0 C0 = 0.1µF R0 = 100Ω 6Ω A 6V V 330Ω TEST PROCEDURE 3 Mar. 2002