SOLOMON SYSTECH SEMICONDUCTOR TECHNICAL DATA SSD1322 Advance Information 480 x 128, Dot Matrix High Power OLED/PLED Segment/Common Driver with Controller This document contains information on a new product. Specifications and information herein are subject to change without notice. http://www.solomon-systech.com SSD1322 Rev 1.2 P 1/60 Jul 2010 Copyright © 2010 Solomon Systech Limited Appendix: IC Revision history of SSD1322 Specification Version 1.0 1. 2. 3. 4. 5. 6. 1.1 1. 2. 3. 1.2 1. 2. 3. 4. 5. 6. 7. 8. 9. SSD1322 Change Items Changed to Advance Information Revised the typo errors on commands BBh and BEh (Section 9) Amended the default OSCFREQ[3:0] of command B3h from 1100b to 0101b (Section 9) Updated the DC Characteristics table (Section 12) Updated the AC Characteristics table (Section 13) Revise Table 13-5 & Figure 13-4 (3 wire SPI) Effective Date 23-Jul-08 Updated the ordering P/N from SSD1322Z to SSD1322Z2 (P.7) and corresponding information (Section 5) Updated the application examples (P.55, 56) Added SSD1322Z2 die tray information (Section 15.2) 10-Sep-08 Revise typo in Section 3 : No. of SPH from 4 to 5 (P.7) Revise die thickness tolerance from ±25um to ±15um on Table 3-1 (P.7) & Fig 5-1(P.9) Added +/- 0.05mm tolerance for Die Size (after sawing) and revise bump size typo in Section 5 ( P.9 ) Update Table 3-2: SSD1322Z2 Bump Die Pad Coordinates (p.10) Update Power On sequence (P.30) Updated P/N from SSD1322Z to SSD1322Z2 in Fig 10-6 &10-7 (P.41) Revised a typo on the command description of command ABh (P.45) Add alignment mark detail of SSD1322UR1 in Fig 15-1 (P.57) Revised declaimer (P.60) 13-Jul-10 Rev 1.2 P 2/60 Jul 2010 Solomon Systech CONTENTS 1 GENERAL DESCRIPTION .................................................................................................. 7 2 FEATURES ............................................................................................................................. 7 3 ORDERING INFORMATION.............................................................................................. 7 4 BLOCK DIAGRAM ............................................................................................................... 8 5 DIE PAD FLOOR PLAN ....................................................................................................... 9 6 PIN ARRANGEMENT ........................................................................................................ 13 6.1 SSD1322UR1 PIN ASSIGNMENT ............................................................................................................................13 7 PIN DESCRIPTIONS........................................................................................................... 15 8 FUNCTIONAL BLOCK DESCRIPTIONS ....................................................................... 18 8.1 MCU INTERFACE ..................................................................................................................................................18 8.1.1 MCU Parallel 6800-series Interface ...............................................................................................................18 8.1.2 MCU Parallel 8080-series Interface ...............................................................................................................19 8.1.3 MCU Serial Interface (4-wire SPI)..................................................................................................................20 8.1.4 MCU Serial Interface (3-wire SPI)..................................................................................................................21 8.2 RESET CIRCUIT......................................................................................................................................................22 8.3 GDDRAM ............................................................................................................................................................22 8.3.1 GDDRAM structure in Gray Scale mode.........................................................................................................22 8.3.2 Data bus to RAM mapping ..............................................................................................................................22 8.4 COMMAND DECODER ............................................................................................................................................23 8.5 OSCILLATOR & TIMING GENERATOR ....................................................................................................................23 8.6 SEG/COM DRIVING BLOCK .................................................................................................................................24 8.7 SEG / COM DRIVER .............................................................................................................................................25 8.8 GRAY SCALE DECODER.........................................................................................................................................29 8.9 POWER ON AND OFF SEQUENCE...........................................................................................................................30 8.10 VDD REGULATOR ..............................................................................................................................................31 9 COMMAND TABLE............................................................................................................ 32 10 COMMAND .......................................................................................................................... 37 10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 10.1.6 10.1.7 10.1.8 10.1.9 10.1.10 10.1.11 10.1.12 10.1.13 10.1.14 10.1.15 10.1.16 10.1.17 10.1.18 10.1.19 10.1.20 10.1.21 10.1.22 10.1.23 SSD1322 Enable Gray Scale Table (00h)...................................................................................................................37 Set Column Address (15h) ..........................................................................................................................37 Write RAM Command (5Ch).......................................................................................................................37 Read RAM Command (5Dh) .......................................................................................................................37 Set Row Address (75h) ................................................................................................................................38 Set Re-map & Dual COM Line Mode (A0h) ...............................................................................................39 Set Display Start Line (A1h) .......................................................................................................................42 Set Display Offset (A2h)..............................................................................................................................43 Set Display Mode (A4h ~ A7h)....................................................................................................................44 Enable Partial Display (A8h) .....................................................................................................................45 Exit Partial Display (A9h) ..........................................................................................................................45 Set Function selection (ABh).......................................................................................................................45 Set Display ON/OFF (AEh / AFh) ..............................................................................................................45 Set Phase Length (B1h)...............................................................................................................................45 Set Front Clock Divider / Oscillator Frequency (B3h)...............................................................................45 Display Enhancement A (B4h)....................................................................................................................46 Set GPIO (B5h) ...........................................................................................................................................46 Set Second Pre-charge period (B6h)...........................................................................................................46 Set Gray Scale Table (B8h).........................................................................................................................46 Select Default Linear Gray Scale Table (B9h)............................................................................................46 Set Pre-charge voltage (BBh) .....................................................................................................................46 Set VCOMH Voltage (BEh).............................................................................................................................47 Set Contrast Current (C1h).........................................................................................................................47 Rev 1.2 P 3/60 Jul 2010 Solomon Systech 10.1.24 10.1.25 10.1.26 10.1.27 Master Current Control (C7h)....................................................................................................................47 Set Multiplex Ratio (CAh)...........................................................................................................................47 Display Enhancement B (D1h) ...................................................................................................................47 Set Command Lock (FDh)...........................................................................................................................47 11 MAXIMUM RATINGS........................................................................................................ 48 12 DC CHARACTERISTICS................................................................................................... 49 13 AC CHARACTERISTICS................................................................................................... 50 14 APPLICATION EXAMPLES ............................................................................................. 55 15 PACKAGE INFORMATION.............................................................................................. 57 15.1 15.2 SSD1322 SSD1322UR1 DETAIL DIMENSION ...................................................................................................................57 SSD1322Z2 DIE TRAY INFORMATION..............................................................................................................58 Rev 1.2 P 4/60 Jul 2010 Solomon Systech TABLES 4. UPDATE TABLE 3-1: SSD1322Z2 BUMP DIE PAD COORDINATES (P.10)........................................................................II 4. UPDATE TABLE 3-2: SSD1322Z2 BUMP DIE PAD COORDINATES (P.10)........................................................................2 TABLE 3-1 : ORDERING INFORMATION ..................................................................................................................................7 TABLE 5-1: SSD1322Z2 BUMP DIE PAD COORDINATES......................................................................................................10 TABLE 6-1: SSD1322UR1 PIN ASSIGNMENT TABLE ...........................................................................................................14 TABLE 7-1: SSD1322 PIN DESCRIPTION ..............................................................................................................................15 TABLE 7-2 : BUS INTERFACE SELECTION .............................................................................................................................15 TABLE 8-1 : MCU INTERFACE ASSIGNMENT UNDER DIFFERENT BUS INTERFACE MODE .......................................................18 TABLE 8-2 : CONTROL PINS OF 6800 INTERFACE..................................................................................................................18 TABLE 8-3 : CONTROL PINS OF 8080 INTERFACE..................................................................................................................20 TABLE 8-4 : CONTROL PINS OF 4-WIRE SERIAL INTERFACE ..................................................................................................20 TABLE 8-5: CONTROL PINS OF 3-WIRE SERIAL INTERFACE...................................................................................................21 TABLE 8-6 : GDDRAM IN GRAY SCALE MODE (RESET) ...................................................................................................22 TABLE 8-7 : DATA BUS USAGE .............................................................................................................................................22 TABLE 9-1 : COMMAND TABLE ............................................................................................................................................32 TABLE 11-1 : MAXIMUM RATINGS ......................................................................................................................................48 