NJM2561B LOW VOLTAGE VIDEO AMPLIFIER WITH LPF QGENERAL DESCRIPTION The NJM2561B is a Low Voltage Video Amplifier contained LPF circuit. Internal 75Ω driver is easy to connect TV monitor directly. It corresponds to both AC-coupling and DC-coupling.* The NJM2561B features low power and small package, and is suitable for low power design on downsizing of DSC and DVC. QPACKAGE OUTLINE *0.33V is always output from Vout. QFEATURES O Operating Voltage O 6th Order LPF O 6dB Amplifier O 75Ω Driver Circuit O Power Save Circuit O Bipolar Technology O Package Outline NJM2561BF1 2.8 to 5.5V -33dB at 19MHz typ. SOT-23-6 (MTP6) QPIN CONFIGURATION MTP6 1. Power Save 1 6 2 5 3 4 2. Vout 3. Vsag 4. Vin 5. GND 6. V+ QBLOCK DIAGRAM V+ 6 75Ω Driver Vin LPF 4 6dB 2 Vout 3 Vsag CLAMP 5 GND 1 Power Save Ver.3.1 -1- NJM2561B QABSOLUTE MAXIMUM RATINGS (Ta=25°C) PARAMETER SYMBOL RATINGS UNIT + Supply Voltage V 7.0 V Power Dissipation PD 410(MTP6) Note mW Operating Temperature Range Topr -40 to +85 °C Storage Temperature Range Tstg -40 to +125 °C (Note) At on a board of EIA/JEDEC specification. (114.3 x 76.2 x 1.6mm 2 layers, FR-4) Q RECOMMENDED OPEARATING CONDITION (Ta=25°C) PARAMETER Operating Voltage SYMBOL TEST CONDITION MIN. TYP. MAX. UNIT 2.8 3.0 5.5 V MIN. TYP. MAX. UNIT No Signal - 8.0 12.0 mA - 30 50 µA 2.2 2.5 - Vp-p dB Vopr QELECTRICAL CHARACTERISTICS (V+=3.0V,RL=150Ω,Ta=25°C) PARAMETER Operating Current SYMBOL ICC TEST CONDITION Operating Current at Power Save Isave No Signal, Power Save Mode Maximum Output Voltage Swing Vom f=100kHz,THD=1% Voltage Gain Low Pass Filter Characteristic 5.6 6.0 6.4 Gfy4.5M Vin=100kHz, 1.0Vp-p, Input Sine Signal Vin=4.5MHz/100kHz, 1.0Vp-p -0.6 -0.1 0.4 Gfy19M Vin=19MHz/100kHz, 1.0Vp-p - -33 -23 Gv dB Differential Gain DG Vin=1.0Vp-p, 10step Video Signal - 0.5 - % Differential Phase DP Vin=1.0Vp-p, 10step Video Signal - 0.5 - deg S/N Ratio SNv - +65 - dB - -50 - dB 1.8 - V+ 0 - 0.3 2nd. Distortion Hv Vin=1.0Vp-p, RL=75Ω 100% White Video Signal, 100KHz to 6MHz Vin=1.0Vp-p, 3.58MHz, Sine Signal, RL=75Ω SW Change Voltage High Level VthPH Active SW Change Voltage Low Level VthPL Non-active QCONTROL TERMINAL PARAMETER Power Save -2- STATUS NOTE H Power Save: OFF(Active) L Power Save: ON (Mute) OPEN Power Save: ON (Mute) V NJM2561B QTEST CIRCUIT input 0.1µF 10µF 75Ω 0.1µF 6 V+ 5 4 GND Vin Power Save Vout Vsag 1 2 3 33µF 33µF 75Ω output 75Ω -3- NJM2561B Q APPLICATION CIRCUIT (MTP6, in case AC-coupling) (1) Standard circuit (2) SAG correction unused circuit input input 0.1µF 0.1µF 10µF 75Ω 0.1µF 10µF 75Ω 0.1µF 6 5 4 6 5 4 V+ GND Vin V+ GND Vin Power Save Vout Vsag Power Save Vout Vsag 1 2 3 1 2 3 C1 33µF 33µF + 75Ω 75Ω output (3) Two-line driving circuit 470µF output input 0.1µF 10µF 75Ω 0.1µF 6 5 4 V+ GND Vin Power Save Vout Vsag 1 2 3 + 75Ω output 1 470µF 75Ω output 2 (1) Standard circuit This circuit is for a portable equipment of small mounting space. The SAG correction reduces output coupling capacitor values. However, this circuit may cause to SAG deterioration, and lose synchronization by luminance fluctuation. Adjust the C1 value, checking the waveform containing a lot of low frequency components like a bounce waveform (Worst condition waveform of SAG). Change the capacitor of C1 into a large value to improve SAG. (2) SAG correction unused