NJM2573 LOW VOLTAGE 3ch VIDEO AMPLIFIER WITH LPF GENERAL DESCRIPTION The NJM2573 is a Low Voltage 3ch Video Amplifier with LPF. Internal 75 driver is easy to connect TV monitor directly. The NJM2573 corresponds to a clamp and bias inputs, and selection of a clamp/ bias is possible for one circuit, and it corresponds to various video signals. FEATURES Operating Voltage Input type PACKAGE OUTLINE NJM2573V 2.8 to 5.5V Vin1: CLAMP Vin2: CLAMP/ BIAS Vin3: BIAS Internal LPF Internal 6dB amplifier Internal 75 Driver Circuit (2-system drive) Internal Power Saving Circuit Bipolar Technology Package Outline SSOP14 BLOCK DIAGRAM + + V V 6dB Vin1 75 driver Vout1 LPF CLAMP Vsag1 6dB Vin2 CLAMP/BIAS SW 75 driver Vout2 LPF Vsag2 CLAMP BIAS 6dB Vin3 75 driver Vout3 LPF BIAS GND Power Save GND Ver.9 -1- NJM2573 PIN CONFIGURATION SSOP14 1 14 2 13 3 12 4 11 5 10 6 9 7 8 1. Vsag1 + 2. V 1 3. Vin1 4. Power Save 5. Vin2 6. GND1 7. Vin3 8. CLAMP/BIAS SW 9. Vout3 10. GND2 11. Vout2 12. Vsag2 + 13. V 2 14. Vout1 Ver.9 -2- NJM2573 ABSOLUTE MAXIMUM RATINGS (Ta=25C) PARAMETER SYMBOL + Supply Voltage V Power Dissipation PD Operating Temperature Range Topr Storage Temperature Range Tstg RATINGS 7.0 300 -40 to +85 -40 to +125 UNIT V mW C C + ELECTRICAL CHARACTERISTICS (V =3.0V,RL=150,Ta=25C) PARAMETER SYMBOL TEST CONDITION MIN. TYP. MAX. UNIT 2.8 3.0 5.5 V No Signal - 18.0 26.0 mA - 60 90 µA Operating Voltage Vopr Operating Current ICC Operating Current at Power Save Isave Power Save Mode Vomv f=1kHz,THD=1%, CLAMP Input 2.2 2.4 - Vom RGB f=1kHz,THD=1%, BIAS Input 1.4 2.2 - 6.0 6.4 6.8 -0.5 0.0 +0.5 - -2.0 - - -12 - - -65 - dB - 0.2 - % - 0.2 - deg - +60 - dB - -40 - dB VthPH 1.8 - V VthPL 0 - 0.3 Maximum Output Voltage Swing Voltage Gain Gv Gfy4.5M Low Pass Filter Characteristic Gfy8M Gfy16M Cross talk CT Differential Gain DG Differential Phase DP S/N Ratio SNv 2nd. Distortion Hv SW Change Voltage High Level SW Change Voltage Low Level Vp-p Vin=100kHz, 1.0Vp-p,Sin Signal (CLAMP) Vin=100kHz 0.7Vp-p,Sin Signal (BIAS) Vin=4.5MHz/100kHz, 1.0Vp-p(CLAMP) Vin=4.5MHz/100kHz, 0.7Vp-p(BIAS) Vin=8MHz/100kHz, 1.0Vp-p(CLAMP) Vin=8MHz/100kHz, 0.7Vp-p(BIAS) Vin=16MHz/100kHz, 1.0Vp-p(CLAMP) Vin=16MHz/100kHz, 0.7Vp-p(BIAS) Vin=4.43MHz, 1.0Vp-p,Sin Signal (CLAMP) Vin=4.43MHz 0.7Vp-p,Sin Signal (BIAS) (CLAMP) Vin=1.0Vp-p Input 10step Video Signal (CLAMP) Vin=1.0Vp-p Input 10step Video Signal (CLAMP) Vin=1.0Vp-p,100% White Video Signal (BIAS) Vin=0.7Vp-p,100% Red field Signal (CLAMP) Vin=1.0Vp-p, 3.58MHz, Sin Signal, RL=75 (BIAS) Vin=0.7Vp-p, 3.58MHz, Sin Signal, RL=75 dB dB + V CONTROL TERMINAL PARAMETER Power Save CLAMP/BIAS SW STATUS NOTE H Power Save: ON L Power Save: OFF OPEN Power Save: OFF H BIAS L CLAMP OPEN CLAMP Ver.9 -3- NJM2573 TEST CIRCUIT (SSOP14) V+ 0.1µF + 10µF 33µF + 33µF 1 Vsag1 Vout1 14 2 V+1 3 Vin1 4 Power Save Vout2 11 5 Vin2 GND2 10 6 GND1 Vout3 9 7 Vin3 C/B SW 8 75Ω 75Ω + OUT1-1 OUT1-2 V+2 13 0.1µF IN1 + 33µF NJM2573V Vsag2 12 + 75Ω 33µF 0.1µF IN2 + 75Ω 75Ω + OUT2-1 OUT2-2 75Ω 10µF 0.1µF IN3 + 75Ω 75Ω + OUT3-1 OUT3-2 75Ω Ver.9 -4- NJM2573 