NJM2561B

NJM2561B
LOW VOLTAGE VIDEO AMPLIFIER WITH LPF
QGENERAL DESCRIPTION
The NJM2561B is a Low Voltage Video Amplifier contained LPF
circuit. Internal 75Ω driver is easy to connect TV monitor directly.
It corresponds to both AC-coupling and DC-coupling.*
The NJM2561B features low power and small package, and is
suitable for low power design on downsizing of DSC and DVC.
QPACKAGE OUTLINE
*0.33V is always output from Vout.
QFEATURES
O Operating Voltage
O 6th Order LPF
O 6dB Amplifier
O 75Ω Driver Circuit
O Power Save Circuit
O Bipolar Technology
O Package Outline
NJM2561BF1
2.8 to 5.5V
-33dB at 19MHz typ.
SOT-23-6 (MTP6)
QPIN CONFIGURATION
MTP6
1. Power Save
1
6
2
5
3
4
2. Vout
3. Vsag
4. Vin
5. GND
6. V+
QBLOCK DIAGRAM
V+
6
75Ω Driver
Vin
LPF
4
6dB
2
Vout
3
Vsag
CLAMP
5
GND
1
Power Save
Ver.3.1
-1-
NJM2561B
QABSOLUTE MAXIMUM RATINGS (Ta=25°C)
PARAMETER
SYMBOL
RATINGS
UNIT
+
Supply Voltage
V
7.0
V
Power Dissipation
PD
410(MTP6) Note
mW
Operating Temperature Range
Topr
-40 to +85
°C
Storage Temperature Range
Tstg
-40 to +125
°C
(Note) At on a board of EIA/JEDEC specification. (114.3 x 76.2 x 1.6mm 2 layers, FR-4)
Q RECOMMENDED OPEARATING CONDITION (Ta=25°C)
PARAMETER
Operating Voltage
SYMBOL
TEST CONDITION
MIN.
TYP.
MAX.
UNIT
2.8
3.0
5.5
V
MIN.
TYP.
MAX.
UNIT
No Signal
-
8.0
12.0
mA
-
30
50
µA
2.2
2.5
-
Vp-p
dB
Vopr
QELECTRICAL CHARACTERISTICS (V+=3.0V,RL=150Ω,Ta=25°C)
PARAMETER
Operating Current
SYMBOL
ICC
TEST CONDITION
Operating Current at Power Save
Isave
No Signal, Power Save Mode
Maximum Output Voltage Swing
Vom
f=100kHz,THD=1%
Voltage Gain
Low Pass Filter Characteristic
5.6
6.0
6.4
Gfy4.5M
Vin=100kHz, 1.0Vp-p,
Input Sine Signal
Vin=4.5MHz/100kHz, 1.0Vp-p
-0.6
-0.1
0.4
Gfy19M
Vin=19MHz/100kHz, 1.0Vp-p
-
-33
-23
Gv
dB
Differential Gain
DG
Vin=1.0Vp-p, 10step Video Signal
-
0.5
-
%
Differential Phase
DP
Vin=1.0Vp-p, 10step Video Signal
-
0.5
-
deg
S/N Ratio
SNv
-
+65
-
dB
-
-50
-
dB
1.8
-
V+
0
-
0.3
2nd. Distortion
Hv
Vin=1.0Vp-p, RL=75Ω
100% White Video Signal,
100KHz to 6MHz
Vin=1.0Vp-p, 3.58MHz,
Sine Signal, RL=75Ω
SW Change Voltage High Level
VthPH
Active
SW Change Voltage Low Level
VthPL
Non-active
QCONTROL TERMINAL
PARAMETER
Power Save
-2-
STATUS
NOTE
H
Power Save: OFF(Active)
L
Power Save: ON (Mute)
OPEN
Power Save: ON (Mute)
V
NJM2561B
QTEST CIRCUIT
input
0.1µF
10µF
75Ω
0.1µF
6
V+
5
4
GND
Vin
Power
Save
Vout
Vsag
1
2
3
33µF
33µF
75Ω
output
75Ω
-3-
NJM2561B
Q APPLICATION CIRCUIT (MTP6, in case AC-coupling)
(1) Standard circuit
(2) SAG correction unused circuit
input
input
0.1µF
0.1µF
10µF
75Ω
0.1µF
10µF
75Ω
0.1µF
6
5
4
6
5
4
V+
GND
Vin
V+
GND
Vin
Power
Save
Vout
Vsag
Power
Save
Vout
Vsag
1
2
3
1
2
3
C1
33µF
33µF
+
75Ω
75Ω
output
(3) Two-line driving circuit
470µF
output
input
0.1µF
10µF
75Ω
0.1µF
6
5
4
V+
GND
Vin
Power
Save
Vout
Vsag
1
2
3
+
75Ω
output 1
470µF
75Ω
output 2
(1) Standard circuit
This circuit is for a portable equipment of small mounting space.