circuit We recommend this circuit when there is no space limitation. Connect the coupling capacitor after connecting the Vout pin and Vsag pin. The recommended value is 470µF or more. (3) Two-line driving circuit This circuit drives two-line of 150Ω. However, it may cause to lose synchronization by an input signal of large APL change (100% white signals more than 1Vp-p). Confirm the large APL change waveform (100% white signals more than 1Vp-p) and evaluate sufficiently. -4- NJM2561B Q APPLICATION CIRCUIT (MTP6, in case DC-coupling) input 0.1µF 10µF 75Ω 0.1µF 6 5 4 V+ GND Vin Power Save Vout Vsag 1 2 3 75Ω output 1 75Ω output 2 Note) 0.33V is always output from Vout. -5- NJM2561B Q TERMINAL DESCRIPTION PIN No. SYMBOL VOLTAGE EQUIVALENT CIRCUIT 16KΩ 1 Power Save 32KΩ - 48KΩ 16KΩ GND 2 Vout 0.33V V+ V+ V+ V+ Vout 750Ω 3 Vsag - Vsag V+ -6- 4 Vin 1.10V 5 GND - 6 V+ 3V Vin V+ V+ 270Ω NJM2561B Q APPLICATION ♦ SAG correction circuit SAG correction circuit is a circuit to correct for low-frequency attenuation by high-pass filter consisting of the output coupling capacitance and load resistance. Low-frequency attenuation raises the sag in the vertical period of the video signal. Capacitor for Vsag (Csag) is connected to the negative feedback of the amplifier. This Csag increase the low frequency gain to correct for the attenuation of low frequency gain. Example SAG collection circuit Vout Cout Vsag Csag resistance:RL Vout1 Example of not using sag compensation circuit Vout Cout resistance:RL Vout1 Vsag Waveform of Vout terminal and Vout1 terminal using SAG correction circuit Waveform of Vout Waveform of Vout1 1Vertical period not using SAG correction circuit Waveform of Vout Waveform of Vout1 1Vertical period -7- NJM2561B SAG correction circuit generates a low frequency component signal amplified to Vout terminal. Changes of the luminance signal will be low-frequency components, if you want to output a large signal luminance changes. Therefore, generate correction signal of change of a luminance signal to Vout pin. At this time, signal is over the dynamic range of Vout pin. This may cause a lack of sync signal, and waveform distortion. Please see diagram below (green waveform), if you want to output large changes of a signal luminance, such as 100% white video signal and black signal. Thus, output signal exceed dynamic range of Vout pin and may be the signal lack. Input signal Waveform of Vout The sync signal is missing because exceed the dynamic range of Vout. Dynamic range of Vout Waveform of Vout1 < Countermeasure for waveform distortion > 1. Please using small value the Sag compensation capacitor (VSAG). It can ensure the dynamic range by using small value the capacitor (VSAG). It because of low-frequency variation of Vout pin is smaller. However, the output (VOUT) must be use large capacitor for this reason sag characteristics become exacerbated. 