APPLICATION CIRCUIT (VIN2: CLAMP) (1) Standard circuit (2) SAG correction unused circuit V+ 0.1µF + V+ 10µF 0.1µF + 10µF 33µF + 33µF 1 Vsag1 Vout1 14 75Ω + OUT1 1 Vsag1 2 V +1 3 Vin1 4 Power Save 470µF 75Ω Vout1 14 OUT1 + C1 2 V +1 3 Vin1 V+2 13 0.1µF IN1 33µF NJM2573V Vsag2 12 IN1 75Ω 4 Power Save Vout2 11 Vin2 470µF 75Ω OUT2 (CLAMP) 0.1µF GND2 10 IN2 10µF GND1 7 Vin3 Vout3 9 C/B SW 8 + 5 Vin2 GND2 10 6 GND1 Vout3 9 7 Vin3 C/B SW 8 75Ω 75Ω 10µF OUT3 0.1µF IN3 OUT2 + Vout2 11 (CLAMP) 75Ω 6 Vsag2 12 75Ω + 0.1µF 5 NJM2573V 75Ω C1 IN2 13 0.1µF + 33µF V +2 75Ω OUT3 + 0.1µF IN3 75Ω 75Ω (3) Two-line driving circuit V+ 0.1µF + 10µF 33µF + 100µF 1 Vsag1 Vout1 14 + C1 2 V+1 V+2 3 Vin1 4 Power Save OUT2 75Ω 13 0.1µF IN1 OUT1 75Ω 33µF NJM2573V Vsag2 12 + 75Ω 100µF Vout2 11 + C1 0.1µF IN2 5 Vin2 GND2 10 6 GND1 Vout3 75Ω 75Ω OUT1 OUT2 (CLAMP) 75Ω 10µF 9 + OUT1 75Ω OUT2 75Ω 0.1µF 7 IN3 Vin3 C/B SW 8 75Ω (1) Standard circuit The SAG correction reduces output coupling capacitor values. The capacitor of C1 (33µF) is recommended for the portable application. However, the 33µF capacitor may deteriorate SAG, and lose synchronization by luminance fluctuation. Adjust the C1 value, checking the waveform containing a lot of low frequency components like a bounce waveform (In case of worst condition). Change the capacitor of C1 into a large value to improve SAG. (2) SAG correction unused circuit Cancel the SAG correction to improve lost synchronization. Connect the coupling capacitor after connecting the Vout pin and Vsag pin. The recommended value is 470µF or more. (3) Two-line driving circuit The NJM2573 drives two-line load of 150Ω. The capacitance value of C1 should be 100µF or more, because SAG is deteriorated than a standard circuit. Ver.9 -5- NJM2573 EQUIVALENT CIRCUIT PIN No. PIN NAME FUNCTION INSIDE EQUIVALENT CIRCUIT V+ 1 12 Vsag1 Vsag2 Vsag Sag compensation c 8.8k 750 GND 2 13 + V1 + V2 Power Supply + V 270 3 VIN1 Clamp input 270 Vin1 c GND V+ SW 4 Power Save 32k c Power save 48k GND + V 5 Vin2 Clamp/Bias input 270 270 20k 270 Vin2 c GND 6 10 GND1 GND2 GND - Ver.9 -6- NJM2573 PIN No. PIN NAME FUNCTION INSIDE EQUIVALENT CIRCUIT V+ 20k 7 Vin3 Bias input 270 Vin3 c GND SW 32k c 8 CLAMP/ BIAS SW Clamp/Bias switch 48k GND + V 9 Vout3 8.8k Bias output Vout3 c GND V+ 11 14 Vout2 Vout1 Clamp/Bias output Clamp output 8.8k 750 Vout c GND APPLICATION When the power supply voltage is not impressing, don’t impress voltage to the control terminal. Ver.9 -7- NJM2573 APPLICATION SAG correction circuit SAG correction circuit is a circuit to correct for low-frequency attenuation by high-pass filter consisting of the output coupling capacitance and load resistance. Low-frequency attenuation raises the sag in the vertical period of the video signal. Capacitor for Vsag (Csag) is connected to the negative feedback of the amplifier. This Csag increase the low frequency gain to correct for the attenuation of low frequency gain. Example SAG collection circuit Vout Cout Vsag Csag resistance:RL Vout1 Example of not using sag compensation circuit resistance:RL