TABLE 12-1 : DC CHARACTERISTICS ...................................................................................................................................49 TABLE 13-1 : AC CHARACTERISTICS ...................................................................................................................................50 TABLE 13-2 : 6800-SERIES MCU PARALLEL INTERFACE TIMING CHARACTERISTICS..........................................................51 TABLE 13-3 : 8080-SERIES MCU PARALLEL INTERFACE TIMING CHARACTERISTICS..........................................................52 TABLE 13-4 : SERIAL INTERFACE TIMING CHARACTERISTICS (4-WIRE SPI) ........................................................................53 TABLE 13-5: SERIAL INTERFACE TIMING CHARACTERISTICS (3-WIRE SPI) .........................................................................54 TABLE 15-1: SSD1322Z2 DIE TRAY DIMENSIONS ..............................................................................................................59 SSD1322 Rev 1.2 P 5/60 Jul 2010 Solomon Systech FIGURES FIGURE 4-1 : SSD1322 BLOCK DIAGRAM..............................................................................................................................8 FIGURE 5-1: SSD1322Z2 DIE DRAWING ...............................................................................................................................9 FIGURE 5-2: SSD1322Z2 ALIGNMENT MARK DIMENSION ......................................................................................................9 FIGURE 6-1: SSD1322UR1 PIN ASSIGNMENT .....................................................................................................................13 FIGURE 8-1 : DATA READ BACK PROCEDURE - INSERTION OF DUMMY READ ........................................................................19 FIGURE 8-2 : EXAMPLE OF WRITE PROCEDURE IN 8080 PARALLEL INTERFACE MODE..........................................................19 FIGURE 8-3 : EXAMPLE OF READ PROCEDURE IN 8080 PARALLEL INTERFACE MODE ...........................................................19 FIGURE 8-4 : DISPLAY DATA READ BACK PROCEDURE - INSERTION OF DUMMY READ ..........................................................20 FIGURE 8-5 : WRITE PROCEDURE IN 4-WIRE SERIAL INTERFACE MODE ................................................................................21 FIGURE 8-6: WRITE PROCEDURE IN 3-WIRE SERIAL INTERFACE MODE .................................................................................21 FIGURE 8-7 : OSCILLATOR CIRCUIT .....................................................................................................................................23 FIGURE 8-8 : IREF CURRENT SETTING BY RESISTOR VALUE .................................................................................................24 FIGURE 8-9 : SEGMENT AND COMMON DRIVER BLOCK DIAGRAM – SINGLE COM MODE ...................................................25 FIGURE 8-10 : SEGMENT AND COMMON DRIVER BLOCK DIAGRAM – DUAL COM MODE....................................................26 FIGURE 8-11 : SEGMENT AND COMMON DRIVER SIGNAL WAVEFORM ................................................................................27 FIGURE 8-12 : GRAY SCALE CONTROL BY PWM IN SEGMENT ............................................................................................28 FIGURE 8-13 : RELATION BETWEEN GDDRAM CONTENT AND GRAY SCALE TABLE ENTRY (UNDER COMMAND B9H ENABLE LINEAR GRAY SCALE TABLE)........................................................................................................................29 FIGURE 8-14 : THE POWER ON SEQUENCE...........................................................................................................................30 FIGURE 8-15 : THE POWER OFF SEQUENCE .........................................................................................................................30 FIGURE 8-16 VCI > 2.6V, VDD REGULATOR ENABLE PIN CONNECTION SCHEME....................................................................31 FIGURE 8-17 VDD REGULATOR DISABLE PIN CONNECTION SCHEME .....................................................................................31 FIGURE 10-110-2 : EXAMPLE OF COLUMN AND ROW ADDRESS POINTER MOVEMENT (GRAY SCALE MODE) .....................38 FIGURE 10-3 : ADDRESS POINTER MOVEMENT OF HORIZONTAL ADDRESS INCREMENT MODE ...........................................39 FIGURE 10-4: ADDRESS POINTER MOVEMENT OF VERTICAL ADDRESS INCREMENT MODE.................................................39 FIGURE 10-5: GDDRAM IN GRAY SCALE MODE WITH OR WITHOUT COLUMN ADDRESS (A[1]) & NIBBLE REMAPPING (A[2]) ....................................................................................................................................................................................40 FIGURE 10-6 : COM PINS HARDWARE CONFIGURATION – 1 (MUX RATIO: 128).................................................................41 FIGURE 10-7 : COM PINS HARDWARE CONFIGURATION – 2 (MUX RATIO: 64)...................................................................41 FIGURE 10-8 : EXAMPLE OF SET DISPLAY START LINE WITH NO REMAP .............................................................................42 FIGURE 10-9 : EXAMPLE OF SET DISPLAY OFFSET WITH NO REMAP ...................................................................................43 FIGURE 10-10 : EXAMPLE OF NORMAL DISPLAY .................................................................................................................44 FIGURE 10-11 : EXAMPLE OF ENTIRE DISPLAY ON .............................................................................................................44 FIGURE 10-12 : EXAMPLE OF ENTIRE DISPLAY OFF............................................................................................................44 FIGURE 10-13 : EXAMPLE OF INVERSE DISPLAY ..................................................................................................................44 FIGURE 10-14 : EXAMPLE OF PARTIAL MODE DISPLAY .......................................................................................................45 FIGURE 10-15 : EXAMPLE OF GAMMA CORRECTION BY GAMMA LOOK UP TABLE SETTING.................................................46 FIGURE 13-1 : 6800-SERIES MCU PARALLEL INTERFACE CHARACTERISTICS .......................................................................51 FIGURE 13-2 : 8080-SERIES MCU PARALLEL INTERFACE CHARACTERISTICS .......................................................................52 FIGURE 13-3 : SERIAL INTERFACE CHARACTERISTICS (4-WIRE SPI).....................................................................................53 FIGURE 13-4: SERIAL INTERFACE CHARACTERISTICS (3-WIRE SPI) .....................................................................................54 FIGURE 14-1 : SSD1322 APPLICATION EXAMPLE FOR 8-BIT 6800-PARALLEL INTERFACE MODE (INTERNAL REGULATED VDD) ....................................................................................................................................................................................55 FIGURE 14-2 : SSD1322 APPLICATION EXAMPLE FOR 8-BIT 6800-PARALLEL INTERFACE, DUAL COM MODE (INTERNAL VDD) ....................................................................................................................................................................................56 FIGURE 15-1: SSD1322UR1 DETAIL DIMENSION ...............................................................................................................57 FIGURE 15-2: SSD1322Z2 DIE TRAY DRAWING .................................................................................................................58 SSD1322 Rev 1.2 P 6/60 Jul 2010 Solomon Systech 1 GENERAL DESCRIPTION SSD1322 is a single-chip CMOS OLED/PLED driver with controller for organic/polymer light emitting diode dot-matrix graphic display system. It consists of 480 segments and 128 commons. This IC is designed for Common Cathode type OLED/PLED panel. SSD1322 displays data directly from its internal 480 x 128 x 4 bits Graphic Display Data RAM (GDDRAM). Data/Commands are sent from general MCU through the hardware selectable 6800-/8080-series compatible Parallel Interface or Serial Peripheral Interface. This driver IC has a 256 steps contrast control and can be widely used in many applications such as automotive and industrial control panel. 2 FEATURES • • • • • • • • • • • • • 3 Resolution: 480 x 128 dot matrix panel Power supply o VDD = 2.4V – 2.6V (Core VDD power supply, can be regulated from VCI) o VDDIO = 1.65V – VCI (MCU interface logic level) (Low voltage power supply) o VCI = 2.4V - 3.5V o VCC = 10.0V – 20.0V (Panel driving power supply) When VCI is lower than 2.6V, VDD should be supplied by external power source For matrix display o Segment maximum source current: 300uA o Common maximum sink current: 80mA o 256 step contrast brightness current control, 16 step master current control 16 gray scale levels supported by embedded 480 x 128 x 4 bit SRAM display buffer Selectable MCU Interfaces: o 8-bit 6800/8080-series parallel interface o 3/4-wire Serial Peripheral Interface Selectable Common current sinking mode: o Dual COM mode o Single COM mode 8-bit programmable Gray Scale Look Up Table High Power Protection Programmable Frame Rate and Multiplexing Ratio Row re-mapping and Column re-mapping Sleep mode current <10uA with ram data kept Operating temperature range -40°C to 85°C. ORDERING INFORMATION Table 3-1 : Ordering Information Ordering Part Number SEG COM Package Form SSD1322Z2 480 128 Gold bump Die SSD1322UR1 256 64 (dual COM) COF SSD1322 Rev 1.2 P 7/60 Jul 2010 Reference Remark • • • • • Page 13, 57 • • Page 9 Min SEG pitch: 25um Min COM pitch: 35um Die thickness: 300 +/- 15um 70mm film, 5 SPH 8-bit 80/68/SPI interfaces SEG, COM lead pitch 0.12mm x 0.999 = 0.11988mm Also support 128 MUX (single COM) • Die thickness: 457 +/- 25um Solomon Systech 4 BLOCK DIAGRAM Figure 4-1 : SSD1322 Block Diagram VCI GDDRAM MCU Interface BS0 BS1 SSD1322 Rev 1.2 P 8/60 (even) (odd) . . . . . . . . . . . COM126 COM124 | | COM2 COM0 SEG0 SEG1 | | SEG478 SEG479 COM1 COM3 | | COM125 COM127 IREF SEG/COM Driving Block VCOMH M/S# Display Timing Generator Jul 2010 FR DOF# CL CLS Command Decoder GPIO0 GPIO1 Oscillator VDDIO VCC VCI VDD1 VSS VLSS VSL . . . . . . . . . . . . . . . . . . . . . . Segment Drivers D7 D6 D5 D4 D3 D2 D1 D0 Gray Scale Decoder RES# CS# D/C# R/W# (WR#) E(RD#) Common Drivers VDD Regulator Common Drivers BGGND VDD Solomon Systech 5 DIE PAD FLOOR PLAN Figure 5-1: SSD1322Z2 Die Drawing Die size Die thickness Min I/O pad pitch Min SEG pad pitch Min COM pad pitch Bump height 12.4 mm ± 0.05mm x 1.53 mm ± 0.05mm 300 +/- 15um 70um 25um 35um Nominal 15um Bump size Pad# 1-48, 146-193 195-216, 706-727 49-145 194, 728 217, 705 218, 704 219-703 Alignment mark + shape + shape SSL Logo X[um] 26 60 45 60 50 50 16 Y[um] 60 26 90 50 50 96 96 Position Size (5583.95,200.78) (-5634.61,-309.88) (-5682.11,-258.98) 75um x 75um 75um x 75um - (For details dimension please see Figure 5-2) Y X SSD1322Z2 Pad 1,2,3,…->728 Gold Bumps face up Figure 5-2: SSD1322Z2 alignment mark dimension 25 25 25 25 25 15 15 10 10 25 15 15 Center: Size: SSD1322 Rev 1.2 P 9/60 Jul 2010 (-5364.61, -309.88) 75 x 75 μm2 Center: Size: (5583.95, 200.78) 75 x 75 μm2 Solomon Systech Table 5-1: SSD1322Z2 Bump Die Pad Coordinates Pad no. Pin name X-pos Y-pos Pad no. Pin name X-pos Y-pos Pad no. Pin name X-pos Y-pos Pad no. Pin name X-pos Y-pos 1 VLSS -5833.06 -664.06 81 RES# -1381.06 -654.15 161 COM50 4708.06 -664.06 241 SEG22 5500 687.81 2 VLSS -5798.06 -664.06 82 CS# -1311.06 -654.15 162 COM49 4743.06 -664.06 242 SEG23 5475 687.81 3 COM84 -5758.06 -664.06 83 D/C# -1241.06 -654.15 163 COM48 4778.06 -664.06 243 SEG24 5450 687.81 4 COM85 -5723.06 -664.06 84 VSS -1171.06 -654.15 164 COM47 4813.06 -664.06 244 SEG25 5425 687.81 5 COM86 -5688.06 -664.06 85 BS1 -1101.06 -654.15 165 COM46 4848.06 -664.06 245 SEG26 5400 687.81 6 COM87 -5653.06 -664.06 86 VDDIO -1031.06 -654.15 166 COM45 4883.06 -664.06 246 SEG27 5375 687.81 7 COM88 -5618.06 -664.06 87 BS0 -961.06 -654.15 167 COM44 4918.06 -664.06 247 SEG28 5350 687.81 8 COM89 -5583.06 -664.06 88 VSS -891.06 -654.15 168 COM43 4953.06 -664.06 248 SEG29 5325 687.81 9 COM90 -5548.06 -664.06 89 R/W#(WR#) -821.06 -654.15 169 COM42 4988.06 -664.06 249 SEG30 5300 687.81 10 COM91 -5513.06 -664.06 90 E(RD#) -751.06 -654.15 170 COM41 5023.06 -664.06 250 SEG31 5275 687.81 11 COM92 -5478.06 -664.06 91 VDDIO -681.06 -654.15 171 COM40 5058.06 -664.06 251 SEG32 5250 687.81 12 COM93 -5443.06 -664.06 92 VDD1 -528.06 -654.15 172 COM39 5093.06 -664.06 252 SEG33 5225 687.81 13 COM94 -5408.06 -664.06 93 VDD1 -458.06 -654.15 173 COM38 5128.06 -664.06 253 SEG34 5200 687.81 14 COM95 -5373.06 -664.06 94 VDD1 -388.06 -654.15 174 COM37 5163.06 -664.06 254 SEG35 5175 687.81 15 COM96 -5338.06 -664.06 95 VDD -290.06 -654.15 175 COM36 5198.06 -664.06 255 SEG36 5150 687.81 16 COM97 -5303.06 -664.06 96 VDD -220.06 -654.15 176 COM35 5233.06 -664.06 256 SEG37 5125 687.81 17 COM98 -5268.06 -664.06 97 VDD -150.06 -654.15 177 