NJM2512 Data Sheet

NJM2512
47µF AC-Coupling Capacitor
Low Voltage Video Driver with LPF
QGENERAL DESCRIPTION
The NJM2512 is a Low Voltage Video Amplifier featuring small
AC-coupling Capacitor.
The NJRC original Technology “ASC(Advanced SAG Correction)”
realizes 47µF AC-Coupling Capacitor which enables to downsize
mounting space.
No worrying about beat noise caused by charge-pump circuit, and
over-current caused by circuit short out than Capacitor-less video
driver.
The NJM2512 is suitable for any video application.
QPACKAGE OUTLINE
NJM2512RB1
MSOP8(TVSP8)
QFEATURES
O Operating Voltage
3.0 to 6.0V
O Small output coupling capacitor 47µF
O 6dB Amplifier
O 75ohm Driver
O Internal LPF
0dBtyp.at 4.5MHz
-33dBtyp.at 19MHz
O Power-save Circuit
O Bipolar Technology
O Package Outline
MSOP8(TVSP8)*
*MEET JEDEC MO-187-DA / THIN TYPE
QPIN CONNECTION
1
8
2
7
3
6
4
5
1: SSIGV
2: VSAG
3: SREFV
4: VIN
5: GND
6: Power Save
7: VOUT
8: VCC
QBLOCK DIAGRAM
GND
V+
75ΩDRV
6dB
VIN
4.5MHz
LPF
+
0.1µF
VOUT
47µF 75Ω
75Ω
+
VSAG
CLAMP
SREFV
ASC
SSIGV
68kΩ
1µF
68kΩ
0.1µF
PS
Ver.9
-1-
NJM2512
QABSOLUTE MAXIMUM RATINGS (Ta=25°C)
PARAMETER
SYMBOL
+
Supply Voltage
Power Dissipation
Operating Temperature Range
Storage Temperature Range
V
PD
Topr
Tstg
RATINGS
UNIT
7.0
580(Note1)
-40 to +85
-40 to +150
V
mW
°C
°C
(Note1) At on a board of EIA/JEDEC specification. (114.3 x 76.2 x 1.6mm Two layers, FR-4)
QRECCOMENDED OPERATING CONDITIONS (Ta=25°C)
PARAMETER
Operating voltage
SYMBOL
TEST CONDITION
MIN.
TYP.
MAX.
UNIT
3.0
-
6.0
V
MIN.
TYP.
MAX.
UNIT
No signal
-
10
15
mA
Isave
Power save mode
-
20
50
µA
Vom
Vin=100kHz,sin-signal, THD=1%,
2.2
-
-
Vp-p
Vin=1MHz, 1.0Vp-p sin-signal
5.5
6.0
6.5
dB
Gf4.5M
Vin=4.5MHz/1MHz, 1.0Vpp sin-signal
-0.6
-0.1
+0.4
dB
Gf19 M
Vin=19MHz/1MHz, 1.0Vpp sin-signal
-
-33
-23
dB
Vin=1.0Vp-p 10step video signal
-
0.5
-
%
Vopr
QELECTRICAL CHRACTERISTCS( V+ =3.3V, RL=150ohm,Ta=25°C)
PARAMETER
Supply Current
Supply Current
at Power Save Mode
Maximum Output Level
Voltage Gain
Low Pass Filter Characteristic
SYMBOL
ICC
Gv
TEST CONDITION
Differential Gain
DG
Differential Phase
DP
Vin=1.0Vp-p 10step video signal
-
0.5
-
deg
SN
100kHz to 6MHz, Vin=1.0Vp-p
100% White Video Signal, RL=75Ω
-
60
-
dB
S/N Ratio
SW Voltage High Level
VthH
1.8
-
V+
V
SW Voltage Low Level
VthL
0
-
0.3
V
SW Sink Current High Level
IthH
V=5V
-
-
300
µA
SW Sink Current Low Level
IthL
V=0.3V
-
-
5
µA
Q CONTROL TERMINAL
PARAMETER
Power Save
STATUS
H
Power save: OFF Active mode
L
Power save: ON
OPEN
Ver.9
-2-
MODE
Non-Active mode (Mute)
Power save: OFF Non-Active mode (Mute)
NJM2512
Q TERMINAL FUNCTION
PIN No. PIN NAME
FUNCTION
EQUIVALENT CIRCUIT
DC VOLTAGE
VCC
150
1
SSIVG
Sag correction
150
1.4V
150
GND
VCC
2
VSAG
Sag correction
7.5k
1.4V
150
GND
VCC
150
3
SREFV
Sag correction
1.4V
GND
VCC
150
4
VIN
Video signal input
1.4V
GND
Ver.9
-3-
NJM2512
Q TERMINAL FUNCTION
PIN No. PIN NAME
5
GND
FUNCTION
EQUIVALENT CIRCUIT
DC VOLTAGE
GND
-