2. Please do not use the sag correction circuit. Signal can output within dynamic range for reason it does not change the DC level of the output terminal. However, the output (VOUT) must be use large capacitor for this reason sag characteristics become exacerbated. -8- NJM2561B < Dual drive at using SAG correction circuit > Using sag correction circuit at dual drive circuit is below. Dual drives are less load resistance. Thus, the cut-off frequency of HPF that is composed of the output capacitor and load resistance will be small. Therefore, the sag characteristics deteriorate. Please size up to the output capacitor (Vout) for not to deteriorate the sag characteristics. < Dual drive at not using SAG correction circuit > We recommended two-example dual drive circuit with not use sag correction circuit. Please change the configuration to be used according to the situation. Please configure to meet the following conditions. Then you can adjust the characteristics of each configuration. Cout = Cout 1 + Cout 2 Cout1 = Cout 2 (A) In case of using one output capacitor (B) In case of using two output capacitors -9- NJM2561B Cout=330uF Cout=220uF Cout=100uF Cout=47uF Cout=33uF < Using SAG correction circuit > Input signal: bounce signal (IRE0%, IRE100%, 30Hz), resistance=150Ω Waveform: yellow: input signal, green: Vout signal, purple: Vout1signal Csag=10uF Csag=22uF - 10 - Csag=33uF NJM2561B Csag=33uF Cout=1000uF Cout=470uF Cout=330uF Cout=220uF Cout=100uF Input signal: bounce signal (IRE0%, IRE100%, 30Hz), resistance=75Ω Waveform: yellow: input signal, green: Vout signal, purple: Vout1signal Csag=10uF Csag=22uF - 11 - NJM2561B Cout=1000uF Cout=470uF Cout=330uF Cout=220uF Cout=100uF < Not using SAG correction circuit > Input signal: bounce signal (IRE0%, IRE100%, 30Hz), resistance=150Ω Waveform: yellow: input signal, green: Vout signal, purple: Vout1signal RL=75Ω RL=150Ω - 12 - NJM2561B Csag=33uF Cout=330uF Cout=220uF Cout=100uF Cout=47uF Cout=33uF < Using SAG correction circuit > Input signal: Black to White100%, resistance150Ω Waveform: yellow: input signal, green: Vout signal, purple: Vout1signal Csag=10uF Csag=22uF - 13 - NJM2561B Cout=330uF Cout=220uF Cout=100uF Cout=47uF Cout=33uF Input signal: White100% to Black, resistance150Ω Waveform: yellow: input signal, green: Vout signal, purple: Vout1signal Csag=10uF Csag=22uF - 14 - Csag=33uF NJM2561B Csag=33uF Cout=330uF Cout=220uF Cout=100uF Cout=47uF Cout=33uF < Using SAG correction circuit > Input signal: Black to White100%, resistance=75Ω Waveform: yellow: input signal, green: Vout signal, purple: Vout1signal Csag=10uF Csag=22uF - 15 - NJM2561B Cout=330uF Cout=220uF Cout=100uF Cout=47uF Cout=33uF Input signal: White100% to Black, resistance=75Ω Waveform: yellow: input signal, green: Vout signal, purple: Vout1signal Csag=10uF Csag=22uF - 16 - Csag=33uF NJM2561B ♦Clamp circuit 1. Operation of Sync-tip-clamp Input circuit will be explained. Sync-tip clamp circuit (below the clamp circuit) operates to keep a sync tip of the minimum potential of the video signal. Clamp circuit is a circuit of the capacitor charging and discharging of the external input Cin. It is charged to the capacitor to the external input Cin at sync tip of the video signal. Therefore, the potential of the sync tip is fixed. And it is discharged charge by capacitor Cin at period other than the video signal sync tip. This is due to a small discharge current to the IC. In this way, this clamp circuit is fixed sync tip of video signal to a constant potential from charging of Cin and discharging of Cin at every one horizontal period of the video signal. The minute current be discharged an electrical charge from the input capacitor at the period other than the