The SAG correction reduces output coupling capacitor values.
However, this circuit may cause to SAG deterioration, and lose synchronization by luminance fluctuation.
Adjust the C1 value, checking the waveform containing a lot of low frequency components like a bounce waveform (Worst
condition waveform of SAG). Change the capacitor of C1 into a large value to improve SAG.
(2) SAG correction unused circuit
We recommend this circuit when there is no space limitation.
Connect the coupling capacitor after connecting the Vout pin and Vsag pin. The recommended value is 470µF or more.
(3) Two-line driving circuit
This circuit drives two-line of 150Ω. However, it may cause to lose synchronization by an input signal of large APL change
(100% white signals more than 1Vp-p). Confirm the large APL change waveform (100% white signals more than 1Vp-p) and
evaluate sufficiently.
-4-
NJM2561B
Q APPLICATION CIRCUIT (MTP6, in case DC-coupling)
input
0.1µF
10µF
75Ω
0.1µF
6
5
4
V+
GND
Vin
Power
Save
Vout
Vsag
1
2
3
75Ω
output 1
75Ω
output 2
Note)
0.33V is always output from Vout.
-5-
NJM2561B
Q TERMINAL DESCRIPTION
PIN No.
SYMBOL
VOLTAGE
EQUIVALENT CIRCUIT
16KΩ
1
Power Save
32KΩ
-
48KΩ
16KΩ
GND
2
Vout
0.33V
V+
V+
V+
V+
Vout
750Ω
3
Vsag
-
Vsag
V+
-6-
4
Vin
1.10V
5
GND
-
6
V+
3V
Vin
V+
V+
270Ω
NJM2561B
Q APPLICATION
♦ SAG correction circuit
SAG correction circuit is a circuit to correct for low-frequency attenuation by high-pass filter consisting of the
output coupling capacitance and load resistance. Low-frequency attenuation raises the sag in the vertical period of
the video signal.
Capacitor for Vsag (Csag) is connected to the negative feedback of the amplifier. This Csag increase the low
frequency gain to correct for the attenuation of low frequency gain.
Example SAG collection circuit
Vout
Cout
Vsag
Csag
resistance:RL
Vout1
Example of not using sag compensation circuit
Vout
Cout
resistance:RL
Vout1
Vsag
Waveform of Vout terminal and Vout1 terminal
using SAG correction circuit
Waveform of Vout
Waveform of Vout1
1Vertical period
not using SAG correction circuit
Waveform of Vout
Waveform of Vout1
1Vertical period
-7-
NJM2561B
SAG correction circuit generates a low frequency component signal amplified to Vout terminal.
Changes of the luminance signal will be low-frequency components, if you want to output a large signal luminance
changes. Therefore, generate correction signal of change of a luminance signal to Vout pin.
At this time, signal is over the dynamic range of Vout pin. This may cause a lack of sync signal, and waveform
distortion.
Please see diagram below (green waveform), if you want to output large changes of a signal luminance, such as
100% white video signal and black signal. Thus, output signal exceed dynamic range of Vout pin and may be the
signal lack.
Input signal
Waveform of Vout
The sync signal is missing because exceed the
dynamic range of Vout.
Dynamic range of Vout
Waveform of Vout1
< Countermeasure for waveform distortion >
1. Please using small value the Sag compensation capacitor (VSAG).
It can ensure the dynamic range by using small value the capacitor (VSAG). It because of low-frequency
variation of Vout pin is smaller. However, the output (VOUT) must be use large capacitor for this reason sag
characteristics become exacerbated.
2. Please do not use the sag correction circuit.
Signal can output within dynamic range for reason it does not change the DC level of the output terminal.
However, the output (VOUT) must be use large capacitor for this reason sag characteristics become
exacerbated.
-8-
NJM2561B
< Dual drive at using SAG correction circuit >
Using sag correction circuit at dual drive circuit is below. Dual drives are less load resistance. Thus, the cut-off
frequency of HPF that is composed of the output capacitor and load resistance will be small. Therefore, the sag
characteristics deteriorate.
Please size up to the output capacitor (Vout) for not to deteriorate the sag characteristics.
< Dual drive at not using SAG correction circuit >
We recommended two-example dual drive circuit with not use sag correction circuit. Please change the
configuration to be used according to the situation. Please configure to meet the following conditions. Then you can
adjust the characteristics of each configuration.