COM34 5268.06 -664.06 257 SEG38 5100 687.81 18 COM99 -5233.06 -664.06 98 NC -36.06 -654.15 178 COM33 5303.06 -664.06 258 SEG39 5075 687.81 19 COM100 -5198.06 -664.06 99 NC 33.94 -654.15 179 COM32 5338.06 -664.06 259 SEG40 5050 687.81 20 COM101 -5163.06 -664.06 100 NC 103.94 -654.15 180 COM31 5373.06 -664.06 260 SEG41 5025 687.81 21 COM102 -5128.06 -664.06 101 VCI 217.94 -654.15 181 COM30 5408.06 -664.06 261 SEG42 5000 687.81 22 COM103 -5093.06 -664.06 102 D0 309.94 -654.15 182 COM29 5443.06 -664.06 262 SEG43 4975 687.81 23 COM104 -5058.06 -664.06 103 D1 395.94 -654.15 183 COM28 5478.06 -664.06 263 SEG44 4950 687.81 24 COM105 -5023.06 -664.06 104 D2 505.94 -654.15 184 COM27 5513.06 -664.06 264 SEG45 4925 687.81 25 COM106 -4988.06 -664.06 105 D3 591.94 -654.15 185 COM26 5548.06 -664.06 265 SEG46 4900 687.81 26 COM107 -4953.06 -664.06 106 D4 701.94 -654.15 186 COM25 5583.06 -664.06 266 SEG47 4875 687.81 27 COM108 -4918.06 -664.06 107 D5 787.94 -654.15 187 COM24 5618.06 -664.06 267 SEG48 4850 687.81 28 COM109 -4883.06 -664.06 108 D6 897.94 -654.15 188 COM23 5653.06 -664.06 268 SEG49 4825 687.81 29 COM110 -4848.06 -664.06 109 D7 983.94 -654.15 189 COM22 5688.06 -664.06 269 SEG50 4800 687.81 30 COM111 -4813.06 -664.06 110 DN0 1093.94 -654.15 190 COM21 5723.06 -664.06 270 SEG51 4775 687.81 31 COM112 -4778.06 -664.06 111 DN1 1179.94 -654.15 191 COM20 5758.06 -664.06 271 SEG52 4750 687.81 32 COM113 -4743.06 -664.06 112 DN2 1289.94 -654.15 192 VLSS 5793.06 -664.06 272 SEG53 4725 687.81 33 COM114 -4708.06 -664.06 113 DN3 1375.94 -654.15 193 VLSS 5828.06 -664.06 273 SEG54 4700 687.81 34 COM115 -4673.06 -664.06 114 DN4 1485.94 -654.15 194 VLSS 6087.34 -674.56 274 SEG55 4675 687.81 35 COM116 -4638.06 -664.06 115 DN5 1571.94 -654.15 195 COM19 6087.34 -627.06 275 SEG56 4650 687.81 36 COM117 -4603.06 -664.06 116 DN6 1681.94 -654.15 196 COM18 6087.34 -592.06 276 SEG57 4625 687.81 37 COM118 -4568.06 -664.06 117 DN7 1767.94 -654.15 197 COM17 6087.34 -557.06 277 SEG58 4600 687.81 38 COM119 -4533.06 -664.06 118 DN8 1877.94 -654.15 198 COM16 6087.34 -522.06 278 SEG59 4575 687.81 39 COM120 -4498.06 -664.06 119 DN9 1963.94 -654.15 199 COM15 6087.34 -487.06 279 SEG60 4550 687.81 40 COM121 -4463.06 -664.06 120 VSS 2055.94 -654.15 200 COM14 6087.34 -452.06 280 SEG61 4525 687.81 41 COM122 -4428.06 -664.06 121 BGGND 2125.94 -654.15 201 COM13 6087.34 -417.06 281 SEG62 4500 687.81 42 COM123 -4393.06 -664.06 122 MS 2195.94 -654.15 202 COM12 6087.34 -382.06 282 SEG63 4475 687.81 43 COM124 -4358.06 -664.06 123 CLS 2265.94 -654.15 203 COM11 6087.34 -347.06 283 SEG64 4450 687.81 44 COM125 -4323.06 -664.06 124 VSL 2335.94 -654.15 204 COM10 6087.34 -312.06 284 SEG65 4425 687.81 45 COM126 -4288.06 -664.06 125 VSL 2405.94 -654.15 205 COM9 6087.34 -277.06 285 SEG66 4400 687.81 46 COM127 -4253.06 -664.06 126 VCI 2475.94 -654.15 206 COM8 6087.34 -242.06 286 SEG67 4375 687.81 47 VLSS -4218.06 -664.06 127 VDDIO 2628.94 -654.15 207 COM7 6087.34 -207.06 287 SEG68 4350 687.81 48 VLSS -4183.06 -664.06 128 VDDIO 2698.94 -654.15 208 COM6 6087.34 -172.06 288 SEG69 4325 687.81 49 VSS -4033.06 -654.15 129 VDD 2768.94 -654.15 209 COM5 6087.34 -137.06 289 SEG70 4300 687.81 50 VSS -3963.06 -654.15 130 NC 2878.94 -654.15 210 COM4 6087.34 -102.06 290 SEG71 4275 687.81 51 VCC -3874.06 -654.15 131 VSS 2948.94 -654.15 211 COM3 6087.34 -67.06 291 SEG72 4250 687.81 52 VCC -3804.06 -654.15 132 VSS 3018.94 -654.15 212 COM2 6087.34 -32.06 292 SEG73 4225 687.81 53 VCOMH -3697.06 -654.15 133 VLSS 3088.94 -654.15 213 COM1 6087.34 2.94 293 SEG74 4200 687.81 54 VCOMH -3627.06 -654.15 134 VLSS 3158.94 -654.15 214 COM0 6087.34 37.94 294 SEG75 4175 687.81 687.81 55 VLSS -3557.06 -654.15 135 VCOMH 3228.94 -654.15 215 VLSS 6087.34 72.94 295 SEG76 4150 56 VLSS -3487.06 -654.15 136 VCOMH 3298.94 -654.15 216 VLSS 6087.34 107.94 296 SEG77 4125 687.81 57 VSS -3417.06 -654.15 137 VCC 3405.94 -654.15 217 VSL 6097.34 311.09 297 SEG78 4100 687.81 58 VSS -3347.06 -654.15 138 VCC 3475.94 -654.15 218 VCC 6097.34 687.81 298 SEG79 4075 687.81 59 VSL -3277.06 -654.15 139 VSS 3572.94 -654.15 219 SEG0 6050 687.81 299 SEG80 4050 687.81 60 VSL -3207.06 -654.15 140 VSS 3642.94 -654.15 220 SEG1 6025 687.81 300 SEG81 4025 687.81 61 VCI -3137.06 -654.15 141 VSS 3712.94 -654.15 221 SEG2 6000 687.81 301 SEG82 4000 687.81 62 VCI -3067.06 -654.15 142 VSS 3782.94 -654.15 222 SEG3 5975 687.81 302 SEG83 3975 687.81 63 VDD1 -2914.06 -654.15 143 VSS 3852.94 -654.15 223 SEG4 5950 687.81 303 SEG84 3950 687.81 64 VDD1 -2844.06 -654.15 144 VSS 3922.94 -654.15 224 SEG5 5925 687.81 304 SEG85 3925 687.81 65 VDD -2746.06 -654.15 145 VSS 3992.94 -654.15 225 SEG6 5900 687.81 305 SEG86 3900 687.81 66 VDD -2676.06 -654.15 146 VLSS 4183.06 -664.06 226 SEG7 5875 687.81 306 SEG87 3875 687.81 67 VDD -2606.06 -654.15 147 VLSS 4218.06 -664.06 227 SEG8 5850 687.81 307 SEG88 3850 687.81 68 VDDIO -2453.06 -654.15 148 COM63 4253.06 -664.06 228 SEG9 5825 687.81 308 SEG89 3825 687.81 69 VDDIO -2383.06 -654.15 149 COM62 4288.06 -664.06 229 SEG10 5800 687.81 309 SEG90 3800 687.81 70 VDD -2313.06 -654.15 150 COM61 4323.06 -664.06 230 SEG11 5775 687.81 310 SEG91 3775 687.81 71 VLSS -2243.06 -654.15 151 COM60 4358.06 -664.06 231 SEG12 5750 687.81 311 SEG92 3750 687.81 72 GPIO0 -2151.06 -654.15 152 COM59 4393.06 -664.06 232 SEG13 5725 687.81 312 SEG93 3725 687.81 73 GPIO1 -2065.06 -654.15 153 COM58 4428.06 -664.06 233 SEG14 5700 687.81 313 SEG94 3700 687.81 74 IREF -1973.06 -654.15 154 COM57 4463.06 -664.06 234 SEG15 5675 687.81 314 SEG95 3675 687.81 75 FR -1881.06 -654.15 155 COM56 4498.06 -664.06 235 SEG16 5650 687.81 315 SEG96 3650 687.81 76 CL -1795.06 -654.15 156 COM55 4533.06 -664.06 236 SEG17 5625 687.81 316 SEG97 3625 687.81 77 VSS -1703.06 -654.15 157 COM54 4568.06 -664.06 237 SEG18 5600 687.81 317 SEG98 3600 687.81 78 DOF# -1611.06 -654.15 158 COM53 4603.06 -664.06 238 SEG19 5575 687.81 318 SEG99 3575 687.81 79 NC -1521.06 -654.15 159 COM52 4638.06 -664.06 239 SEG20 5550 687.81 319 SEG100 3550 687.81 80 VSS -1451.06 -654.15 160 COM51 4673.06 -664.06 240 SEG21 5525 687.81 320 SEG101 3525 687.81 SSD1322 Rev 1.2 P 10/60 Jul 2010 Solomon Systech Pad no. Pin name X-pos Y-pos Pad no. Pin name X-pos Y-pos Pad no. Pin name X-pos Y-pos Pad no. Pin name X-pos Y-pos 321 SEG102 3500 687.81 401 SEG182 1500 687.81 481 SEG257 -500 687.81 561 SEG337 -2500 687.81 322 SEG103 3475 687.81 402 SEG183 1475 687.81 482 SEG258 -525 687.81 562 SEG338 -2525 687.81 323 SEG104 3450 687.81 403 SEG184 1450 687.81 483 SEG259 -550 687.81 563 SEG339 -2550 687.81 324 SEG105 3425 687.81 404 SEG185 1425 687.81 484 SEG260 -575 687.81 564 SEG340 -2575 687.81 325 SEG106 3400 687.81 405 SEG186 1400 687.81 485 SEG261 -600 687.81 565 SEG341 -2600 687.81 326 SEG107 3375 687.81 406 SEG187 1375 687.81 486 SEG262 -625 687.81 566 SEG342 -2625 687.81 327 SEG108 3350 687.81 407 SEG188 1350 687.81 487 SEG263 -650 687.81 567 SEG343 -2650 687.81 328 SEG109 3325 687.81 408 SEG189 1325 687.81 488 SEG264 -675 687.81 568 SEG344 -2675 687.81 329 SEG110 3300 687.81 409 SEG190 1300 687.81 489 SEG265 -700 687.81 569 SEG345 -2700 687.81 330 SEG111 3275 687.81 410 SEG191 1275 687.81 490 SEG266 -725 687.81 570 SEG346 -2725 687.81 331 SEG112 3250 687.81 411 SEG192 1250 687.81 491 SEG267 -750 687.81 571 SEG347 -2750 687.81 332 SEG113 3225 687.81 412 SEG193 1225 687.81 492 SEG268 -775 687.81 572 SEG348 -2775 687.81 333 SEG114 3200 687.81 413 SEG194 1200 687.81 493 SEG269 -800 687.81 573 SEG349 -2800 687.81 334 SEG115 3175 687.81 414 SEG195 1175 687.81 494 SEG270 -825 687.81 574 SEG350 -2825 687.81 335 SEG116 3150 687.81 415 SEG196 1150 687.81 495 SEG271 -850 687.81 575 SEG351 -2850 687.81 336 SEG117 3125 687.81 416 SEG197 1125 687.81 496 SEG272 -875 687.81 576 SEG352 -2875 687.81 337 SEG118 3100 687.81 417 SEG198 1100 687.81 497 SEG273 -900 687.81 577 SEG353 -2900 687.81 338 SEG119 3075 687.81 418 SEG199 1075 687.81 498 SEG274 -925 687.81 578 SEG354 -2925 687.81 339 SEG120 3050 687.81 419 SEG200 1050 687.81 499 SEG275 -950 687.81 579 SEG355 -2950 687.81 340 SEG121 3025 687.81 420 SEG201 1025 687.81 500 SEG276 -975 687.81 580 SEG356 -2975 687.81 341 SEG122 3000 687.81 421 SEG202 1000 687.81 501 SEG277 -1000 687.81 581 SEG357 -3000 687.81 342 SEG123 2975 687.81 422 SEG203 975 687.81 502 SEG278 -1025 687.81 582 SEG358 -3025 687.81 343 SEG124 2950 687.81 423 SEG204 950 687.81 503 SEG279 -1050 687.81 583 SEG359 -3050 687.81 344 SEG125 2925 687.81 424 SEG205 925 687.81 504 SEG280 -1075 687.81 584 SEG360 -3075 687.81 345 SEG126 2900 687.81 425 SEG206 900 687.81 505 SEG281 -1100 687.81 585 SEG361 -3100 687.81 346 SEG127 2875 687.81 426 SEG207 875 687.81 506 SEG282 -1125 687.81 586 SEG362 -3125 687.81 347 SEG128 2850 687.81 427 SEG208 850 687.81 507 SEG283 -1150 687.81 587 SEG363 -3150 687.81 348 SEG129 2825 687.81 428 SEG209 825 687.81 508 SEG284 -1175 687.81 588 SEG364 -3175 687.81 349 SEG130 2800 687.81 429 SEG210 800 687.81 509 SEG285 -1200 687.81 589 SEG365 -3200 687.81 350 SEG131 2775 687.81 430 SEG211 775 687.81 510 SEG286 -1225 687.81 590 SEG366 -3225 687.81 351 SEG132 2750 687.81 431 SEG212 750 687.81 511 SEG287 -1250 687.81 591 SEG367 -3250 687.81 352 SEG133 2725 687.81 432 SEG213 725 687.81 512 SEG288 -1275 687.81 592 SEG368 -3275 687.81 353 SEG134 2700 687.81 433 SEG214 700 687.81 513 SEG289 -1300 687.81 593 SEG369 -3300 687.81 354 SEG135 2675 687.81 434 SEG215 675 687.81 514 SEG290 -1325 687.81 594 SEG370 -3325 687.81 355 SEG136 2650 687.81 435 SEG216 650 687.81 515 SEG291 -1350 687.81 595 SEG371 -3350 687.81 356 SEG137 2625 687.81 436 SEG217 625 687.81 516 SEG292 -1375 687.81 596 SEG372 -3375 687.81 357 SEG138 2600 687.81 437 SEG218 600 687.81 517 SEG293 -1400 687.81 597 SEG373 -3400 687.81 358 SEG139 2575 687.81 438 SEG219 575 687.81 518 SEG294 -1425 687.81 598 SEG374 -3425 687.81 359 SEG140 2550 687.81 439 SEG220 550 687.81 519 SEG295 -1450 687.81 599 SEG375 -3450 687.81 360 SEG141 2525 687.81 440 SEG221 525 687.81 520 SEG296 -1475 687.81 600 SEG376 -3475 687.81 361 SEG142 2500 687.81 441 SEG222 500 687.81 521 SEG297 -1500 687.81 601 SEG377 -3500 687.81 362 SEG143 2475 687.81 442 SEG223 475 687.81 522 SEG298 -1525 687.81 602 SEG378 -3525 687.81 363 SEG144 2450 687.81 443 SEG224 450 687.81 523 SEG299 -1550 687.81 603 SEG379 -3550 687.81 364 SEG145 2425 687.81 444 SEG225 425 687.81 524 SEG300 -1575 687.81 604 SEG380 -3575 687.81 365 SEG146 2400 687.81 445 SEG226 400 687.81 525 SEG301 -1600 687.81 605 SEG381 -3600 687.81 366 SEG147 2375 687.81 446 SEG227 375 687.81 526 SEG302 -1625 687.81 606 SEG382 -3625 687.81 367 SEG148 2350 687.81 447 SEG228 350 687.81 527 SEG303 -1650 687.81 607 SEG383 -3650 687.81 368 SEG149 2325 687.81 448 SEG229 325 687.81 528 SEG304 -1675 687.81 608 SEG384 -3675 687.81 369 SEG150 2300 687.81 449 SEG230 300 687.81 529 SEG305 -1700 687.81 609 SEG385 -3700 687.81 370 SEG151 2275 687.81 450 SEG231 275 687.81 530 SEG306 -1725 687.81 610 SEG386 -3725 687.81 371 SEG152 2250 687.81 451 SEG232 250 687.81 531 SEG307 -1750 687.81 611 SEG387 -3750 687.81 372 SEG153 2225 687.81 452 SEG233 225 687.81 532 SEG308 -1775 687.81 612 SEG388 -3775 687.81 373 SEG154 2200 687.81 453 SEG234 200 687.81 533 SEG309 -1800 687.81 613 SEG389 -3800 687.81 374 SEG155 2175 687.81 454 SEG235 175 687.81 534 SEG310 -1825 687.81 614 SEG390 -3825 687.81 375 SEG156 2150 687.81 455 SEG236 150 687.81 535 SEG311 -1850 687.81 615 SEG391 -3850 687.81 376 SEG157 2125 687.81 456 SEG237 125 687.81 536 SEG312 -1875 687.81 616 SEG392 -3875 687.81 377 SEG158 2100 687.81 457 SEG238 100 687.81 537 SEG313 -1900 687.81 617 SEG393 -3900 687.81 378 SEG159 2075 687.81 458 SEG239 75 687.81 538 SEG314 -1925 687.81 618 SEG394 -3925 687.81 379 SEG160 2050 687.81 459 VCC 50 687.81 539 SEG315 -1950 687.81 619 SEG395 -3950 687.81 380 SEG161 2025 687.81 460 VCC 25 687.81 540 SEG316 -1975 687.81 620 SEG396 -3975 687.81 381 SEG162 2000 687.81 461 VCC 0 687.81 541 SEG317 -2000 687.81 621 SEG397 -4000 687.81 382 SEG163 1975 687.81 462 VCC -25 687.81 542 SEG318 -2025 687.81 622 SEG398 -4025 687.81 383 SEG164 1950 687.81 463 VCC -50 687.81 543 SEG319 -2050 687.81 623 SEG399 -4050 687.81 384 SEG165 1925 687.81 464 SEG240 -75 687.81 544 SEG320 -2075 687.81 624 SEG400 -4075 687.81 385 SEG166 1900 687.81 465 SEG241 -100 687.81 545 SEG321 -2100 687.81 625 SEG401 -4100 687.81 386 SEG167 1875 687.81 466 SEG242 -125 687.81 546 SEG322 -2125 687.81 626 SEG402 -4125 687.81 387 SEG168 1850 687.81 467 SEG243 -150 687.81 547 SEG323 -2150 687.81 627 SEG403 -4150 687.81 388 SEG169 1825 687.81 468 SEG244 -175 687.81 548 SEG324 -2175 687.81 628 SEG404 -4175 687.81 389 SEG170 1800 687.81 469 SEG245 -200 687.81 549 SEG325 -2200 687.81 629 SEG405 -4200 687.81 390 SEG171 1775 687.81 470 SEG246 -225 687.81 550 SEG326 -2225 687.81 630 SEG406 -4225 687.81 391 SEG172 1750 687.81 471 SEG247 -250 687.81 551 SEG327 -2250 687.81 631 SEG407 -4250 687.81 392 SEG173 1725 687.81 472 SEG248 -275 687.81 552 SEG328 -2275 687.81 632 SEG408 -4275 687.81 393 SEG174 1700 687.81 473 SEG249 -300 687.81 553 SEG329 -2300 687.81 633 SEG409 -4300 687.81 394 SEG175 1675 687.81 474 SEG250 -325 687.81 554 SEG330 -2325 687.81 634 SEG410 -4325 687.81 395 SEG176 1650 687.81 475 SEG251 -350 687.81 555 SEG331 -2350 687.81 635 SEG411 -4350 687.81 396 SEG177 1625 687.81 476 SEG252 -375 687.81 556 SEG332 -2375 687.81 636 SEG412 -4375 687.81 397 SEG178 