sync tip of video signals. Decrease of voltage on discharge is dependent on the size of the input capacitor Cin. If you decrease the value of the input capacitor, will cause distortion, called the H sag. Therefore, the input capacitor recommend on more than 0.1uF. signal input Cin charge current Vin Clamp circuit diccharge current < Clamp circuit > A. Cin is large B. Cin is small (H sag experience) clamp potential clamp potential charge period discharge period charge period charge period discharge period charge period < Waveform of input terminal > 2. Input impedance The input impedance of the clamp circuit is different at the capacitor discharge period and the charge period. The input impedance of the charging period is a few kΩ. On the other hand, the input impedance of the discharge period is several MΩ. Because is a small discharge-current through to the IC. Thus the input impedance will vary depending on the operating state of the clamp circuit. 3. Impedance of signal source Source impedance to the input terminal, please lower than 200Ω. A high source impedance, the signal may be distorted. If so, please to connect a buffer for impedance conversion. - 17 - NJM2561B QTYPICAL CHARACTERISTICS Gv vs Frequency Vin=1.0Vpp RL=150 10 0 -10 Gv [dB] -20 -30 -40 -50 -60 105 106 107 108 Frequency[Hz] VCC vs Icc VCC vs Isave 12 100 11 80 Isave[uA] Icc[mA] 10 9 8 60 40 7 20 6 2 2.5 3 3.5 4 VCC[V] 4.5 5 5.5 6 2 2.5 3 VCC vs Vom 3.5 4 VCC[V] 4.5 5 5.5 6 5 5.5 6 VCC vs Gv 8 7.0 7 6.5 Gv[dB] Vom[Vp-p] 6 5 6.0 4 5.5 3 2 5.0 2 2.5 3 3.5 4 VCC[V] 4.5 5 5.5 6 2 2.5 3 3.5 4 VCC[V] 4.5 Ver.3.1 - 18 - NJM2561B QTYPICAL CHARACTERISTICS VCC vs Gf19M -30 0.5 -35 Gf19M[dB] Gf4.5M[dB] VCC vs Gf4.5M 1.0 0.0 -0.5 -40 -45 -1.0 -50 2 2.5 3 3.5 4 VCC[V] 4.5 5 5.5 6 2 2.5 3 VCC vs DG 3.5 4 VCC[V] 4.5 5 5.5 6 5 5.5 6 5 5.5 6 VCC vs DP 5 4 4 3 3 DG[%] DP[deg] 5 2 2 1 1 0 0 2 2.5 3 3.5 4 VCC[V] 4.5 5 5.5 2 6 2.5 3 VCC vs SN 3.5 4 VCC[V] 4.5 VCC vs Hv 90 -30 85 -35 Hv[dB] SN[dB] 80 75 -40 70 -45 65 60 -50 2 2.5 3 3.5 4 VCC[V] 4.5 5 5.5 6 2 2.5 3 3.5 4 VCC[V] 4.5 - 19 - NJM2561B QTYPICAL CHARACTERISTICS VCC vs VthL 2.0 2.0 1.5 1.5 Vth[V] Vth[V] VCC vs VthH 1.0 1.0 0.5 0.5 0.0 0.0 2 2.5 3 3.5 4 VCC[V] 4.5 5 5.5 2 6 2.5 3 Temp vs Icc 3.5 4 VCC[V] 4.5 5 5.5 6 Temp vs Isave 50 12 11 45 10 Isave[uA] Icc[mA] 9 8 7 40 35 6 30 5 4 -100 -50 0 50 o Temp[C ] 100 150 25 -100 200 -50 Temp vs Vom 0 50 o Temp[C ] 100 150 200 Temp vs Gv 3.0 7.0 2.8 2.6 Gv[dB] Vom[Vp-p] 6.5 6.0 2.4 5.5 2.2 2.0 -100 - 20 - -50 0 50 o Temp[C ] 100 150 200 5.0 -100 -50 0 50 o Temp[C ] 100 150 NJM2561B QTYPICAL CHARACTERISTICS Temp vs Gf19M 1.0 -30.0 0.5 -35.0 Gv[dB] Gv[dB] Temp vs Gf4.5M 0.0 -0.5 -1.0 -100 -40.0 -45.0 -50 0 50 100 150 -50.0 -100 -50 0 o 50 100 150 o Temp[C ] Temp[C ] Temp vs DG Temp vs DP 5 4 4 3 3 DG[%] DP[deg] 5 2 2 1 1 0 -100 -50 0 50 o Temp[C ] 100 150 0 -100 200 -50 0 Temp vs SN 50 o Temp[C ] 100 150 200 100 150 200 Temp vs Hv -30 90 85 -35 Hv[dB] SN[dB] 80 75 -40 70 -45 65 60 -100 -50 0 50 Temp[Co] 100 150 200 -50 -100 -50 0 50 o Temp[C ] - 21 - NJM2561B QTYPICAL CHARACTERISTICS Temp vs VthL Temp vs VthH 2.0 3.0 2.5 1.5 Vth[V] Vth[V] 2.0 1.5 1.0 1.0 0.5 0.5 0.0 -100 -50 0 50 o Temp[ C] 100 150 200 0.0 -100 -50 0 50 o Temp[ C] 100 150 200 [CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights. - 22 -