Cout = Cout 1 + Cout 2
Cout1 = Cout 2
(A) In case of using one output capacitor
(B) In case of using two output capacitors
-9-
NJM2561B
Cout=330uF
Cout=220uF
Cout=100uF
Cout=47uF
Cout=33uF
< Using SAG correction circuit >
Input signal: bounce signal (IRE0%, IRE100%, 30Hz), resistance=150Ω
Waveform: yellow: input signal, green: Vout signal, purple: Vout1signal
Csag=10uF
Csag=22uF
- 10 -
Csag=33uF
NJM2561B
Csag=33uF
Cout=1000uF
Cout=470uF
Cout=330uF
Cout=220uF
Cout=100uF
Input signal: bounce signal (IRE0%, IRE100%, 30Hz), resistance=75Ω
Waveform: yellow: input signal, green: Vout signal, purple: Vout1signal
Csag=10uF
Csag=22uF
- 11 -
NJM2561B
Cout=1000uF
Cout=470uF
Cout=330uF
Cout=220uF
Cout=100uF
< Not using SAG correction circuit >
Input signal: bounce signal (IRE0%, IRE100%, 30Hz), resistance=150Ω
Waveform: yellow: input signal, green: Vout signal, purple: Vout1signal
RL=75Ω
RL=150Ω
- 12 -
NJM2561B
Csag=33uF
Cout=330uF
Cout=220uF
Cout=100uF
Cout=47uF
Cout=33uF
< Using SAG correction circuit >
Input signal: Black to White100%, resistance150Ω
Waveform: yellow: input signal, green: Vout signal, purple: Vout1signal
Csag=10uF
Csag=22uF
- 13 -
NJM2561B
Cout=330uF
Cout=220uF
Cout=100uF
Cout=47uF
Cout=33uF
Input signal: White100% to Black, resistance150Ω
Waveform: yellow: input signal, green: Vout signal, purple: Vout1signal
Csag=10uF
Csag=22uF
- 14 -
Csag=33uF
NJM2561B
Csag=33uF
Cout=330uF
Cout=220uF
Cout=100uF
Cout=47uF
Cout=33uF
< Using SAG correction circuit >
Input signal: Black to White100%, resistance=75Ω
Waveform: yellow: input signal, green: Vout signal, purple: Vout1signal
Csag=10uF
Csag=22uF
- 15 -
NJM2561B
Cout=330uF
Cout=220uF
Cout=100uF
Cout=47uF
Cout=33uF
Input signal: White100% to Black, resistance=75Ω
Waveform: yellow: input signal, green: Vout signal, purple: Vout1signal
Csag=10uF
Csag=22uF
- 16 -
Csag=33uF
NJM2561B
♦Clamp circuit
1. Operation of Sync-tip-clamp
Input circuit will be explained. Sync-tip clamp circuit (below the clamp circuit) operates to keep a sync tip of the
minimum potential of the video signal. Clamp circuit is a circuit of the capacitor charging and discharging of the
external input Cin. It is charged to the capacitor to the external input Cin at sync tip of the video signal. Therefore,
the potential of the sync tip is fixed.
And it is discharged charge by capacitor Cin at period other than the video signal sync tip. This is due to a
small discharge current to the IC.
In this way, this clamp circuit is fixed sync tip of video signal to a constant potential from charging of Cin and
discharging of Cin at every one horizontal period of the video signal.
The minute current be discharged an electrical charge from the input capacitor at the period other than the
sync tip of video signals. Decrease of voltage on discharge is dependent on the size of the input capacitor Cin.
If you decrease the value of the input capacitor, will cause distortion, called the H sag. Therefore, the input
capacitor recommend on more than 0.1uF.
signal input
Cin
charge
current
Vin
Clamp circuit
diccharge
current
< Clamp circuit >
A. Cin is large
B. Cin is small (H sag experience)
clamp potential
clamp potential
charge period
discharge period
charge period
charge period
discharge period
charge period
< Waveform of input terminal >
2. Input impedance
The input impedance of the clamp circuit is different at the capacitor discharge period and the charge period.
The input impedance of the charging period is a few kΩ. On the other hand, the input impedance of the
discharge period is several MΩ. Because is a small discharge-current through to the IC.
Thus the input impedance will vary depending on the operating state of the clamp circuit.
3. Impedance of signal source
Source impedance to the input terminal, please lower than 200Ω. A high source impedance, the signal may be
distorted. If so, please to connect a buffer for impedance conversion.