1600 687.81 477 SEG253 -400 687.81 557 SEG333 -2400 687.81 637 SEG413 -4400 687.81 398 SEG179 1575 687.81 478 SEG254 -425 687.81 558 SEG334 -2425 687.81 638 SEG414 -4425 687.81 399 SEG180 1550 687.81 479 SEG255 -450 687.81 559 SEG335 -2450 687.81 639 SEG415 -4450 687.81 400 SEG181 1525 687.81 480 SEG256 -475 687.81 560 SEG336 -2475 687.81 640 SEG416 -4475 687.81 SSD1322 Rev 1.2 P 11/60 Jul 2010 Solomon Systech Pad no. Pin name X-pos Y-pos Pad no. Pin name X-pos Y-pos 641 SEG417 -4500 687.81 721 COM77 -6087.34 -417.06 642 SEG418 -4525 687.81 722 COM78 -6087.34 -452.06 643 SEG419 -4550 687.81 723 COM79 -6087.34 -487.06 644 SEG420 -4575 687.81 724 COM80 -6087.34 -522.06 645 SEG421 -4600 687.81 725 COM81 -6087.34 -557.06 646 SEG422 -4625 687.81 726 COM82 -6087.34 -592.06 647 SEG423 -4650 687.81 727 COM83 -6087.34 -627.06 648 SEG424 -4675 687.81 728 VLSS -6087.34 -674.56 649 SEG425 -4700 687.81 650 SEG426 -4725 687.81 651 SEG427 -4750 687.81 652 SEG428 -4775 687.81 653 SEG429 -4800 687.81 654 SEG430 -4825 687.81 655 SEG431 -4850 687.81 656 SEG432 -4875 687.81 657 SEG433 -4900 687.81 658 SEG434 -4925 687.81 659 SEG435 -4950 687.81 660 SEG436 -4975 687.81 661 SEG437 -5000 687.81 662 SEG438 -5025 687.81 663 SEG439 -5050 687.81 664 SEG440 -5075 687.81 665 SEG441 -5100 687.81 666 SEG442 -5125 687.81 667 SEG443 -5150 687.81 668 SEG444 -5175 687.81 669 SEG445 -5200 687.81 670 SEG446 -5225 687.81 671 SEG447 -5250 687.81 672 SEG448 -5275 687.81 673 SEG449 -5300 687.81 674 SEG450 -5325 687.81 675 SEG451 -5350 687.81 676 SEG452 -5375 687.81 677 SEG453 -5400 687.81 678 SEG454 -5425 687.81 679 SEG455 -5450 687.81 680 SEG456 -5475 687.81 681 SEG457 -5500 687.81 682 SEG458 -5525 687.81 683 SEG459 -5550 687.81 684 SEG460 -5575 687.81 685 SEG461 -5600 687.81 686 SEG462 -5625 687.81 687 SEG463 -5650 687.81 688 SEG464 -5675 687.81 689 SEG465 -5700 687.81 690 SEG466 -5725 687.81 691 SEG467 -5750 687.81 692 SEG468 -5775 687.81 693 SEG469 -5800 687.81 694 SEG470 -5825 687.81 695 SEG471 -5850 687.81 696 SEG472 -5875 687.81 697 SEG473 -5900 687.81 698 SEG474 -5925 687.81 699 SEG475 -5950 687.81 700 SEG476 -5975 687.81 701 SEG477 -6000 687.81 702 SEG478 -6025 687.81 703 SEG479 -6050 687.81 704 VCC -6097.34 687.81 705 VSL -6097.34 311.09 706 VLSS -6087.34 107.94 707 VLSS -6087.34 72.94 708 COM64 -6087.34 37.94 709 COM65 -6087.34 2.94 710 COM66 -6087.34 -32.06 711 COM67 -6087.34 -67.06 712 COM68 -6087.34 -102.06 713 COM69 -6087.34 -137.06 714 COM70 -6087.34 -172.06 715 COM71 -6087.34 -207.06 716 COM72 -6087.34 -242.06 717 COM73 -6087.34 -277.06 718 COM74 -6087.34 -312.06 719 COM75 -6087.34 -347.06 720 COM76 -6087.34 -382.06 SSD1322 Rev 1.2 P 12/60 Jul 2010 Solomon Systech 6 6.1 PIN ARRANGEMENT SSD1322UR1 pin assignment Figure 6-1: SSD1322UR1 Pin Assignment Note: (1) COM sequence is listed in terms of dual COM mode; refer to Table 9-1 for details. SSD1322 Rev 1.2 P 13/60 Jul 2010 Solomon Systech Table 6-1: SSD1322UR1 Pin Assignment Table Pad no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 SSD1322 Pin name NC VSS VCC VCOMH VLSS D7 D6 D5 D4 D3 D2 D1 D0 E/RD# RW# BS0 BS1 DC# CS# RES# FR IREF NC VDDIO VDD VCI VSL VLSS VCC NC NC NC COMB63 COMB62 COMB61 COMB60 COMB59 COMB58 COMB57 COMB56 COMB55 COMB54 COMB53 COMB52 COMB51 COMB50 COMB49 COMB48 COMB47 COMB46 COMB45 COMB44 COMB43 COMB42 COMB41 COMB40 COMB39 COMB38 COMB37 COMB36 COMB35 COMB34 COMB33 COMB32 COMB31 COMB30 COMB29 COMB28 COMB27 COMB26 COMB25 COMB24 COMB23 COMB22 COMB21 COMB20 COMB19 COMB18 COMB17 COMB16 Pad no. 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 Rev 1.2 Pin name COMB15 COMB14 COMB13 COMB12 COMB11 COMB10 COMB9 COMB8 COMB7 COMB6 COMB5 COMB4 COMB3 COMB2 COMB1 COMB0 NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC SEG255 SEG254 SEG253 SEG252 SEG251 SEG250 SEG249 SEG248 SEG247 SEG246 SEG245 SEG244 SEG243 SEG242 SEG241 SEG240 SEG239 SEG238 SEG237 SEG236 SEG235 SEG234 SEG233 SEG232 SEG231 SEG230 SEG229 SEG228 SEG227 SEG226 SEG225 SEG224 SEG223 SEG222 SEG221 SEG220 SEG219 SEG218 SEG217 SEG216 SEG215 SEG214 SEG213 SEG212 SEG211 SEG210 SEG209 SEG208 SEG207 Pad no. 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 P 14/60 Jul 2010 Pin name SEG206 SEG205 SEG204 SEG203 SEG202 SEG201 SEG200 SEG199 SEG198 SEG197 SEG196 SEG195 SEG194 SEG193 SEG192 SEG191 SEG190 SEG189 SEG188 SEG187 SEG186 SEG185 SEG184 SEG183 SEG182 SEG181 SEG180 SEG179 SEG178 SEG177 SEG176 SEG175 SEG174 SEG173 SEG172 SEG171 SEG170 SEG169 SEG168 SEG167 SEG166 SEG165 SEG164 SEG163 SEG162 SEG161 SEG160 SEG159 SEG158 SEG157 SEG156 SEG155 SEG154 SEG153 SEG152 SEG151 SEG150 SEG149 SEG148 SEG147 SEG146 SEG145 SEG144 SEG143 SEG142 SEG141 SEG140 SEG139 SEG138 SEG137 SEG136 SEG135 SEG134 SEG133 SEG132 SEG131 SEG130 SEG129 SEG128 NC Pad no. 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 Pin name NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC SEG127 SEG126 SEG125 SEG124 SEG123 SEG122 SEG121 SEG120 SEG119 SEG118 SEG117 SEG116 SEG115 SEG114 SEG113 SEG112 SEG111 SEG110 SEG109 SEG108 SEG107 SEG106 SEG105 SEG104 SEG103 SEG102 SEG101 SEG100 SEG99 SEG98 SEG97 SEG96 SEG95 SEG94 SEG93 SEG92 SEG91 SEG90 SEG89 SEG88 SEG87 SEG86 SEG85 SEG84 SEG83 SEG82 SEG81 SEG80 SEG79 SEG78 SEG77 SEG76 SEG75 SEG74 SEG73 SEG72 SEG71 SEG70 SEG69 SEG68 SEG67 SEG66 SEG65 Pad no. 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 Pin name SEG64 SEG63 SEG62 SEG61 SEG60 SEG59 SEG58 SEG57 SEG56 SEG55 SEG54 SEG53 SEG52 SEG51 SEG50 SEG49 SEG48 SEG47 SEG46 SEG45 SEG44 SEG43 SEG42 SEG41 SEG40 SEG39 SEG38 SEG37 SEG36 SEG35 SEG34 SEG33 SEG32 SEG31 SEG30 SEG29 SEG28 SEG27 SEG26 SEG25 SEG24 SEG23 SEG22 SEG21 SEG20 SEG19 SEG18 SEG17 SEG16 SEG15 SEG14 SEG13 SEG12 SEG11 SEG10 SEG9 SEG8 SEG7 SEG6 SEG5 SEG4 SEG3 SEG2 SEG1 SEG0 NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC Pad no. 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 Pin name COMA0 COMA1 COMA2 COMA3 COMA4 COMA5 COMA6 COMA7 COMA8 COMA9 COMA10 COMA11 COMA12 COMA13 COMA14 COMA15 COMA16 COMA17 COMA18 COMA19 COMA20 COMA21 COMA22 COMA23 COMA24 COMA25 COMA26 COMA27 COMA28 COMA29 COMA30 COMA31 COMA32 COMA33 COMA34 COMA35 COMA36 COMA37 COMA38 COMA39 COMA40 COMA41 COMA42 COMA43 COMA44 COMA45 COMA46 COMA47 COMA48 COMA49 COMA50 COMA51 COMA52 COMA53 COMA54 COMA55 COMA56 COMA57 COMA58 COMA59 COMA60 COMA61 COMA62 COMA63 NC NC Solomon Systech 7 PIN DESCRIPTIONS Key: I = Input NC = Not Connected O =Output Pull LOW= connect to Ground IO = Bi-directional (input/output) Pull HIGH= connect to VDDIO P = Power pin Table 7-1: SSD1322 Pin Description Pin Name VDD Pin Type Description P Power supply pin for core logic operation. A capacitor is required to connect between this pin and VSS. Refer to Section 8.10 for details. VDDIO P Power supply for interface logic level. It should be matched with the MCU interface voltage level. Refer to Section 8.10 for details. VCI P Low voltage power supply. VCI must always be equal to or higher than VDD and VDDIO. Refer to Section 8.10 for details. VCC P Power supply for panel driving voltage. This is also the most positive power voltage supply pin. VDD1 P Power supply and it should be connected to VDD. VSS P Ground pin. VLSS P Analog system ground pin. VCOMH P COM signal deselected voltage level. A capacitor should be connected between this pin and VSS. BGGND P It should be connected to ground. GPIO0 IO This is a reserved pin. It should be kept NC. GPIO1 IO This is a reserved pin. It should be kept NC. VSL P This is segment voltage reference pin. When external VSL is used, connect with resistor and diode to ground (details depend on application). BS[1:0] I MCU bus interface selection pins. Select appropriate logic setting as described in the following table. Table 7-2 : Bus Interface selection BS[1:0] 00 01 10 11 Bus Interface Selection 4 line SPI 3 line SPI 8-bit 8080 parallel 8-bit 6800 parallel Note 0 is connected to VSS (2) 1 is connected to VDDIO (1) SSD1322 Rev 1.2 P 15/60 Jul 2010 Solomon Systech Pin Name IREF M/S# CL Pin Type Description I This pin is the segment output current reference pin. A resistor should be connected between this pin and VSS to maintain the current around 10uA. Please refer to section 8.6 for the formula of resistor value from IREF. I IO This pin must be connected to VDDIO to enable the chip. External clock input pin. When internal clock is enable (i.e. pull HIGH in CLS pin), this pin is not used and should be connected to Ground. When internal clock is disable (i.e. pull LOW is CLS pin), this pin is the external clock source input pin. CLS I Internal clock selection pin. When this pin is pulled HIGH, internal oscillator is enabled (normal operation). When this pin is pulled LOW, an external clock signal should be connected to CL. CS# I This pin is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled LOW. RES# I This pin is reset signal input. When the pin is pulled LOW, initialization of the chip is executed. Keep this pin pull HIGH during normal operation. D/C# I This pin is Data/Command control pin connecting to the MCU. When the pin is pulled HIGH, the content at D[7:0] will be interpreted as data. When the pin is pulled LOW, the content at D[7:0] will be interpreted as command. R/W# (WR#) I This pin is read / write control input pin connecting to the MCU interface. When interfacing to a 6800-series microprocessor, this pin will be used as Read/Write (R/W#) selection input. Read mode will be carried out when this pin is pulled HIGH and write mode when LOW. When 8080 interface mode is selected, this pin will be the Write (WR#) input. Data write operation is initiated when this pin is pulled LOW and the chip is selected. When serial interface is selected, this pin R/W (WR#) must be connected to VSS. E (RD#) I This pin is MCU interface input. When interfacing to a 6800-series microprocessor, this pin will be used as the Enable (E) signal. Read/write operation is initiated when this pin is pulled HIGH and the chip is selected. When connecting to an 8080-microprocessor, this pin receives the Read (RD#) signal. Read operation is initiated when this pin is pulled LOW and the chip is selected. When serial interface is selected, this pin E(RD#) must be connected to VSS. D[7:0] IO These pins are bi-directional data bus connecting to the MCU data bus. Unused pins are recommended to tie LOW. (Except for D2 pin in SPI mode) Refer to Section 8.1 for different bus interface connection. DN[9:0] SSD1322 IO Rev 1.2 These are reserved pins and should be connected to VSS. P 16/60 Jul 2010 Solomon Systech Pin Name FR Pin Type Description O This pin is No Connection pins. Nothing should be connected to this pin. This pin should be left open individually. DOF# O This pin is No Connection pins. Nothing should be connected to this pin. This pin should be left open individually. SEG[479:0] O These pins provide the OLED segment driving signals. These pins are VSS state when display is OFF. COM[127:0] O These pins provide the Common switch signals to the OLED panel. These pins are in high impedance state when display is OFF. SSD1322 Rev 1.2 P 17/60 Jul 2010 Solomon Systech 8 FUNCTIONAL BLOCK DESCRIPTIONS 8.1 MCU Interface SSD1322 MCU interface consist of 8 data pin and 5 control pins. The pin assignment at different interface mode is summarized in Table 8-1. Different MCU mode can be set by hardware selection on BS[1:0] pins (refer to Table 7-2 for BS[1:0] pins setting) Table 8-1 : MCU interface assignment under different bus interface mode Pin Name Bus Interface 8-bit 8080 8-bit 6800 3-wire SPI 4-wire SPI 8.1.1 Data/Command Interface D7 D6 D5 D4 Control Signal D3 D[7:0] D[7:0] Tie LOW Tie LOW D2 NC NC D1 D0 E R/W# RD# WR# E R/W# SDIN SCLK Tie LOW SDIN SCLK Tie LOW CS# CS# CS# CS# CS# D/C# D/C# D/C# Tie LOW D/C# RES# RES# RES# RES# RES# MCU Parallel 6800-series Interface The parallel interface consists of 8 bi-directional data pins (D[7:0]), R/W#, D/C#, E and CS#. A LOW in R/W# indicates WRITE operation and HIGH in R/W# indicates READ operation. A LOW in D/C# indicates COMMAND read/write and HIGH in D/C# indicates DATA read/write. The E input serves as data latch signal while CS# is LOW. Data is latched at the falling edge of E signal. Table 8-2 : Control pins of 6800 interface Function E R/W# CS# D/C# Write command ↓ L L L Read status ↓ H L L Write data ↓ L L H Read data ↓ H L H Note (1) ↓ stands for falling edge of signal (2) H stands for HIGH in signal (3) L stands for LOW in signal In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in Figure 8-1. SSD1322 Rev 1.2 P 18/60 Jul 2010 Solomon Systech Figure 8-1 : Data read back procedure - insertion of dummy read R/W# E N Databus Write column address 8.1.2 Dummy read n n+1 Read 1st data Read 2nd data n+2 Read 3rd data MCU Parallel 8080-series Interface The parallel interface consists of 8 bi-directional data pins (D[7:0]), RD#, WR#, D/C# and CS#. A LOW in D/C# indicates COMMAND read/write and HIGH in D/C# indicates DATA read/write. A rising edge of RD# input serves as a data READ latch signal while CS# is kept LOW. A rising edge of WR# input serves as a data/command WRITE latch signal while CS# is kept LOW. Figure 8-2 : Example of Write procedure in 8080 parallel interface mode CS# WR# D[7:0] D/C# RD# high low Figure 8-3 : Example of Read procedure in 8080 parallel interface mode CS# RD# D[7:0] D/C# WR# high low SSD1322 Rev 1.2 P 19/60 