Vout Cout Vout1 Vsag Waveform of Vout terminal and Vout1 terminal using SAG correction circuit Waveform of Vout Waveform of Vout1 1Vertical period not using SAG correction circuit Waveform of Vout Waveform of Vout1 1Vertical period Ver.9 -8- NJM2573 SAG correction circuit generates a low frequency component signal amplified to Vout terminal. Changes of the luminance signal will be low-frequency components, if you want to output a large signal luminance changes. Therefore, generate correction signal of change of a luminance signal to Vout pin. At this time, signal is over the dynamic range of Vout pin. This may cause a lack of sync signal, and waveform distortion. Please see diagram below (green waveform), if you want to output large changes of a signal luminance, such as 100% white video signal and black signal. Thus, output signal exceed dynamic range of Vout pin and may be the signal lack. Input signal Waveform of Vout The sync signal is missing because exceed the dynamic range of Vout. Dynamic range of Vout Waveform of Vout1 < Countermeasure for waveform distortion > 1. Please using small value the Sag compensation capacitor (VSAG). It can ensure the dynamic range by using small value the capacitor (VSAG). It because of low-frequency variation of Vout pin is smaller. However, the output (VOUT) must be use large capacitor for this reason sag characteristics become exacerbated. 2. Please do not use the sag correction circuit. Signal can output within dynamic range for reason it does not change the DC level of the output terminal. However, the output (VOUT) must be use large capacitor for this reason sag characteristics become exacerbated. Ver.9 -9- NJM2573 < Dual drive at using SAG correction circuit > Using sag correction circuit at dual drive circuit is below. Dual drives are less load resistance. Thus, the cut-off frequency of HPF that is composed of the output capacitor and load resistance will be small. Therefore, the sag characteristics deteriorate. Please size up to the output capacitor (Vout) for not to deteriorate the sag characteristics. < Dual drive at not using SAG correction circuit > We recommended two-example dual drive circuit with not use sag correction circuit. Please change the configuration to be used according to the situation. Please configure to meet the following conditions. Then you can adjust the characteristics of each configuration. Cout Cout 1 Cout 2 Cout 1 Cout 2 (A) In case of using one output capacitor (B) In case of using two output capacitors Ver.9 - 10 - NJM2573 Csag=33uF Cout=330uF Cout=220uF Cout=100uF Cout=47uF Cout=33uF < Using SAG correction circuit > Input signal: bounce signal (IRE0%, IRE100%, 30Hz), resistance=150 Waveform: yellow: input signal, green: Vout signal, purple: Vout1signal Csag=10uF Csag=22uF Ver.9 - 11 - NJM2573 Csag=33uF Cout=1000uF Cout=470uF Cout=330uF Cout=220uF Cout=100uF Input signal: bounce signal (IRE0%, IRE100%, 30Hz), resistance=75 Waveform: yellow: input signal, green: Vout signal, purple: Vout1signal Csag=10uF Csag=22uF Ver.9 - 12 - NJM2573 