NJM2512 47µF AC-Coupling Capacitor Low Voltage Video Driver with LPF QGENERAL DESCRIPTION The NJM2512 is a Low Voltage Video Amplifier featuring small AC-coupling Capacitor. The NJRC original Technology “ASC(Advanced SAG Correction)” realizes 47µF AC-Coupling Capacitor which enables to downsize mounting space. No worrying about beat noise caused by charge-pump circuit, and over-current caused by circuit short out than Capacitor-less video driver. The NJM2512 is suitable for any video application. QPACKAGE OUTLINE NJM2512RB1 MSOP8(TVSP8) QFEATURES O Operating Voltage 3.0 to 6.0V O Small output coupling capacitor 47µF O 6dB Amplifier O 75ohm Driver O Internal LPF 0dBtyp.at 4.5MHz -33dBtyp.at 19MHz O Power-save Circuit O Bipolar Technology O Package Outline MSOP8(TVSP8)* *MEET JEDEC MO-187-DA / THIN TYPE QPIN CONNECTION 1 8 2 7 3 6 4 5 1: SSIGV 2: VSAG 3: SREFV 4: VIN 5: GND 6: Power Save 7: VOUT 8: VCC QBLOCK DIAGRAM GND V+ 75ΩDRV 6dB VIN 4.5MHz LPF + 0.1µF VOUT 47µF 75Ω 75Ω + VSAG CLAMP SREFV ASC SSIGV 68kΩ 1µF 68kΩ 0.1µF PS Ver.9 -1- NJM2512 QABSOLUTE MAXIMUM RATINGS (Ta=25°C) PARAMETER SYMBOL + Supply Voltage Power Dissipation Operating Temperature Range Storage Temperature Range V PD Topr Tstg RATINGS UNIT 7.0 580(Note1) -40 to +85 -40 to +150 V mW °C °C (Note1) At on a board of EIA/JEDEC specification. (114.3 x 76.2 x 1.6mm Two layers, FR-4) QRECCOMENDED OPERATING CONDITIONS (Ta=25°C) PARAMETER Operating voltage SYMBOL TEST CONDITION MIN. TYP. MAX. UNIT 3.0 - 6.0 V MIN. TYP. MAX. UNIT No signal - 10 15 mA Isave Power save mode - 20 50 µA Vom Vin=100kHz,sin-signal, THD=1%, 2.2 - - Vp-p Vin=1MHz, 1.0Vp-p sin-signal 5.5 6.0 6.5 dB Gf4.5M Vin=4.5MHz/1MHz, 1.0Vpp sin-signal -0.6 -0.1 +0.4 dB Gf19 M Vin=19MHz/1MHz, 1.0Vpp sin-signal - -33 -23 dB Vin=1.0Vp-p 10step video signal - 0.5 - % Vopr QELECTRICAL CHRACTERISTCS( V+ =3.3V, RL=150ohm,Ta=25°C) PARAMETER Supply Current Supply Current at Power Save Mode Maximum Output Level Voltage Gain Low Pass Filter Characteristic SYMBOL ICC Gv TEST CONDITION Differential Gain DG Differential Phase DP Vin=1.0Vp-p 10step video signal - 0.5 - deg SN 100kHz to 6MHz, Vin=1.0Vp-p 100% White Video Signal, RL=75Ω - 60 - dB S/N Ratio SW Voltage High Level VthH 1.8 - V+ V SW Voltage Low Level VthL 0 - 0.3 V SW Sink Current High Level IthH V=5V - - 300 µA SW Sink Current Low Level IthL V=0.3V - - 5 µA Q CONTROL TERMINAL PARAMETER Power Save STATUS H Power save: OFF Active mode L Power save: ON OPEN Ver.9 -2- MODE Non-Active mode (Mute) Power save: OFF Non-Active mode (Mute) NJM2512 Q TERMINAL FUNCTION PIN No. PIN NAME FUNCTION EQUIVALENT CIRCUIT DC VOLTAGE VCC 150 1 SSIVG Sag correction 150 1.4V 150 GND VCC 2 VSAG Sag correction 7.5k 1.4V 150 GND VCC 150 3 SREFV Sag correction 1.4V GND VCC 150 4 VIN Video signal input 1.4V GND Ver.9 -3- NJM2512 Q TERMINAL FUNCTION PIN No. PIN NAME 5 GND FUNCTION EQUIVALENT CIRCUIT DC VOLTAGE GND - 49k 6 PS Power save control 1.4V 125k GND VCC 7.7k 7 VOUT Video signal output 0.7V GND 8 Ver.9 -4- VCC Power supply - NJM2512 Q TEST CIRCUIT 1 SSIGV VCC 8 0.1µF 0.1µF 68kΩ 1µF 68kΩ 2 VSAG VOUT 7 75Ω SREFV 4 VIN PS 6 GND 5 47µF VCC + 47µF 3 + 75Ω 75Ω 0.1µF Ver.9 -5- NJM2512 Q APPLICATION CIRCUIT 1 SSIGV 1 VCC 8 + 0.1µF 0.1µF 68kΩ 1µF 68kΩ VSAG 2 VOUT 75Ω SREFV 4 VIN PS 6 GND 5 VCC + 7 47µF 3 47µF 75Ω 0.1µF Q APPLICATION CIRCUIT 2 1 SSIGV VCC 8 0.1u 0.1u 68k 2 VSAG VOUT 7 47u + + 47u VCC 75Ω + 47u 68k 1u 75Ω 3 SREFV 4 VIN PS 6 GND 5 75Ω 0.1u QAPPLICATION NOTE NJM2512 has possibilities that decrease in the capacitance in low-frequency band when the ceramic capacitor is used(pin7). It is a possibility that the sag is generated when the ceramic capacitor decreases capacity. Please verify it in consideration of the capacity drop of the ceramic capacitor. Ver.9 -6- NJM2512 ♦Clamp circuit 1. Operation of Sync-tip-clamp Input circuit will be explained. Sync-tip clamp circuit (below the clamp circuit) operates to keep a sync tip of the minimum potential of the video signal. Clamp circuit is a circuit of the capacitor charging and discharging of the external input Cin. It is charged to the capacitor to the external input Cin at sync tip of the video signal. Therefore, the potential of the sync tip is fixed. And it is discharged charge by capacitor Cin at period other than the video signal sync tip. This is due to a small discharge current to the IC. In this way, this clamp circuit is fixed sync tip of video signal to a constant potential from charging of Cin and discharging of Cin at every one horizontal period of the video signal. The minute current be discharged an electrical charge from the input capacitor at the period other than the sync tip of video signals. Decrease of voltage on discharge is dependent on the size of the input capacitor Cin. If you decrease the value of the input capacitor, will cause distortion, called the H sag. Therefore, the input capacitor recommend on more than 0.1uF. signal input Cin charge current Vin Clamp circuit diccharge current < Clamp circuit > A. Cin is large B. Cin is small (H sag experience) clamp potential clamp potential charge period discharge period charge period charge period discharge period charge period < Waveform of input terminal > 2. Input impedance The input impedance of the clamp circuit is different at the capacitor discharge period and the charge period. The input impedance of the charging period is a few kΩ. On the other hand, the input impedance of the discharge period is several MΩ. Because is a small discharge-current through to the IC. Thus the input impedance will vary depending on the operating state of the clamp circuit. 