Jul 2010 Solomon Systech Table 8-3 : Control pins of 8080 interface Function Write command Read status Write data Read data RD# H ↑ H ↑ WR# ↑ H ↑ H CS# L L L L D/C# L L H H Note (1) ↑ stands for rising edge of signal (2) H stands for HIGH in signal (3) L stands for LOW in signal (4) Refer to Figure 13-2 for Form 1 8080-Series MPU Parallel Interface Timing Characteristics In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in Figure 8-4. Figure 8-4 : Display data read back procedure - insertion of dummy read WR# RD# Databus N Write column address 8.1.3 Dummy read n n+1 n+2 Read 1st data Read 2nd data Read 3rd data MCU Serial Interface (4-wire SPI) The serial interface consists of serial clock SCLK, serial data SDIN, D/C#, CS#. In SPI mode, D0 acts as SCLK, D1 acts as SDIN. For the unused data pins, D2 should be left open. The pins from D3 to D7, E and R/W# can be connected to an external ground. Table 8-4 : Control pins of 4-wire Serial interface Function Write command Write data E(RD#) Tie LOW Tie LOW R/W#(WR#) Tie LOW Tie LOW CS# L L D/C# L H D0 ↑ ↑ Note (1) H stands for HIGH in signal (2) L stands for LOW in signal SDIN is shifted into an 8-bit shift register on every rising edge of SCLK in the order of D7, D6, ... D0. D/C# is sampled on every eighth clock and the data byte in the shift register is written to the Graphic Display Data RAM (GDDRAM) or command register in the same clock. SSD1322 Rev 1.2 P 20/60 Jul 2010 Solomon Systech Under serial mode, only write operations are allowed. Figure 8-5 : Write procedure in 4-wire Serial interface mode CS# D/C# SDIN/ SCLK DB1 DB2 DBn SCLK(D0) SDIN(D1) 8.1.4 D7 D6 D5 D4 D3 D2 D1 D0 MCU Serial Interface (3-wire SPI) The 3-wire serial interface consists of serial clock SCLK, serial data SDIN and CS#. In 3-wire SPI mode, D0 acts as SCLK, D1 acts as SDIN. For the unused data pins, D2 should be left open. The pins from D3 to D7, R/W# (WR#), E(RD#) and D/C# can be connected to an external ground. The operation is similar to 4-wire serial interface while D/C# pin is not used. There are altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: D/C# bit, D7 to D0 bit. The D/C# bit (first bit of the sequential data) will determine the following data byte in the shift register is written to the Display Data RAM (D/C# bit = 1) or the command register (D/C# bit = 0). Under serial mode, only write operations are allowed. Table 8-5: Control pins of 3-wire Serial interface Function Write command Write data E(RD#) Tie LOW Tie LOW R/W#(WR#) Tie LOW Tie LOW CS# L L D/C# Tie LOW Tie LOW D0 ↑ ↑ Note L stands for LOW in signal (1) Figure 8-6: Write procedure in 3-wire Serial interface mode CS# SDIN/ SCLK DB1 DB2 DBn SCLK (D0) SDIN(D1) SSD1322 D/C# Rev 1.2 D7 D6 P 21/60 Jul 2010 D5 D4 D3 D2 D1 D0 Solomon Systech 8.2 Reset Circuit When RES# input is pulled LOW, the chip is initialized with the following status: 1. Display is OFF 2. 128 MUX Display Mode 3. Normal segment and display data column address and row address mapping (SEG0 mapped to address 00h and COM0 mapped to address 00h) 4. Display start line is set at display RAM address 0 5. Column address counter is set at 0 6. Normal scan direction of the COM outputs 7. Contrast control register is set at 7Fh 8.3 GDDRAM 8.3.1 GDDRAM structure in Gray Scale mode The GDDRAM address map in Table 8-6 shows the GDDRAM in Gray Scale mode. Since in Gray Scale mode, there are 16 gray levels. Therefore four bits (one nibble) are allocated for each pixel. For example D30480[3:0] in Table 8-6 corresponds to the pixel located in (COM127, SEG2). So the lower nibble and higher nibble of D0, D1, D2, …, D30717, D30718, D30719 in Table 8-6 represent the 480x128 data nibbles in the GDDRAM. Table 8-6 : GDDRAM in Gray Scale mode (RESET) SEG0 SEG1 SEG2 00 COM0 COM1 00 01 | | D1[3:0] D241[3:0] SEG3 SEG476 00 D1[7:4] D241[7:4] D0[3:0] D240[3:0] SEG477 SEG478 SEG479 77 D0[7:4] D240[7:4] D239[3:0] D479[3:0] 77 D239[7:4] D479[7:4] D238[3:0] D478[3:0] SEG Outputs RAM Column address (HEX) D238[7:4] D478[7:4] | COM126 COM127 7E D30241[3:0] D30241[7:4] D30240[3:0] D30240[7:4] D30479[3:0]D30479[7:4]D30478[3:0] D30478[7:4] 7F D30481[3:0] D30481[7:4] D30480[3:0] D30480[7:4] D30719[3:0]D30719[7:4]D30718[3:0] D30718[7:4] RAM COM Row Corresponding to one pixel Outputs Address (HEX) 8.3.2 Data bus to RAM mapping Table 8-7 : Data bus usage Read / Write Data Bus width Data bus D[7:0] Input order D7 D6 D5 D4 D3 D2 D1 D0 1st 3 3 3 3 2 2 2 2 2nd 1 1 1 1 0 0 0 0 8 bits Corresponding to one pixel SSD1322 Rev 1.2 P 22/60 Jul 2010 Solomon Systech 8.4 Command Decoder This module determines whether the input should be interpreted as data or command based upon the input of the D/C# pin. If D/C# pin is HIGH, data is written to Graphic Display Data RAM (GDDRAM). If it is LOW, the inputs at D0-D7 are interpreted as a Command and it will be decoded and be written to the corresponding command register. 8.5 Oscillator & Timing Generator Figure 8-7 : Oscillator Circuit Internal Oscillator Fosc M U X CL CLK Divider DCLK Display Clock CLS This module is an On-Chip low power RC oscillator circuitry (Figure 8-7). The operation clock (CLK) can be generated either from internal oscillator or external source CL pin by CLS pin. If CLS pin is HIGH, internal oscillator is selected. If CLS pin is LOW, external clock from CL pin will be used for CLK. The frequency of internal oscillator FOSC can be programmed by command B3h. The display clock (DCLK) for the Display Timing Generator is derived from CLK. The division factor “D” can be programmed from 1 to 1024 by command B3h. DCLK = FOSC / D The frame frequency of display is determined by the following formula: FFRM = Fosc D × K × No. of Mux where • D stands for clock divide ratio. It is set by command B3h A[3:0]. The divide ratio has the range from 1 to 1024. • K is the number of display clocks per row. The value is derived by K = Phase 1 period + Phase 2 period + X X = DCLKs in current drive period. Default X = constant + GS15 = 10 +112 = 122 Default K is 9 + 7 + 122 = 138 • Number of multiplex ratio is set by command A8h. The reset value is 127 (i.e. 128MUX). • Fosc is the oscillator frequency. It can be changed by command B3h A[7:4]. The higher the register setting results in higher frequency. If the frame frequency is set too low, flickering may occur. On the other hand, higher frame frequency leads to higher power consumption on the whole system. SSD1322 Rev 1.2 P 23/60 Jul 2010 Solomon Systech 8.6 SEG/COM Driving Block This block is used to derive the incoming power sources into the different levels of internal use voltage and current. • VCC is the most positive voltage supply. • VCOMH is the Common deselected level. It is internally regulated. • VLSS is the ground path of the analog and panel current. • IREF is a reference current source for segment current drivers ISEG. The relationship between reference current and segment current of a color is: ISEG = Contrast / 256 * IREF * scale factor *2 in which the contrast (0~255) is set by Set Contrast command (C1h); and the scale factor (1 ~ 16) is set by Master Current Control command (C7h). For example, in order to achieve ISEG = 300uA at maximum contrast 255, IREF is set to around 10uA. This current value is obtained by connecting an appropriate resistor from IREF pin to VSS as shown in Figure 8-8. Recommended IREF = 10uA Figure 8-8 : IREF Current Setting by Resistor Value SSD1322 IREF (voltage at this pin = VCC – 6) IREF ≈ 10uA R1 VSS Since the voltage at IREF pin is VCC – 6V, the value of resistor R1 can be found as below: For IREF = 10uA, VCC = 18V: R1 = (Voltage at IREF – VSS) / IREF = (18 – 6) / 10uA ≈ 1.2MΩ SSD1322 Rev 1.2 P 24/60 Jul 2010 Solomon Systech 8.7 SEG / COM Driver Segment drivers consist of 480 current sources to drive OLED panel. The driving current can be adjusted from 0 to 300uA with 8 bits, 256 steps by contrast setting command (C1h). Common drivers generate scanning voltage pulse. The block diagrams and waveforms of the segment and common driver are shown as follow. Figure 8-9 : Segment and Common Driver Block Diagram – Single COM mode VCC ISEG VCOMH Current Drive Non-selected Row Reset OLED Pixel Selected Row VLSS VLSS Segment Driver Common Driver SSD1322 Rev 1.2 P 25/60 Jul 2010 Solomon Systech Figure 8-10 : Segment and Common Driver Block Diagram – Dual COM mode ISEG Current Drive Reset OLED Pixel V LSS Segment Driver VCOMH V COMH Non -selected Row Non -selected Row Selected Row Selected Row Common Driver COMA V LSS V LSS Common Driver COMB The commons are scanned sequentially, row by row. If a row is not selected, all the pixels on the row are in reverse bias by driving those commons to voltage VCOMH as shown in Figure 8-11. In the scanned row, the pixels on the row will be turned ON or OFF by sending the corresponding data signal to the segment pins. If the pixel is turned OFF, the segment current is kept at 0. On the other hand, the segment drives to ISEG when the pixel is turned ON. SSD1322 Rev 1.2 P 26/60 Jul 2010 Solomon Systech Figure 8-11 : Segment and Common Driver Signal Waveform One Frame Period Non-selected Row COM0 VCOMH VLSS Selected Row COM1 VCOMH VLSS COM Voltage This row is selected to turn on VCOMH VLSS Time Segment Voltage Waveform for ON VP Waveform for OFF VLSS Time There are four phases to driving an OLED a pixel. In phase 1, the pixel is reset by the segment driver to VLSS in order to discharge the previous data charge stored in the parasitic capacitance along the segment electrode. The period of phase 1 can be programmed by command B1h A[3:0]. An OLED panel with larger capacitance requires a longer period for discharging. SSD1322 Rev 1.2 P 27/60 Jul 2010 Solomon Systech In phase 2, first pre-charge is performed. The pixel is driven to attain the corresponding voltage level VP from VLSS. The amplitude of VP can be programmed by the command BBh. The period of phase 2 can be programmed by command B1h A[7:4]. If the capacitance value of the pixel of OLED panel is larger, a longer period is required to charge up the capacitor to reach the desired voltage. In phase 3, the OLED pixel is driven to the targeted driving voltage through second pre-charge. The second pre-charge can control the speed of the charging process. The period of phase 3 can be programmed by command B6h. Last phase (phase 4) is current drive stage. The current source in the segment driver delivers constant current to the pixel. The driver IC employs PWM (Pulse Width Modulation) method to control the gray scale of each pixel individually. The gray scale can be programmed into different Gamma settings by command B8h/B9h. The bigger gamma setting (the wider pulse widths) in the current drive stage results in brighter pixels and vice versa (details refer to Section 8.8). This is shown in the following figure. Figure 8-12 : Gray Scale Control by PWM in Segment Phase2 Phase1 Segment Voltage Phase4 Phase3 VP VLSS Wider pulse width drives pixel brighter OLED Panel After finishing phase 4, the driver IC will go back to phase 1 to display the next row image data. This fourstep cycle is run continuously to refresh image display on OLED panel. The length of phase 4 is defined by command B8h or B9h. In the table, the gray scale is defined in incremental way, with reference to the length of previous table entry. SSD1322 Rev 1.2 P 28/60 Jul 2010 Solomon Systech 8.8 Gray Scale Decoder The gray scale effect is generated by controlling the pulse width (PW) of current drive phase, except GS0 there is no pre-charge (phase 2, 3) and current drive (phase 4). The driving period is controlled by the gray scale settings (setting 0 ~ setting 180). The larger the setting, the brighter the pixel will be. The Gray Scale Table stores the corresponding gray scale setting of the 16 gray scale levels (GS0~GS15) through the software commands B8h or B9h. As shown in Figure 8-13, GDDRAM data has 4 bits, represent the 16 gray scale levels from GS0 to GS15. Note that the frame frequency is affected by GS15 setting. Figure 8-13 : Relation between GDDRAM content and Gray Scale table entry (under command B9h Enable Linear Gray Scale Table) GDDRAM data (4 bits) Gray Scale Table 0000 0001 0010 0011 : : 1101 1110 1111 GS0 GS1 (1) GS2 GS3 : : GS13 GS14 GS15 Default Gamma Setting (Command B9h) Setting 0 Setting 0 Setting 8 Setting 16 : : Setting 96 Setting 104 Setting 112 Note: (1) Both GS0 and GS1 have no 2nd pre-charge (phase 3) and current drive (phase 4), however GS1 has 1st precharge (phase 2). SSD1322 Rev 1.2 P 29/60 Jul 2010 Solomon Systech 8.9 Power ON and OFF sequence The following figures illustrate the recommended power ON and power OFF sequence of SSD1322 (assume VCI and VDDIO are at the same voltage level and internal VDD is used). Power ON sequence: 1. Power ON VCI, VDDIO. 2. After VCI, VDDIO become stable, set wait time at least 1ms (t0) for internal VDD become stable. Then set RES# pin LOW (logic low) for at least 100us (t1) (4) and then HIGH (logic high). 3. After set RES# pin LOW (logic low), wait for at least 100us (t2). Then Power ON VCC.(1) 4. After VCC become stable, send command AFh for display ON. SEG/COM will be ON after 200ms (tAF). 