49k
6
PS
Power save control
1.4V
125k
GND
VCC
7.7k
7
VOUT
Video signal output
0.7V
GND
8
Ver.9
-4-
VCC
Power supply
-
NJM2512
Q TEST CIRCUIT
1
SSIGV
VCC
8
0.1µF
0.1µF
68kΩ
1µF
68kΩ
2
VSAG
VOUT
7
75Ω
SREFV
4
VIN
PS
6
GND
5
47µF
VCC
+
47µF
3
+
75Ω
75Ω
0.1µF
Ver.9
-5-
NJM2512
Q APPLICATION CIRCUIT 1
SSIGV
1
VCC
8
+
0.1µF
0.1µF
68kΩ
1µF
68kΩ
VSAG
2
VOUT
75Ω
SREFV
4
VIN
PS
6
GND
5
VCC
+
7
47µF
3
47µF
75Ω
0.1µF
Q APPLICATION CIRCUIT 2
1
SSIGV
VCC
8
0.1u
0.1u
68k
2
VSAG
VOUT
7
47u
+
+
47u
VCC
75Ω
+
47u
68k
1u
75Ω
3
SREFV
4
VIN
PS
6
GND
5
75Ω
0.1u
QAPPLICATION NOTE
NJM2512 has possibilities that decrease in the capacitance in low-frequency band when the ceramic capacitor is
used(pin7). It is a possibility that the sag is generated when the ceramic capacitor decreases capacity.
Please verify it in consideration of the capacity drop of the ceramic capacitor.
Ver.9
-6-
NJM2512
♦Clamp circuit
1. Operation of Sync-tip-clamp
Input circuit will be explained. Sync-tip clamp circuit (below the clamp circuit) operates to keep a sync tip of the
minimum potential of the video signal. Clamp circuit is a circuit of the capacitor charging and discharging of the
external input Cin. It is charged to the capacitor to the external input Cin at sync tip of the video signal. Therefore,
the potential of the sync tip is fixed.
And it is discharged charge by capacitor Cin at period other than the video signal sync tip. This is due to a
small discharge current to the IC.
In this way, this clamp circuit is fixed sync tip of video signal to a constant potential from charging of Cin and
discharging of Cin at every one horizontal period of the video signal.
The minute current be discharged an electrical charge from the input capacitor at the period other than the
sync tip of video signals. Decrease of voltage on discharge is dependent on the size of the input capacitor Cin.
If you decrease the value of the input capacitor, will cause distortion, called the H sag. Therefore, the input
capacitor recommend on more than 0.1uF.
signal input
Cin
charge
current
Vin
Clamp circuit
diccharge
current
< Clamp circuit >
A. Cin is large
B. Cin is small (H sag experience)
clamp potential
clamp potential
charge period
discharge period
charge period
charge period
discharge period
charge period
< Waveform of input terminal >
2. Input impedance
The input impedance of the clamp circuit is different at the capacitor discharge period and the charge period.
The input impedance of the charging period is a few kΩ. On the other hand, the input impedance of the
discharge period is several MΩ. Because is a small discharge-current through to the IC.
Thus the input impedance will vary depending on the operating state of the clamp circuit.
3. Impedance of signal source
Source impedance to the input terminal, please lower than 200Ω. A high source impedance, the signal may be
distorted. If so, please to connect a buffer for impedance conversion.