3. Impedance of signal source Source impedance to the input terminal, please lower than 200Ω. A high source impedance, the signal may be distorted. If so, please to connect a buffer for impedance conversion. Ver.9 -7- NJM2512 Q TYPYCAL CHARACERISTICS Gain vs Frequency 20 10 0 Gv(dB) -10 -20 -30 -40 -50 -60 1.E+05 1.E+06 1.E+07 Frequency(Hz) 1.E+08 ICC vs Voltagel Isave vs Voltagel 1 0.9 0.8 40 Icc(mA) Icc(mA) 0.7 20 0.6 0.5 0.4 0.3 0.2 0.1 0 0 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6 2.8 3.2 3.6 4 VCC(V) 5.2 5.2 5.6 Gv(dB) VOM(V) 6.5 6 5.5 5 3.2 3.6 4 4.4 4.8 5.2 5.6 6 2.8 3.2 3.6 4 4.4 4.8 VCC(V) VCC(V) -8- 6 7 2.8 Ver.9 5.6 Gv vs Voltagel VOM vs Voltagel 12 11 10 9 8 7 6 5 4 3 2 1 0 4.4 4.8 VCC(V) 6 NJM2512 Q TYPYCAL CHARACERISTICS Gf 19MHz vs Voltagel Gf 4.5MHz vs Voltagel 0.5 -35 Gf(dB) -30 Gf(dB) 1 0 -0.5 -40 -45 -1 -50 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6 2.8 3.2 3.6 4 VCC(V) DP vs Voltagel 2 DP(deg) DG(%) 6 VCC(V) DG vs Voltagel 2 4.4 4.8 5.2 5.6 1 0 1 0 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6 2.8 VCC(V) 3.2 3.6 4 4.4 4.8 VCC(V) 5.2 5.6 6 S/N vs Voltagel 80 SN(dB) 70 60 50 40 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6 VCC(V) Ver.9 -9- NJM2512 Q TYPYCAL CHARACERISTICS 3 2.5 2.5 2 2 VthL(V) VthH(V) VthH vs Voltagel 3 1.5 1.5 1 1 0.5 0.5 0 2.8 3.2 3.6 4 4.4 4.8 VCC(V) 5.2 5.6 VthL vs Voltagel 0 6 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6 5.2 5.6 6 VCC(V) IthH vs Voltagel 200 190 7 180 170 6 160 5 IthL(uA) IthH(uA) IthL vs Voltagel 8 150 140 4 3 130 2 120 110 1 100 0 2.8 3.2 3.6 4 4.4 4.8 5.2 VCC(V) Ver.9 - 10 - 5.6 6 2.8 3.2 3.6 4 4.4 4.8 VCC(V) NJM2512 Q TYPYCAL CHARACERISTICS ICC vs Temperature 30 Isave vs Temperature 50 40 Icc(uA) Icc(mA) 20 30 20 10 10 0 0 -50 0 50 0 TEMP( C) 100 150 -50 0 -20 0.5 -30 Gf(dB) Gf(dB) 1 0 -50 -1 -60 50 100 150 -50 0 50 100 150 0 0 TEMP( C) TEMP( C) VOM vs Temperature 6 150 -40 -0.5 0 100 Gf 19MHz vs Temperature Gf 4.5MHz vs Temperature -50 50 0 TEMP( C) Gv vs Temperature 7 5 6.5 Gv(dB) VOM(V) 4 3 2 6 5.5 1 5 0 -50 0 50 100 0 TEMP( C) 150 -50 0 50 100 150 0 TEMP( C) Ver.9 - 11 - NJM2512 Q TYPYCAL CHARACERISTICS DG vs Temperature DP vs Temperature 2 DP(deg) DG(%) 2 1 0 1 0 -50 0 50 0 TEMP( C) 100 150 -50 0 50 0 TEMP( C) 100 150 S/N vs Temperature 80 SN(dB) 70 60 50 40 -50 50 0 TEMP( C) 100 150 VthH vs Temperature 3 2.5 2.5 2 2 1.5 1.5 1 1 0.5 0.5 0 0 -50 Ver.9 - 12 - 0 50 0 TEMP( C) 100 VthL vs Temperature 3 VthL(V) VthH(V) 0 150 -50 0 50 0 TEMP( C) 100 150 NJM2512 Q TYPYCAL CHARACERISTICS IthH vs Temperature 200 190 7 180 6 IthL(uA) 170 IthH(uA) IthL vs Temperature 8 160 150 140 130 5 4 3 2 120 1 110 0 100 -50 0 50 0 TEMP( C) 100 150 -50 0 50 0 TEMP( C) 100 150 [CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights. Ver.9 - 13 -