5. After VCI become stable, wait for at least 300ms to send command. Figure 8-14 : The Power ON sequence. ON VCI, VDDIO VCI,, VDDIO RES# ON VCC Send AFh command for Display ON t0 OFF t1 RES# GND t2 VCC OFF tAF ON SEG/COM OFF Power OFF sequence: 1. Send command AEh for display OFF. 2. Power OFF VCC.(1), (2) 3. Wait for tOFF. Power OFF VCI,, VDDIO. (where Minimum tOFF=0ms (3), Typical tOFF=100ms) Figure 8-15 : The Power OFF sequence Send command AEh for display OFF VCC OFF VCC OFF VCI ,VDDIO OFF tOFF VCI, VDDIO OFF Note: (1) Since an ESD protection circuit is connected between VCI, VDDIO and VCC, VCC becomes lower than VCI whenever VCI, VDDIO is ON and VCC is OFF as shown in the dotted line of VCC in Figure 8-14 and Figure 8-15. (2) VCC should be kept float (disable) when it is OFF. (3) VCI, VDDIO should not be Power OFF before VCC Power OFF. (4) The register values are reset after t1. (5) Power pins (VDD, VCC) can never be pulled to ground under any circumstance. SSD1322 Rev 1.2 P 30/60 Jul 2010 Solomon Systech 8.10 VDD Regulator In SSD1322, the power supply pin for core logic operation, VDD, can be supplied by external source or internally regulated through the VDD regulator. The internal VDD regulator is enabled by setting bit A[0] to 1b in command ABh “Function Selection”. VCI should be larger than 2.6V when using the internal VDD regulator. The typical regulated VDD is about 2.5V It should be notice that, no matter VDD is supplied by external source or internally regulated; VCI must always be set equivalent to or higher than VDD and VDDIO. The following figure shows the VDD regulator pin connection scheme: Figure 8-16 VCI > 2.6V, VDD regulator enable pin connection scheme VCI > 2.6V, VDD Regulator Enable, Command: ABh A[0]=1b. VCI VCI VDDIO VSS VDDIO GND VDD Figure 8-17 VDD regulator disable pin connection scheme VDD Regulator Disable, Command: ABh A[0]=0b. SSD1322 Rev 1.2 VCI VDDIO VSS VDD VCI VDDIO GND VDD P 31/60 Jul 2010 Solomon Systech 9 COMMAND TABLE Table 9-1 : Command table (D/C#=0, R/W#(WR#) = 0, E(RD#)=1) unless specific setting is stated) Fundamental Command Table D/C# Hex D7 D6 D5 D4 0 00 0 0 1 1 15 A[6:0] B[6:0] 0 D3 D2 D2 D0 0 0 0 0 0 * * 0 A6 B6 0 A5 B5 1 A4 B4 5C 0 1 0 0 5D 0 1 0 1 1 75 A[6:0] B[6:0] 0 * * 0 1 1 A0 A[7:0] B[4] 1 0 * Command Description 0 0 0 0 A3 B3 1 A2 B2 0 A1 B1 1 A0 B0 1 1 1 0 0 Write RAM Command Enable MCU to write Data into RAM 0 1 1 1 0 1 Read RAM Command Enable MCU to read Data from RAM 1 A6 B6 1 A5 B5 1 A4 B4 0 A3 B3 1 A2 B2 0 A1 B1 1 A0 B0 0 0 * 1 A5 0 0 A4 B4 0 0 0 0 A2 0 0 A1 0 0 A0 1 Enable Gray This command is sent to enable the Gray Scale table setting Scale table (command B8h) Set Column Address Set Row Address Set Column start and end address A[6:0]: Start Address. [reset=0] B[6:0]: End Address. [reset=119] Range from 0 to 119 Set Row start and end address A[6:0]: Start Address. [reset=0] B[6:0]: End Address. [reset=127] Range from 0 to 127 A[0]=0b, Horizontal address increment [reset] A[0]=1b, Vertical address increment A[1]=0b, Disable Column Address Re-map [reset] A[1]=1b, Enable Column Address Re-map A[2]=0b, Disable Nibble Re-map [reset] A[2]=1b, Enable Nibble Re-map A[4]=0b, Scan from COM0 to COM[N –1] [reset] A[4]=1b, Scan from COM[N-1] to COM0, where N is the Multiplex ratio Set Re-map and Dual COM Line A[5]=0b, Disable COM Split Odd Even [reset] mode A[5]=1b, Enable COM Split Odd Even B[4], Enable / disable Dual COM Line mode 0b, Disable Dual COM mode [reset] 1b, Enable Dual COM mode (MUX ≤ 63) Note (1] COM Split Odd Even mode must be disabled (A[5]=0b) when enabling the Dual COM mode (B[4]=1b) Details refer to Section 10.1.6 0 1 A1 A[6:0] 1 * SSD1322 0 A6 1 A5 0 A4 Rev 1.2 0 A3 0 A2 0 A1 P 32/60 Jul 2010 1 A0 Set Display Start Line Set display RAM display start line register from 0-127 Display start line register is reset to 00h after RESET Solomon Systech D/C# 0 Hex A2 D7 D6 1 0 1 A[6:0] * 0 A4~A7 1 D5 1 D4 0 D3 D2 0 0 D2 1 D0 0 A6 A5 A4 A3 A2 A1 A0 0 1 0 0 X2 X1 X0 Command Set Display Offset Description Set vertical scroll by COM from 0-127 The value is reset to 00H after RESET A4h = Entire Display OFF, all pixels turns OFF in GS level 0 A5h = Entire Display ON, all pixels turns ON in GS level 15 Set Display Mode A6h = Normal Display [reset] A7h = Inverse Display (GS0 Æ GS15, GS1 Æ GS14, GS2 Æ GS13, …) 0 1 1 A8 A[6:0] B[6:0] 1 0 0 0 A6 B6 1 A5 B5 0 A4 B4 1 A3 B3 0 A2 B2 0 A1 B1 0 A0 B0 0 A9 1 0 1 0 1 0 0 1 0 1 AB A[0] 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 A0 0 AE~AF 1 0 1 0 1 1 1 X0 0 1 B1 A[7:0] 1 A7 0 A6 1 A5 1 A4 0 A3 0 A2 0 A1 1 A0 This command turns ON partial mode. The partial mode display area is defined by the following two parameters, Enable Partial Display A[6:0]: Address of start row in the display area B[6:0]: Address of end row in the display area, where B[6:0] must be ≥ A[6:0] Exit Partial Display Function Selection This command is sent to exit the Partial Display mode A[0]=0b, Select external VDD A[0]=1b, Enable internal VDD regulator [reset] Set Sleep mode AEh = Sleep mode ON (Display OFF) ON/OFF AFh = Sleep mode OFF (Display ON) A[3:0] Phase 1 period (reset phase length) of 5~31 DCLK(s) clocks as follow: A[3:0] 0000 0001 0010 0011 0100 : 1111 Set Phase Length A[7:4] Phase 2 period (first pre-charge phase length) of 3~15 DCLK(s) clocks as follow: A[7:4] 0000 0001 0010 0011 : 0111 : 1111 SSD1322 Rev 1.2 P 33/60 Jul 2010 Phase 1 period invalid invalid 5 DCLKs 7 DCLKs 9 DCLKs [reset] : 31 DCLKs Phase 2 period invalid invalid invalid 3 DCLKs : 7 DCLKs [reset] : 15 DCLKs Solomon Systech D/C# 0 Hex B3 1 A[7:0] D7 D6 1 0 D5 1 D4 1 D3 D2 0 0 D2 1 D0 1 A7 A5 A4 A3 A1 A0 A6 A2 Command Set Front Clock Divider / Oscillator Frequency Description A[3:0] [reset=0], divide by DIVSET where A[3:0] 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 >=1011 DIVSET divide by 1 divide by 2 divide by 4 divide by 8 divide by 16 divide by 32 divide by 64 divide by 128 divide by 256 divide by 512 divide by 1024 invalid A[7:4] Oscillator frequency, frequency increases as level increases [reset=0101b] 0 1 1 B4 A[1:0] B[7:3] 1 1 B7 0 0 B6 1 1 B5 1 0 B4 0 0 B3 1 0 1 0 A1 0 A[1:0] = 00b: Enable external VSL A[1:0] = 10b: Internal VSL [reset] 0 A0 1 Display B[7:3] = 11111b: Enhanced low GS display quality Enhancement A B[7:3] = 10110b: Normal [reset] 0 B5 1 0 1 1 0 1 0 1 1 A[3:0] * * * * A3 A2 A1 A0 A[1:0] GPIO0: 00 pin HiZ, Input disabled 01 pin HiZ, Input enabled 10 pin output LOW [reset] 11 pin output HIGH Set GPIO 0 1 B6 A[3:0] 1 * 0 * 1 * 1 * 0 A3 1 A2 1 A1 0 A0 Set Second Precharge Period SSD1322 Rev 1.2 P 34/60 Jul 2010 A[3:2] GPIO1: 00 pin HiZ, Input disabled 01 pin HiZ, Input enabled 10 pin output LOW [reset] 11 pin output HIGH A[3:0] Second Pre-charge period 0000b 0 dclk 0001b 1 dclk …… 1000b 8 dclks [reset] …… 1111b 15 dclks Solomon Systech D/C# Hex D7 D6 D5 D4 D3 D2 D2 0 B8 1 0 1 1 1 0 0 A1 A1 A1 A1 A1 A1 A1 1 A1[7:0] 7 6 5 4 3 2 1 1 A2[7:0] A27 A26 A25 A24 A23 A22 A21 . . . . . . . 1 . . . . . . . . 1 . . . . . . . . 1 . A14 A14 A14 A14 A14 A14 A14 1 A14[7:0] 7 6 5 4 3 2 1 1 A15[7:0] A157 A156 A155 A154 A153 A152 A151 D0 0 Command A10 A20 . . . A140 A150 Description The next 15 data bytes define Gray Scale (GS) Table by setting the gray scale pulse width in unit of DCLK’s (ranges from 0d ~ 180d) Set Gray Scale A1[7:0]: Gamma Setting for GS1, Table A2[7:0]: Gamma Setting for GS2, : A14[7:0]: Gamma Setting for GS14, A15[7:0]: Gamma Setting for GS15 Note 0 ≤ Setting of GS1 < Setting of GS2 < Setting of GS3..... < Setting of GS14 < Setting of GS15 (1] Refer to Section 8.8 for details (2] The setting must be followed by the Enable Gray Scale Table command (00h) 0 B9 1 0 1 1 1 0 0 The default Linear Gray Scale table is set in unit of DCLK’s as follow 1 GS0 level pulse width = 0; GS1 level pulse width = 0; GS2 level pulse width = 8; Select Default GS3 level pulse width = 16; Linear Gray : Scale table : GS14 level pulse width = 104; GS15 level pulse width = 112 Refer to Section 8.8 for details 0 1 BB A[4:0] 1 * 0 * 1 * 1 A4 1 A3 0 A2 1 A1 Set pre-charge voltage level.[reset = 17h] 1 A0 Set Pre-charge voltage 0 BE 1 0 1 1 1 1 1 0 1 A[2:0] * * * * 0 A2 A1 A0 C1 A[7:0] 1 A7 SSD1322 1 A6 0 A5 0 A4 Rev 1.2 0 A3 0 A2 0 A1 P 35/60 Jul 2010 1 A0 Hex code 00h : 1Fh pre-charge voltage 0.20 x VCC : 0.60 x VCC Set COM deselect voltage level [reset = 04h] Set VCOMH 0 1 A[4:0] 00000 : 11111 Set Contrast Current A[2:0] 000 : 100 : 111 Hex code 00h : 04h : 07h V COMH 0.72 x VCC : 0.80 x VCC [reset] : 0.86 x VCC A[7:0]: Contrast current value, range:00h~FFh, i.e. 256 steps for ISEG current [reset = 7Fh] Solomon Systech D/C# 0 Hex C7 D7 D6 1 1 D5 0 D4 0 1 A[3:0] * 0 CA 1 A[6:0] D3 D2 0 1 D2 1 D0 1 * * * A3 A2 A1 A0 1 1 0 0 1 0 1 0 * A6 A5 A4 A3 A2 A1 A0 0 1 1 D1 A[5:4] 20 1 1 0 1 0 0 0 A5 1 1 A4 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 FD A[2] 1 0 1 0 1 0 1 1 1 0 1 A2 0 1 1 0 Command Description A[3:0] = 0000b, reduce output currents for all colors to 1/16 0001b, reduce output currents for all colors to 2/16 Master Contrast : Current Control 1110b, reduce output currents for all colors to 15/16 1111b, no change [reset] A[6:0]: Set MUX ratio from 16MUX ~ 128MUX Set MUX Ratio A[6:0] = 15d represents 16MUX : A[6:0] = 127d represents 128MUX [reset] A[5:4] = 00b: Reserved Display Enhancement B A[5:4] = 10b: Normal [reset] A[2]: MCU protection status [reset = 12h] A[2] = 0b, Unlock OLED driver IC MCU interface from entering command [reset] Set Command A[2] = 1b, Lock OLED driver IC MCU interface from Lock entering command Note (1) The locked OLED driver IC MCU interface prohibits all commands and memory access except the FDh command Note (1) “*” stands for “Don’t care”. SSD1322 Rev 1.2 P 36/60 Jul 2010 Solomon Systech 10 COMMAND 10.1.1 Enable Gray Scale Table (00h) This command is sent to enable the Gray Scale Table setting (command B8h). 10.1.2 Set Column Address (15h) This triple byte command specifies column start address and end address of the display data RAM. This command also sets the column address pointer to column start address. This pointer is used to define the current read/write column address in graphic display data RAM. If horizontal address increment mode is enabled by command A0h, after finishing read/write one column data, it is incremented automatically to the next column address. Whenever the column address pointer finishes accessing the end column address, it is reset back to start column address and the row address is incremented to the next row. 10.1.3 Write RAM Command (5Ch) After entering this single byte command, data entries will be written into the display RAM until another command is written. Address pointer is increased accordingly. This command must be sent before write data into RAM. 10.1.4 Read RAM Command (5Dh) After entering this single byte command, data is read from display RAM until another command is written. Address pointer is increased accordingly. This command must be sent before read data from RAM. SSD1322 Rev 1.2 P 37/60 Jul 2010 Solomon Systech 10.1.5 Set Row Address (75h) This triple byte command specifies row start address and end address of the display data RAM. This command also sets the row address pointer to row start address. This pointer is used to define the current read/write row address in graphic display data RAM. If vertical address increment mode is enabled by command A0h, after finishing read/write one row data, it is incremented automatically to the next row address. Whenever the row address pointer finishes accessing the end row address, it is reset back to start row address. The diagram below shows the way of column and row address pointer movement through the example: column start address is set to 1 and column end address is set to 118, row start address is set to 2 and row end address is set to 126. Horizontal address increment mode is enabled by command A0h. In this case, the graphic display data RAM column accessible range is from column 1 to column 118 and from row 1 to row 126 only. In addition, the column and row address pointers are set to 1 and 2, respectively. After finishing read/write four pixels of data, the column address is increased automatically by 1 to access the next RAM location for next read/write operation (solid line in Figure 10-1). Whenever the column address pointer finishes accessing the end column 118, it is reset back to column 1 and row address is automatically increased by 1 (solid line in Figure 10-1). While the end row 126 and end column 118 RAM location is accessed, the row address is reset back to 2 and the column address is reset back to 1 (dotted line in Figure 10-1). Figure 10-110-2 : Example of Column and Row Address Pointer Movement (Gray Scale Mode) Row 0 Row 1 Row 2 : : : Row 125 Row 126 Row 127 SSD1322 SEG479 SEG478 SEG477 SEG476 119 SEG475 SEG474 SEG473 SEG472 : 118 : : : SEG7 ... SEG6 SEG5 SEG4 SEG3 1 SEG2 SEG1 SEG0 0 Column address SEG Outputs : : : Rev 1.2 P 38/60 Jul 2010 Solomon Systech 10.1.6 Set Re-map & Dual COM Line Mode (A0h) This command has multiple configurations and each bit setting is described as follows: • Address increment mode (A[0]) When A[0] is set to 0, the driver is set as horizontal address increment mode. After the display RAM is read / written, the column address pointer is increased automatically by 1. If the column address pointer reaches column end address, the column address pointer is