Ver.9
-7-
NJM2512
Q TYPYCAL CHARACERISTICS
Gain vs Frequency
20
10
0
Gv(dB)
-10
-20
-30
-40
-50
-60
1.E+05
1.E+06
1.E+07
Frequency(Hz)
1.E+08
ICC vs Voltagel
Isave vs Voltagel
1
0.9
0.8
40
Icc(mA)
Icc(mA)
0.7
20
0.6
0.5
0.4
0.3
0.2
0.1
0
0
2.8
3.2
3.6
4
4.4
4.8
5.2
5.6
6
2.8
3.2
3.6
4
VCC(V)
5.2
5.2
5.6
Gv(dB)
VOM(V)
6.5
6
5.5
5
3.2
3.6
4
4.4
4.8
5.2
5.6
6
2.8
3.2
3.6
4
4.4
4.8
VCC(V)
VCC(V)
-8-
6
7
2.8
Ver.9
5.6
Gv vs Voltagel
VOM vs Voltagel
12
11
10
9
8
7
6
5
4
3
2
1
0
4.4 4.8
VCC(V)
6
NJM2512
Q TYPYCAL CHARACERISTICS
Gf 19MHz vs Voltagel
Gf 4.5MHz vs Voltagel
0.5
-35
Gf(dB)
-30
Gf(dB)
1
0
-0.5
-40
-45
-1
-50
2.8 3.2 3.6
4
4.4 4.8 5.2 5.6
6
2.8 3.2 3.6
4
VCC(V)
DP vs Voltagel
2
DP(deg)
DG(%)
6
VCC(V)
DG vs Voltagel
2
4.4 4.8 5.2 5.6
1
0
1
0
2.8
3.2
3.6
4
4.4
4.8
5.2
5.6
6
2.8
VCC(V)
3.2
3.6
4
4.4 4.8
VCC(V)
5.2
5.6
6
S/N vs Voltagel
80
SN(dB)
70
60
50
40
2.8
3.2
3.6
4
4.4
4.8
5.2
5.6
6
VCC(V)
Ver.9
-9-
NJM2512
Q TYPYCAL CHARACERISTICS
3
2.5
2.5
2
2
VthL(V)
VthH(V)
VthH vs Voltagel
3
1.5
1.5
1
1
0.5
0.5
0
2.8
3.2
3.6
4
4.4 4.8
VCC(V)
5.2
5.6
VthL vs Voltagel
0
6
2.8
3.2
3.6
4
4.4
4.8
5.2
5.6
6
5.2
5.6
6
VCC(V)
IthH vs Voltagel
200
190
7
180
170
6
160
5
IthL(uA)
IthH(uA)
IthL vs Voltagel
8
150
140
4
3
130
2
120
110
1
100
0
2.8
3.2 3.6
4
4.4
4.8 5.2
VCC(V)
Ver.9
- 10 -
5.6
6
2.8
3.2
3.6
4
4.4
4.8
VCC(V)
NJM2512
Q TYPYCAL CHARACERISTICS
ICC vs Temperature
30
Isave vs Temperature
50
40
Icc(uA)
Icc(mA)
20
30
20
10
10
0
0
-50
0
50
0
TEMP( C)
100
150
-50
0
-20
0.5
-30
Gf(dB)
Gf(dB)
1
0
-50
-1
-60
50
100
150
-50
0
50
100
150
0
0
TEMP( C)
TEMP(
C)
VOM vs
Temperature
6
150
-40
-0.5
0
100
Gf 19MHz vs Temperature
Gf 4.5MHz vs Temperature
-50
50
0
TEMP( C)
Gv vs Temperature
7
5
6.5
Gv(dB)
VOM(V)
4
3
2
6
5.5
1
5
0
-50
0
50
100
0
TEMP( C)
150
-50
0
50
100
150
0
TEMP( C)
Ver.9
- 11 -
NJM2512
Q TYPYCAL CHARACERISTICS
DG vs Temperature
DP vs Temperature
2
DP(deg)
DG(%)
2
1
0
1
0
-50
0
50
0
TEMP( C)
100
150
-50
0
50
0
TEMP( C)
100
150
S/N vs Temperature
80
SN(dB)
70
60
50
40
-50
50
0
TEMP( C)
100
150
VthH vs Temperature
3
2.5
2.5
2
2
1.5
1.5
1
1
0.5
0.5
0
0
-50
Ver.9
- 12 -
0
50 0
TEMP( C)
100
VthL vs Temperature
3
VthL(V)
VthH(V)
0
150
-50
0
50
0
TEMP( C)
100
150
NJM2512
Q TYPYCAL CHARACERISTICS
IthH vs Temperature
200
190
7
180
6
IthL(uA)
170
IthH(uA)
IthL vs Temperature
8
160
150
140
130
5
4
3
2
120
1
110
0
100
-50
0
50
0
TEMP( C)
100
150
-50
0
50
0
TEMP( C)
100
150
[CAUTION]
The specifications on this databook are only
given for information , without any guarantee
as regards either mistakes or omissions. The
application circuits in this databook are
described only to show representative usages
of the product and not intended for the
guarantee or permission of any right including
the industrial rights.
Ver.9
- 13 -