- 17 -
NJM2561B
QTYPICAL CHARACTERISTICS
Gv vs Frequency
Vin=1.0Vpp RL=150
10
0
-10
Gv
[dB]
-20
-30
-40
-50
-60
105
106
107
108
Frequency[Hz]
VCC vs Icc
VCC vs Isave
12
100
11
80
Isave[uA]
Icc[mA]
10
9
8
60
40
7
20
6
2
2.5
3
3.5
4
VCC[V]
4.5
5
5.5
6
2
2.5
3
VCC vs Vom
3.5
4
VCC[V]
4.5
5
5.5
6
5
5.5
6
VCC vs Gv
8
7.0
7
6.5
Gv[dB]
Vom[Vp-p]
6
5
6.0
4
5.5
3
2
5.0
2
2.5
3
3.5
4
VCC[V]
4.5
5
5.5
6
2
2.5
3
3.5
4
VCC[V]
4.5
Ver.3.1
- 18 -
NJM2561B
QTYPICAL CHARACTERISTICS
VCC vs Gf19M
-30
0.5
-35
Gf19M[dB]
Gf4.5M[dB]
VCC vs Gf4.5M
1.0
0.0
-0.5
-40
-45
-1.0
-50
2
2.5
3
3.5
4
VCC[V]
4.5
5
5.5
6
2
2.5
3
VCC vs DG
3.5
4
VCC[V]
4.5
5
5.5
6
5
5.5
6
5
5.5
6
VCC vs DP
5
4
4
3
3
DG[%]
DP[deg]
5
2
2
1
1
0
0
2
2.5
3
3.5
4
VCC[V]
4.5
5
5.5
2
6
2.5
3
VCC vs SN
3.5
4
VCC[V]
4.5
VCC vs Hv
90
-30
85
-35
Hv[dB]
SN[dB]
80
75
-40
70
-45
65
60
-50
2
2.5
3
3.5
4
VCC[V]
4.5
5
5.5
6
2
2.5
3
3.5
4
VCC[V]
4.5
- 19 -
NJM2561B
QTYPICAL CHARACTERISTICS
VCC vs VthL
2.0
2.0
1.5
1.5
Vth[V]
Vth[V]
VCC vs VthH
1.0
1.0
0.5
0.5
0.0
0.0
2
2.5
3
3.5
4
VCC[V]
4.5
5
5.5
2
6
2.5
3
Temp vs Icc
3.5
4
VCC[V]
4.5
5
5.5
6
Temp vs Isave
50
12
11
45
10
Isave[uA]
Icc[mA]
9
8
7
40
35
6
30
5
4
-100
-50
0
50
o
Temp[C ]
100
150
25
-100
200
-50
Temp vs Vom
0
50
o
Temp[C ]
100
150
200
Temp vs Gv
3.0
7.0
2.8
2.6
Gv[dB]
Vom[Vp-p]
6.5
6.0
2.4
5.5
2.2
2.0
-100
- 20 -
-50
0
50
o
Temp[C ]
100
150
200
5.0
-100
-50
0
50
o
Temp[C ]
100
150
NJM2561B
QTYPICAL CHARACTERISTICS
Temp vs Gf19M
1.0
-30.0
0.5
-35.0
Gv[dB]
Gv[dB]
Temp vs Gf4.5M
0.0
-0.5
-1.0
-100
-40.0
-45.0
-50
0
50
100
150
-50.0
-100
-50
0
o
50
100
150
o
Temp[C ]
Temp[C ]
Temp vs DG
Temp vs DP
5
4
4
3
3
DG[%]
DP[deg]
5
2
2
1
1
0
-100
-50
0
50
o
Temp[C ]
100
150
0
-100
200
-50
0
Temp vs SN
50
o
Temp[C ]
100
150
200
100
150
200
Temp vs Hv
-30
90
85
-35
Hv[dB]
SN[dB]
80
75
-40
70
-45
65
60
-100
-50
0
50
Temp[Co]
100
150
200
-50
-100
-50
0
50
o
Temp[C ]
- 21 -
NJM2561B
QTYPICAL CHARACTERISTICS
Temp vs VthL
Temp vs VthH
2.0
3.0
2.5
1.5
Vth[V]
Vth[V]
2.0
1.5
1.0
1.0
0.5
0.5
0.0
-100
-50
0
50
o
Temp[ C]
100
150
200
0.0
-100
-50
0
50
o
Temp[ C]
100
150
200
[CAUTION]
The specifications on this databook are only
given for information , without any guarantee
as regards either mistakes or omissions. The
application circuits in this databook are
described only to show representative usages
of the product and not intended for the
guarantee or permission of any right including
the industrial rights.
- 22 -