reset to column start address and row address pointer is increased by 1. The sequence of movement of the row and column address point for horizontal address increment mode is shown in Figure 10-3. Figure 10-3 : Address Pointer Movement of Horizontal Address Increment Mode Row 0 Row 1 : Row 126 Row 127 Col 0 Col 1 ….. Col 118 Col 119 : : : : : When A[0] is set to 1, the driver is set to vertical address increment mode. After the display RAM is read / written, the row address pointer is increased automatically by 1. If the row address pointer reaches the row end address, the row address pointer is reset to row start address and column address pointer is increased by 1. The sequence of movement of the row and column address point for vertical address increment mode is shown in Figure 10-4. Figure 10-4: Address Pointer Movement of Vertical Address Increment Mode Col 0 Row 0 Row 1 : Row 126 Row 127 Col 1 ….. ….. ….. : ….. ….. Col 118 Col 119 • Column Address Remap (A[1]) This command bit is made for increasing the layout flexibility of segment signals in OLED module with segment arranged from left to right (when A[1] is set to 0) or vice versa (when A[1] is set to 1), as demonstrated in Figure 10-5. A[1] = 0 (reset): RAM Column 0 ~ 119 maps to SEG0-SEG3 ~ SEG476-SEG479 A[1] = 1: RAM Column 0 ~ 119 maps to SEG476-SEG479 ~ SEG0-SEG3 • Nibble Remap (A[2]) A[2] = 0 (reset): Data bits direct mapping is performed A[2] = 1: The four nibbles of the data bus for RAM access are re-mapped The effects are demonstrated in Figure 10-5. SSD1322 Rev 1.2 P 39/60 Jul 2010 Solomon Systech SEG2 SEG3 SEG4 SEG5 SEG6 SEG7 : : : : SEG472 SEG473 SEG474 SEG475 SEG476 SEG477 SEG478 SEG479 SEG477 SEG476 SEG475 SEG474 SEG473 SEG472 : : : : SEG7 SEG6 SEG5 SEG4 SEG3 SEG2 SEG1 SEG0 SEG1 SEG0 SEG7 SEG6 SEG5 SEG4 : : : : SEG475 SEG474 SEG473 SEG472 SEG479 SEG478 SEG477 SEG476 SEG478 SEG479 SEG472 SEG473 SEG474 SEG475 : : : : SEG4 SEG5 SEG6 SEG7 SEG0 SEG1 SEG2 SEG3 D238[7:4] D30478[7:4] D30718[7:4] D478[7:4] D238[3:0] D30719[7:4] D478[3:0] D30479[7:4] D30719[3:0] D30478[3:0] D30479[3:0] D30716[7:4] D30718[3:0] D30476[7:4] D30716[3:0] D239[7:4] D30476[3:0] D30717[7:4] : D479[7:4] D30477[7:4] D30717[3:0] D239[3:0] D30477[3:0] : : : D479[3:0] : : D236[7:4] : : : D476[7:4] : : D236[3:0] : D30482[7:4] D476[3:0] D30242[7:4] D30482[3:0] D237[7:4] D30242[3:0] D30483[7:4] COM Outputs RAM / Row address (HEX) D477[7:4] D30243[7:4] 7F D30483[3:0] D237[3:0] D30243[3:0] COM0 D477[3:0] D30240[7:4] COM127 : 7E : COM1 : COM126 : D242[3:0] : D30480[7:4] D2[7:4] D243[7:4] : D242[7:4] D243[3:0] : D30240[3:0] D2[3:0] 1 D30480[3:0] D3[3:0] COM126 D240[7:4] COM1 D240[3:0] 0 D241[7:4] COM127 D241[3:0] COM0 SEG Outputs RAM / Column address (HEX) 77 D30241[7:4] D0[7:4] 76 D30481[7:4] D0[3:0] … D30241[3:0] D1[3:0] 1 D30481[3:0] D1[7:4] 0 Normal, Remap, A[4] = 0 A[4] = 1 D3[7:4] SEG1 Remap, A[1] = 1 & A[2] = 0 SEG478 SEG2 SEG477 SEG0 SEG3 Normal, A[1] = 1 & A[2] = 1 Normal, A[1] = 0 & A[2] = 0 SEG479 Remap, A[1] = 0 & A[2] = 1 SEG476 Figure 10-5: GDDRAM in Gray Scale mode with or without Column Address (A[1]) & Nibble remapping (A[2]) Corresponding to one pixel • COM scan direction Remap (A[4]) This command bit determines the scanning direction of the common for flexible layout of common signals in OLED module either from up to down or vice versa. A[1] = 0 (reset): Scan from up to down A[1] = 1: Scan from bottom to up Details of pin arrangement can be found in Figure 10-5. • Odd even split of COM pins (A[5]) This command bit can set the odd even arrangement of COM pins. A[5] = 0 (reset): Disable COM split odd even, pin assignment of common is in sequential as COM127 COM126...COM 65 COM64...SEG479...SEG0...COM0 COM1...COM62 COM63 A[5] = 1: Enable COM split odd even, pin assignment of common is in odd even split as COM127 COM125...COM3 COM1...SEG479...SEG0...COM0 COM2...COM124 COM126 Details of pin arrangement can be found in Figure 10-6. SSD1322 Rev 1.2 P 40/60 Jul 2010 Solomon Systech • Set Dual COM mode (B[4]) This command bit can set the dual COM mode. B[4] = 0 (reset): Disable the dual COM mode, as shown on Figure 10-6 B[4] = 1: Enable the dual COM mode, details of pin arrangement can be found in Figure 10-7 Notice that Odd even split of COM pins must be disabled (A[5]=0) and MUX must be set equating to or smaller than 63 (MUX≤63) when dual COM mode is enabled (B[4]=1). Figure 10-6 : COM Pins Hardware Configuration – 1 (MUX ratio: 128) Case 1 A[5] =0 Disable Odd Even Split of COM pins Case 2 B[4]=0 Disable Dual COM mode A[5] =1 Enable Odd Even Split of COM pins B[4]=0 Disable Dual COM mode ROW126 ROW127 ROW127 ROW125 480 x 128 ROW64 480 x 128 ROW63 ROW2 ROW1 ROW0 ROW0 COM64 COM0 SSD1322Z2 COM127 SSD1322Z2 COM64 COM63 COM126 Pad 1,2,3,… Gold Bumps face up COM127 COM0 COM1 COM63 Pad 1,2,3,… Gold Bumps face up Figure 10-7 : COM Pins Hardware Configuration – 2 (MUX ratio: 64) A[5] =0 Disable Odd Even Split of COM pins B[4]=1 Enable Dual COM mode ROW63 ROW63 ROW62 ROW62 480 x 64 ROW1 ROW1 ROW0 ROW0 COM64 COM65 COM126 SSD1322Z2 COM127 COM63 COM0 COM1 COM62 Pad 1,2,3,… Gold Bumps face up SSD1322 Rev 1.2 P 41/60 Jul 2010 Solomon Systech 10.1.7 Set Display Start Line (A1h) This command is used to set Display Start Line register to determine starting address of display RAM to be displayed by selecting a value from 0 to 127. Figure 10-8 shows an example of using this command when MUX ratio = 128 and MUX ratio = 90 and Display Start Line = 40. In there, “Row” means the graphic display data RAM row. Figure 10-8 : Example of Set Display Start Line with no Remap MUX ratio (CAh) = 128 MUX ratio (CAh) = 128 MUX ratio (CAh) = 90 MUX ratio (CAh) = 90 COM Pin Display Start Line (A1h) Display Start Line (A1h) Display Start Line (A1h) Display Start Line (A1h) =0 = 40 =0 = 40 COM0 ROW0 ROW40 ROW0 ROW40 COM1 ROW1 ROW41 ROW1 ROW41 COM2 ROW2 ROW42 ROW2 ROW42 COM3 ROW3 ROW43 ROW3 ROW43 : : : : : : : : : : COM48 ROW48 ROW88 ROW48 ROW88 COM49 ROW49 ROW89 ROW49 ROW89 COM50 ROW50 ROW90 ROW50 ROW90 COM51 ROW51 ROW91 ROW51 ROW91 : : : : : : : : : : COM86 ROW86 ROW126 ROW86 ROW126 COM87 ROW87 ROW127 ROW87 ROW127 COM88 ROW88 ROW0 ROW88 ROW0 COM89 ROW89 ROW1 ROW89 ROW1 COM90 ROW90 ROW2 COM91 ROW91 ROW3 : : : : : : : : : : COM124 ROW124 ROW36 COM125 ROW125 ROW37 COM126 ROW126 ROW38 COM127 ROW127 ROW39 Display Example SSD1322 Rev 1.2 P 42/60 Jul 2010 Solomon Systech 10.1.8 Set Display Offset (A2h) This command specifies the mapping of display start line (it is assumed that COM0 is the display start line, display start line register equals to 0) to one of COM0-127. For example, to move the COM39 towards the COM0 direction for 40 lines, the 7-bit data in the second command should be given by 0101000. The figure below shows an example of this command. In there, “Row” means the graphic display data RAM row. Figure 10-9 : Example of Set Display Offset with no Remap MUX ratio (CAh) = 128 COM Pin Display Offset (A2h)=0 COM0 ROW0 COM1 ROW1 COM2 ROW2 COM3 ROW3 : : : : COM48 ROW48 COM49 ROW49 COM50 ROW50 COM51 ROW51 : : : : COM86 ROW86 COM87 ROW87 COM88 ROW88 COM89 ROW89 COM90 ROW90 COM91 ROW91 : : : : COM124 ROW124 COM125 ROW125 COM126 ROW126 COM127 ROW127 MUX ratio (CAh) = 128 Display Offset (A2h)=40 ROW40 ROW41 ROW42 ROW43 : : ROW88 ROW89 ROW90 ROW91 : : ROW126 ROW127 ROW0 ROW1 ROW2 ROW3 : : ROW36 ROW37 ROW38 ROW39 MUX ratio (CAh) = 90 Display Offset (A2h)=0 ROW0 ROW1 ROW2 ROW3 : : ROW48 ROW49 ROW50 ROW51 : : ROW86 ROW87 ROW88 ROW89 : : - MUX ratio (CAh) = 90 Display Offset (A2h)=40 ROW40 ROW41 ROW42 ROW43 : : ROW88 ROW89 : : ROW0 ROW1 R0W2 ROW3 : : ROW36 ROW37 ROW38 ROW39 Display Example SSD1322 Rev 1.2 P 43/60 Jul 2010 Solomon Systech 10.1.9 Set Display Mode (A4h ~ A7h) These are single byte command and they are used to set Normal Display, Entire Display ON, Entire Display OFF and Inverse Display. • Normal Display (A4h) Reset the above effect and turn the data to ON at the corresponding gray level. Figure 10-10 shows an example of Normal Display. Figure 10-10 : Example of Normal Display GDDRAM • Display Set Entire Display ON (A5h) Force the entire display to be at gray scale “GS15” regardless of the contents of the display data RAM as shown in Figure 10-11. Figure 10-11 : Example of Entire Display ON GDDRAM • Display Set Entire Display OFF (A6h) Force the entire display to be at gray scale level “GS0” regardless of the contents of the display data RAM as shown in Figure. Figure 10-12 : Example of Entire Display OFF GDDRAM • Display Inverse Display (A7h) The gray level of display data are swapped such that “GS0” ↔ “GS15”, “GS1” ↔ “GS14”, … Figure 10-13 shows an example of inverse display. Figure 10-13 : Example of Inverse Display GDDRAM SSD1322 Rev 1.2 P 44/60 Jul 2010 Display Solomon Systech 10.1.10 Enable Partial Display (A8h) The partial mode display area is defined this triple byte command. Figure 10-14 shows an example of enabling the partial mode display with start row address A[6:0] = 20h and end start row address B[6:0] = 5Fh at MUX ratio = 128. Figure 10-14 : Example of Partial Mode Display GDDRAM Display 10.1.11 Exit Partial Display (A9h) This single byte command is sent to exit the partial mode display area (command A8h). 10.1.12 Set Function selection (ABh) This double byte command is used to enable or disable the VDD regulator. Internal VDD regulator is selected when the bit A[0] is set to 1b, while external VDD is selected when A[0] is set to 0b. 10.1.13 Set Display ON/OFF (AEh / AFh) These single byte commands are used to turn the OLED panel display ON or OFF. When the display is ON (command AFh), the selected circuits by Set Master Configuration command will be turned ON. When the display is OFF (command AEh), those circuits will be turned off, the segment is in VSS state and common is in high impedance state. 10.1.14 Set Phase Length (B1h) This double byte command sets the length of phase 1 and 2 of segment waveform of the driver. • Phase 1 (A[3:0]): Set the period from 5 to 31 in the unit of 2 DCLKs. A larger capacitance of the OLED pixel may require longer period to discharge the previous data charge completely. • Phase 2 (A[7:4]): Set the period from 3 to 15 in the unit of DCLKs. A longer period is needed to charge up a larger capacitance of the OLED pixel to the target voltage VP. 10.1.15 Set Front Clock Divider / Oscillator Frequency (B3h) This double byte command consists of two functions: • Front Clock Divide Ratio (A[3:0]) Set the divide ratio to generate DCLK (Display Clock) from CLK. The divide ratio is from 1 to 16, with reset value = 1. Please refer to Section 8.5 for the detail relationship of DCLK and CLK. • Oscillator Frequency (A[7:4]) Program the oscillator frequency Fosc which is the source of CLK if CLS pin is pulled HIGH. The 4bit value results in 16 different frequency settings being available. SSD1322 Rev 1.2 P 45/60 Jul 2010 Solomon Systech 10.1.16 Display Enhancement A (B4h) This triple byte command is sent to enhance the display performance. Setting A[1:0] to 00b enables the external VSL, while the low GS display quality would be improved by setting B[7:3] to 11111b. 10.1.17 Set GPIO (B5h) This double byte command is used to set the states of GPIO0 and GPIO1 pins. Refer to Table 9-1 for details. 10.1.18 Set Second Pre-charge period (B6h) This double byte command is used to set the phase 3 second pre-charge period. The period of phase 3 can be programmed by command B6h and it is ranged from 0 to 15 DCLK's. Please refer to Table 9-1 for the detail information. 10.1.19 Set Gray Scale Table (B8h) This command is used to set each individual gray scale level for the display. Except gray scale levels GS0 that has no pre-charge and current drive, each gray scale level is programmed in the length of current drive stage pulse width with unit of DCLK. The longer the length of the pulse width, the brighter the OLED pixel when it’s turned ON. Following the command B8h, the user has to set the gray scale setting for GS1, GS2, …, GS14, GS15 one by one in sequence. Refer to Section 8.8 for details. The setting of gray scale table entry can perform gamma correction on OLED panel display. Since the perception of the brightness scale shall match the image data value in display data RAM, appropriate gray scale table setting like the example shown below (Figure 10-15) can compensate this effect. Figure 10-15 : Example of Gamma correction by Gamma Look Up table setting Brightness Gamma Setting Gamma Look Up table setting Gray Scale Table Brightness Panel response Gamma Setting Result in linear response Gray Scale Table 10.1.20 Select Default Linear Gray Scale Table (B9h) This single byte command reloads the preset linear Gray Scale table as GS0 =Gamma Setting 0, GS1 = Gamma Setting 0, GS2 = Gamma Setting 2, ... GS14 = Gamma Setting 104, GS14 = Gamma Setting 112. Refer to Section 8.8 for details. 10.1.21 Set Pre-charge voltage (BBh) This double byte command sets the first pre-charge voltage (phase 2) level of segment pins. The level of precharge voltage is programmed with reference to VCC. Refer to Table 9-1 for details. SSD1322 Rev 1.2 P 46/60 Jul 2010 Solomon Systech 10.1.22 Set VCOMH Voltage (BEh) This double byte command sets the high voltage level of common pins, VCOMH. The level of VCOMH is programmed with reference to VCC. Refer to Table 9-1 for details. 