Cout=1000uF Cout=470uF Cout=330uF Cout=220uF Cout=100uF < Not using SAG correction circuit > Input signal: bounce signal (IRE0%, IRE100%, 30Hz), resistance=150 Waveform: yellow: input signal, green: Vout signal, purple: Vout1signal RL=75 RL=150 Ver.9 - 13 - NJM2573 Csag=33uF Cout=330uF Cout=220uF Cout=100uF Cout=47uF Cout=33uF < Using SAG correction circuit > Input signal: Black to White100%, resistance150 Waveform: yellow: input signal, green: Vout signal, purple: Vout1signal Csag=10uF Csag=22uF Ver.9 - 14 - NJM2573 Csag=33uF Cout=330uF Cout=220uF Cout=100uF Cout=47uF Cout=33uF Input signal: White100% to Black, resistance150 Waveform: yellow: input signal, green: Vout signal, purple: Vout1signal Csag=10uF Csag=22uF Ver.9 - 15 - NJM2573 Csag=33uF Cout=330uF Cout=220uF Cout=100uF Cout=47uF Cout=33uF < Using SAG correction circuit > Input signal: Black to White100%, resistance=75 Waveform: yellow: input signal, green: Vout signal, purple: Vout1signal Csag=10uF Csag=22uF Ver.9 - 16 - NJM2573 Csag=33uF Cout=330uF Cout=220uF Cout=100uF Cout=47uF Cout=33uF Input signal: White100% to Black, resistance=75 Waveform: yellow: input signal, green: Vout signal, purple: Vout1signal Csag=10uF Csag=22uF Ver.9 - 17 - NJM2573 Clamp circuit 1. Operation of Sync-tip-clamp Input circuit will be explained. Sync-tip clamp circuit (below the clamp circuit) operates to keep a sync tip of the minimum potential of the video signal. Clamp circuit is a circuit of the capacitor charging and discharging of the external input Cin. It is charged to the capacitor to the external input Cin at sync tip of the video signal. Therefore, the potential of the sync tip is fixed. And it is discharged charge by capacitor Cin at period other than the video signal sync tip. This is due to a small discharge current to the IC. In this way, this clamp circuit is fixed sync tip of video signal to a constant potential from charging of Cin and discharging of Cin at every one horizontal period of the video signal. The minute current be discharged an electrical charge from the input capacitor at the period other than the sync tip of video signals. Decrease of voltage on discharge is dependent on the size of the input capacitor Cin. If you decrease the value of the input capacitor, will cause distortion, called the H sag. Therefore, the input capacitor recommend on more than 0.1uF. signal input Cin charge current Vin Clamp circuit diccharge current < Clamp circuit > A. Cin is large B. Cin is small (H sag experience) clamp potential clamp potential charge period discharge period charge period charge period discharge period charge period < Waveform of input terminal > 2. Input impedance The input impedance of the clamp circuit is different at the capacitor discharge period and the charge period. The input impedance of the charging period is a few k. On the other hand, the input impedance of the discharge period is several M. Because is a small discharge-current through to the IC. Thus the input impedance will vary depending on the operating state of the clamp circuit. 3. Impedance of signal source Source impedance to the input terminal, please lower than 200. A high source impedance, the signal may be distorted. If so, please to connect a buffer for impedance conversion. Ver.9 - 18 - NJM2573 TYPICAL CHARACTERISTICS Voltage Gain vs. Frequency Vin=1.0Vpp + V vs Icc 32 10 30 0.0 28 26 Gv[dB] Icc[mA] -10 -20 24 22 20 1ch 2ch_clamp 2ch_bias 3ch -30 18 16 -40 10 5 10 6 10 7 10 8 2 3 4 5 6 7 8 + Frequency[Hz] V [V] + + V vs Isave V vs Vomc 300 8 Vom2B Vom3 7 250 6 Vomc[Vpp] Isave[uA] 200 150 100 5 4 3 2 50 1 0 2 3 4 5 6 7 0 8 2 + 3 4 5 V [V] V [V] V vs Vomv V vs Gv 6 7 8 + + + 8 8 Gv1 Gv2C Gv2B Gv3 7 7.5 6 Gv[dB] Vomv[Vpp] 7 5 4 6.5 3 6 2 5.5 1 Vom1 Vom2C 0 5 2 3 4 5 + V [V] 6 7 8 2 3 4 5 6 7 8 + V [V] Ver.9 - 19 - NJM2573 + + V vs Gfy V vs Gfy 4.5M 8M 2 2 Gf4.5_1 Gf4.5_2C Gf4.5_2B Gf4.5_3 1.5 1 0 Gfy [dB] Gfy 4.5M 0 8M [dB] -2 0.5 -4 -0.5 -6 Gf8_1 Gf8_2C Gf8_2B Gf8_3 -1 -8 -1.5 -2 -10 2 3 4 5 6 7 8 2 3 4 5 + 6 7 8 + V [V] V [V] + + V vs Gfy V vs DG 16M 0 5 -5 DG1 DG2C 4 -10 DG[%] -15 Gfy 16M [dB] 3 2 Gf16_1 Gf16_2C Gf16_2B Gf16_3 -20 1 -25 0 -30 2 3 4 5 6 7 2 8 3 4 5 6 7 8 6 7 8 + + V [V] V [V] V vs DP V vs CTave + + 5 -40 DP1 DP2C 4 -50 CTave[dB] DP[deg] -60 3 2 -70 -80 1 -90 -100 0 2 3 4 5 + V [V] - 20 - 6 7 8 2 3 4 5 + V [V] Ver.9 NJM2573 + + V vs SNv V vs Hv -20 100 -30 90 -40 80 Hv[dB] SNv[dB] -50 70 -70 SN1 SN2C SN2B SN3 60 -60 Hv1 Hv2C Hv2B Hv3 -80 50 -90 -100 40 2 3 4 5 6 7 2 8 3 4 6 V [V] V [V] V vs VthHL T vs Icc + 7 8 32 3 VthPSH VthPSL VthC/BH VthC/BL 2.5 30 28 2 26 Icc[mA] VthHL[V] 5 + + 1.5 24 22 1 20 18 0.5 16 0 2 3 4 5 6 7 -60 8 -40 -20 0 20 40 60 80 100 120 o + T [ C] V [V] T vs Isave T vs Vomc 100 8 Vom2B Vom3 7 80 60 Vomc[Vpp] Isave[uA] 6 40 5 4 3 2 20 1 0 -60 -40 -20 0 20 40 o T [ C] 60 80 100 120 0 -60 -40 -20 0 20 40 60 80 100 120 T [oC] Ver.9 - 21 - NJM2573 T vs Gv T vs Vomv 8 8 Vom1 Vom2C 7 Gv1 Gv2C Gv2B Gv3 7.5 6 7 Gv[dB] Vomv[Vpp] 5 4 6.5 3 6 2 5.5 1 0 -60 -40 -20 0 20 40 60 80 100 5 120 -60 o T [ C] -40 -20 0 20 40 60 80 100 120 T [o C] T vs Gfy T vs Gfy 4.5M 8M 2 2 Gf4.5_1 Gf4.5_2C Gf4.5_2B Gf4.5_3 1.5 1 0 Gfy [dB] Gfy 0 -4 8M 4.5M [dB] -2 0.5 -0.5 -6 Gf8_1 Gf8_2C Gf8_2B Gf8_3 -1 -8 -1.5 -2 -10 -60 -40 -20 0 20 40 60 80 100 120 -60 -40 -20 0 20 40 60 80 100 120 o o T [ C] T [ C] T vs Gfy T vs DG 16M 0 5 -5 DG1 DG2C 4 -10 DG[%] -15 Gfy 16M [dB] 3 2 Gf16_1 Gf16_2C Gf16_2B Gf16_3 -20 1 -25 -30 -60 -40 -20 0 20 40 o T [ C] 60 80 100 120 0 -60 -40 -20 0 20 40 60 80 100 120 T [oC] Ver.9 - 22 - NJM2573 T vs DP T vs CTave 5 -40 DP1 DP2C 4 -50 CTave[dB] DP[deg] -60 3 2 -70 -80 1 -90 0 -60 -100 -40 -20 0 20 40 60 80 100 -60 120 -40 -20 0 20 40 60 80 100 120 o o T [ C] T [ C] T vs SNv T vs Hv 100 -20 -30 90 -40 80 Hv[dB] SNv[dB] -50 70 -70 SN1 SN2C SN2B SN3 60 Hv1 Hv2C Hv2B Hv3 -60 -80 50 -90 40 -100 -60 -40 -20 0 20 40 60 80 100 120 o -60 -40 -20 0 20 40 60 80 100 120 T [oC] T [ C] T vs VthHL 3 VthPSH VthPSL VthC/BH VthC/BL 2.5 VthHL[V] 2 1.5 1 0.5 0 -60 -40 -20 0 20 40 T [oC] 60 80 100 120 [CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights. Ver.9 - 23 -