10.1.23 Set Contrast Current (C1h) This double byte command is used to set Contrast Setting of the display. The chip has 256 contrast steps from 00h to FFh. The segment output current ISEG increases linearly with the contrast step, which results in brighter display. 10.1.24 Master Current Control (C7h) This double byte command is to control the segment output current by a scaling factor. The chip has 16 master control steps, with the factor ranges from 1 [0000b] to 16 [1111b – default]. The smaller the master current value, the dimmer the OLED panel display is set. For example, if original segment output current is 160uA at scale factor = 16, setting scale factor to 8 would reduce the current to 80uA. 10.1.25 Set Multiplex Ratio (CAh) This double byte command switches default 1:128 multiplex mode to any multiplex mode from 16 to 128. For example, when multiplex ratio is set to 16, only 16 common pins are enabled. The starting and the ending of the enabled common pins are depended on the setting of “Display Offset” register programmed by command A2h. Figure 10-8 and Figure 10-9 show examples of setting the multiplex ratio through command CAh. 10.1.26 Display Enhancement B (D1h) This triple byte command is sent to enhance the display performance. User is recommended to set A[5:4] to 00b. 10.1.27 Set Command Lock (FDh) This command is used to lock the OLED driver IC from accepting any command except itself. After entering FDh 16h (A[2]=1b), the OLED driver IC will not respond to any newly-entered command (except FDh 12h A[2]=0b) and there will be no memory access. This is call “Lock” state. That means the OLED driver IC ignore all the commands (except FDh 12h A[2]=0b) during the “Lock” state. Entering FDh 12h (A[2]=0b) can unlock the OLED driver IC. That means the driver IC resume from the “Lock” state. And the driver IC will then respond to the command and memory access. SSD1322 Rev 1.2 P 47/60 Jul 2010 Solomon Systech 11 MAXIMUM RATINGS Table 11-1 : Maximum Ratings (Voltage Reference to VSS) Symbol Parameter VDD VCC Supply Voltage VDDIO VCI VSEG SEG output voltage VCOM COM output voltage Vin Input voltage TA Operating Temperature Tstg Storage Temperature Range Value -0.5 to 2.75 -0.5 to 21.0 -0.5 to VCI -0.3 to 4.0 0 to VCC 0 to 0.9*VCC Vss-0.3 to VDDIO+0.3 -40 to +85 -65 to +150 Unit V V V V V V V ºC ºC *Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description. *This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected. SSD1322 Rev 1.2 P 48/60 Jul 2010 Solomon Systech 12 DC CHARACTERISTICS Conditions (Unless otherwise specified): Voltage referenced to VSS VDD = 2.4 to 2.6V VCI = 2.4 to 3.5V (VCI must be larger than or equal to VDD) TA = 25°C Table 12-1 : DC Characteristics Symbol VCC VDD VCI VDDIO VOH VOL VIH VIL Parameter Operating Voltage Logic Supply Voltage Low voltage power supply Power Supply for I/O pins High Logic Output Level Low Logic Output Level High Logic Input Level Low Logic Input Level ISLP_VDD VDD Sleep mode Current ISLP_VDDIO VDDIO Sleep mode Current ISLP_VCI IDD IDDIO ICI ICC ISEG Dev VCI Sleep mode Current VDD Supply Current VDDIO Supply Current VCI Supply Current VCC Supply Current Segment Output Current Setting VCC=20V, IREF=10uA Segment output current uniformity Adjacent pin output Adj. Dev current uniformity (contrast = FF) SSD1322 Rev 1.2 Test Condition Iout = 100uA Iout = 100uA - Min. Typ. Max. Unit 10 20 V 2.4 2.6 V 2.4 3.5 V 1.65 VCI V 0.9*VDDIO VDDIO V 0 0.1*VDDIO V 0.8*VDDIO VDDIO V 0 0.2*VDDIO V VCI = VDDIO =2.8V, VCC =OFF VDD(external) = 2.5V, Display OFF, No panel attached VCI = VDDIO =2.8V, External VDD = VCC =OFF 2.5V Display OFF, Internal VDD No panel attached External VDD = 2.5V Enable Internal VCI = VDDIO =2.8V, VDD during VCC =OFF Sleep mode Display OFF, Disable No panel attached Internal VDD during Sleep mode - - 10 uA - - 10 uA - - 10 uA - - 10 uA - - 50 uA - - 10 uA VCI = 2.8V, VCC = 18V, VDDIO = 2.8V, External VDD = 2.5V, Display ON, No panel attached, contrast = FF VCI = 2.8V, VCC = 18V, External VDDIO = 2.8V, Display VDD = 2.5V ON, No panel attached, Internal contrast = FF VDD = 2.5V VCI = 2.8V, VCC = 18V, External VDDIO = 2.8V, Display VDD = 2.5V ON, No panel attached, Internal contrast = FF VDD = 2.5V VCI = 2.8V, VCC = 18V, External VDDIO = 2.8V, Display VDD = 2.5V ON, No panel attached, Internal contrast = FF VDD = 2.5V Contrast = FF - 100 130 - 40 50 - 40 50 - 35 45 uA - 170 220 uA - 2.2 2.6 mA - 2.2 2.6 mA 310 340 370 uA Contrast = 7F - 170 - uA Contrast = 3F Dev = (ISEG – IMID) / IMID IMID = (IMAX + IMIN) / 2 ISEG = Segment current at contrast FF - 85 - uA -3 - 3 % -2 - 2 % Adj Dev = ( I[n]-I[n+1] ) / (I[n]+I[n+1]) P 49/60 Jul 2010 uA uA uA Solomon Systech 13 AC CHARACTERISTICS Conditions: Voltage referenced to VSS VDD = 2.4 to2.6V VCI = 2.4 to 3.5V (VCI must be larger than or equal to VDD) TA = 25°C Table 13-1 : AC Characteristics Symbol FOSC (1) FFRM tRES Parameter Oscillation Frequency of Display Timing Generator Test Condition VCI = 2.8V 480x128 Graphic Display Mode, Display ON, Internal Oscillator Enabled Reset low pulse width (RES#) Frame Frequency for 128 MUX Mode Min. Typ. Max. Unit 1.75 1.94 2.13 MHz - FOSC * 1 / (D * K * 128)(2) - Hz 3 - - us Note (1) FOSC stands for the frequency value of the internal oscillator and the value is measured when command B3h A[7:4] is in default value. (2) D: divide ratio K: Phase 1 period + Phase 2 period + X X: DCLKs in current drive period. Default K is 9 + 7 + 122 = 138 SSD1322 Rev 1.2 P 50/60 Jul 2010 Solomon Systech Table 13-2 : 6800-Series MCU Parallel Interface Timing Characteristics (VDD - VSS = 2.4 to 2.6V, VDDIO=1.6V, VCI = 3.3V, TA = 25°C) Symbol Parameter tcycle Clock Cycle Time tAS Address Setup Time tAH Address Hold Time tDSW Write Data Setup Time tDHW Write Data Hold Time tDHR Read Data Hold Time tOH Output Disable Time tACC Access Time Chip Select Low Pulse Width (read) PWCSL Chip Select Low Pulse Width (write) Chip Select High Pulse Width (read) PWCSH Chip Select High Pulse Width (write) tR Rise Time tF Fall Time Min 300 10 0 40 7 20 120 60 60 60 - Typ - Max 70 140 Unit ns ns ns ns ns ns ns ns - - ns - - ns - 15 15 ns ns Figure 13-1 : 6800-series MCU parallel interface characteristics D/C# tAS tAH R/W#(WR#)# E(RD#) tcycle PWCSL CS# PWCSH tR tF tDHW tDSW D[7:0] (WRITE) Valid Data tACC D[7:0] (READ) tDHR Valid Data tOH SSD1322 Rev 1.2 P 51/60 Jul 2010 Solomon Systech Table 13-3 : 8080-Series MCU Parallel Interface Timing Characteristics (VDD - VSS = 2.4 to 2.6V, VDDIO=1.6V, VCI = 3.3V, TA = 25°C) Symbol Parameter tcycle Clock Cycle Time tAS Address Setup Time tAH Address Hold Time tDSW Write Data Setup Time tDHW Write Data Hold Time tDHR Read Data Hold Time tOH Output Disable Time tACC Access Time tPWLR Read Low Time tPWLW Write Low Time tPWHR Read High Time tPWHW Write High Time tR Rise Time tF Fall Time tCS Chip select setup time tCSH Chip select hold time to read signal tCSF Chip select hold time Min 300 10 0 40 7 20 150 60 60 60 0 0 20 Typ - Max 70 140 15 15 - Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Figure 13-2 : 8080-series MCU parallel interface characteristics Write cycle Read cycle CS# CS# tCSF tCS D/C# tCSH tCS D/C# tAH tAS tR tF tPWLW R/W#(WR#) tDSW D[7:0] tAS tcycle tAH tPWHW tDHW tR tF tcycle tPWLR tPWHR E(RD#) tACC tDHR D[7:0] tOH SSD1322 Rev 1.2 P 52/60 Jul 2010 Solomon Systech Table 13-4 : Serial Interface Timing Characteristics (4-wire SPI) (VDD - VSS = 2.4 to 2.6V, VDDIO=1.6V, VCI = 3.3V, TA = 25°C) Symbol tcycle tAS tAH tCSS tCSH tDSW tDHW tCLKL tCLKH tR tF Parameter Clock Cycle Time Address Setup Time Address Hold Time Chip Select Setup Time Chip Select Hold Time Write Data Setup Time Write Data Hold Time Clock Low Time Clock High Time Rise Time Fall Time Min 100 15 15 20 10 15 15 20 20 - Typ - Max 15 15 Unit ns ns ns ns ns ns ns ns ns ns ns Figure 13-3 : Serial interface characteristics (4-wire SPI) D/C# t AS t CSS CS# t CSH t cycle t CLKL SCLK (D0) t AH tF tCLKH tR t DSW SDIN (D1) t DHW Valid Data CS# SCLK (D0) D7 SDIN(D1) SSD1322 Rev 1.2 D6 P 53/60 Jul 2010 D5 D4 D3 D2 D1 D0 Solomon Systech Table 13-5: Serial Interface Timing Characteristics (3-wire SPI) (VDD - VSS = 2.4 to 2.6V, VDDIO=1.6V, VCI = 3.3V, TA = 25°C) Symbol tcycle tCSS tCSH tDSW tDHW tCLKL tCLKH tR tF Parameter Clock Cycle Time Chip Select Setup Time Chip Select Hold Time Write Data Setup Time Write Data Hold Time Clock Low Time Clock High Time Rise Time Fall Time Min 100 20 10 15 15 20 20 - Typ - Max 15 15 Unit ns ns ns ns ns ns ns ns ns Figure 13-4: Serial interface characteristics (3-wire SPI) t CSS CS# t CSH t CYCLE tCLKH t CLKL SCLK (D0) tF tR t DSW SDIN (D1) tDHW Valid Data CS# SCLK (D0) SDIN (D1) SSD1322 D/C# D7 Rev 1.2 D6 P 54/60 Jul 2010 D5 D4 D3 D2 D1 D0 Solomon Systech 14 APPLICATION EXAMPLES Figure 14-1 : SSD1322 application example for 8-bit 6800-parallel interface mode (Internal regulated VDD) The configuration for 8-bit 6800-parallel interface mode, externally VCC is shown in the following diagram: (VCI =3.3V (VCI must be > 2.6V), Internal regulated VDD = 2.5V, VDDIO =1.8V, external VCC = 18V, IREF = 10uA) COM1 : : : COM127 SEG0 SEG1 : : : : : : : : : SEG478 SEG479 COM126 : : : COM0 OLED Panel 480x128 VSS VLSS VCI VDDIO IREF DOF# CL FR D/C# CS# RES# BS0 BS1 E R/W# VDD VDD1 D[7:0] DN[9:0] BGGND CLS M/S# VSL VCOMH VCC VSS VLSS SSD1322Z2 R1 C1 C2 C3 R2 D1 C4a D2 C4b D/C# CS# RES# 18V VCC E R/W# D[7:0] C5 1.8V 3.3V VDDIO VCI VSS [GND] Voltage at IREF = VCC – 6V. For VCC = 18V, IREF = 10uA: R1 = (Voltage at IREF - VSS) / IREF = (18 - 6) / 10u = 1.2MΩ R2 = 50Ω, 1/8W (1) D1 - D2 = Vth = 0.7V, 1N4148 (1) C1 ~ C3: 1uF, C4a and C5: 4.7uF, C4b: 0.1uF Note (1) The value is recommended value. Select appropriate value against module application. SSD1322 Rev 1.2 P 55/60 Jul 2010 Solomon Systech Figure 14-2 : SSD1322 application example for 8-bit 6800-parallel interface, dual COM mode (Internal VDD) The configuration for 8-bit 6800-parallel interface mode, externally VCC is shown in the following diagram: (VCI =3.3V (VCI must be > 2.6V), Internal regulated VDD = 2.5V, VDDIO =1.8V, external VCC = 18V, IREF = 10uA) COMB0 : : : COMB63 SEG0 SEG1 : : : : : : : : : SEG478 SEG479 COMA63 : : : COMA0 OLED Panel 480x64 Dual COM VSS VLSS VCI VDDIO IREF DOF# CL FR D/C# CS# RES# BS0 BS1 E R/W# VDD VDD1 D[7:0] DN[9:0] BGGND CLS M/S# VSL VCOMH VCC VSS VLSS SSD1322Z2 R1 C1 C2 C3 R2 D1 C4a D2 C4b D/C# CS# RES# 18V VCC E R/W# D[7:0] C5 1.8V 3.3V VDDIO VCI VSS [GND] Voltage at IREF = VCC – 6V. For VCC = 18V, IREF = 10uA: R1 = (Voltage at IREF - VSS) / IREF = (18 - 6) / 10u = 1.2MΩ R2 = 50Ω, 1/8W (1) D1 - D2 = Vth = 0.7V, 1N4148 (1) C1 ~ C3: 1uF, C4a and C5: 4.7uF, C4b: 0.1uF Note (1) The value is recommended value. Select appropriate value against module application. SSD1322 Rev 1.2 P 56/60 Jul 2010 Solomon Systech 15 PACKAGE INFORMATION 15.1 SSD1322UR1 detail dimension SSD1322 Rev 1.2 P 57/60 Jul 2010 I/O VLSS VCC VSL VDD VCI VDDIO NC RVI RVI RVI RVI GND NC IREF FR RES# DC# BS1 BS0 E R/W# CS# D0 D2 D1 D3 D5 D4 D6 D7 VCOMH VCC VSS VLSS UVI GND RVI RVI RVI RVI NC Figure 15-1: SSD1322UR1 Detail Dimension Solomon Systech 15.2 SSD1322Z2 Die Tray Information Figure 15-2: SSD1322Z2 Die Tray Drawing Remark 1. Tray material: ABS 2. Tray color code: Black 3. Surface resistance 109 ~ 1012 Ω 4. Pocket bottom: Rough Surface SSD1322 Rev 1.2 P 58/60 Jul 2010 Solomon Systech Table 15-1: SSD1322Z2 Die Tray Dimensions W1 W2 H DX TPX DY TPY PX PY X Y Z Dimensions mm (mil) 76.00±0.10 (2992) 68.00±0.10 (2677) 4.20±0.10 (165) 17.39±0.10 (685) 41.22±0.10 (1623) 6.10±0.10 (240) 63.80±0.10 (2512) 13.74±0.05 (541) 2.90±0.05 (114) 12.52±0.05 (493) 1.68±0.05 (66) 0.40±0.05 (16) N (number of die) 92 (pocket number) Parameter SSD1322 Rev 1.2 P 59/60 Jul 2010 Solomon Systech Solomon Systech reserves the right to make changes without notice to any products herein. Solomon Systech makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any, and all, liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different applications. All operating parameters, including “Typical” must be validated for each customer application by the customer’s technical experts. Solomon Systech does not convey any license under its patent rights nor the rights of others. Solomon Systech products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Solomon Systech product could create a situation where personal injury or death may occur. Should Buyer purchase or use Solomon Systech products for any such unintended or unauthorized application, Buyer shall indemnify and hold Solomon Systech and its offices, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Solomon Systech was negligent regarding the design or manufacture of the part. The product(s) listed in this datasheet comply with Directive 2002/95/EC of the European Parliament and of the council of 27 January 2004 on the restriction of the use of certain hazardous substances in electrical and electronic equipment and People’s Republic of China Electronic Industry Standard SJ/T 11363-2006 “Requirements for concentration limits for certain hazardous substances in electronic information products (电子信息产品中有毒有害物质的限量要求)”. Hazardous Substances test report is available upon request. http://www.solomon-systech.com SSD1322 Rev 1.2 P 60/60 Jul 2010 Solomon Systech