Thermal Optimization of GaN HEMT Transistor Power

APPLICATION NOTE
Thermal Optimization of GaN HEMT Transistor Power
Amplifiers Using New Self-heating Large-signal Model
Introduction
Gallium nitride power transistors have very high RF power densities which range from 4 to 12
watts per mm of gate periphery depending on operating drain voltage. Even though GaN/AlGaN on SiC
substrates have high thermal conductivity it is necessary to be aware of channel temperature rise incurred
by both DC and RF stimuli when designing power amplifiers. Thermal management is even more important
for broadband amplifiers (a very popular application) where drain efficiencies can vary considerably as a
function of frequency.
A new self-heating feature in Cree’s GaN HEMT large-
signal models automatically effects both DC and RF parameters
as a function of transistor drawn current. We will use the
CGH40025F transistor in a 2 to 6 GHz broadband amplifier and
demonstrate how the transistor operating temperature can be
minimized during the simulation phase of the design. The default
thermal resistance is set for the CGH40025F at 4.8 deg C/watt. The
operating case temperature (Tcase) is user defined. The self-heating engine automatically calculates the rise
in temperature (Trise) of the HEMT channel above Tcase.
Trise
can be used as a function of other parameters
such as frequency, output power
DCVS
ID=V1
V=2.15 V
and efficiency. The paper shows
-006
ote: APPNOTE
Application N
Rev. B
the direct lowering of Trise using
optimization
RES
ID=R1
R=25 Ohm
PORT
P=1
Z=50 Ohm
PIPAD
ID=P1
Z1=50 Ohm
Z2=50 Ohm
DB=1.031 dB
IND
ID=L1
L=1.311 nH
CAP
ID=C2
C=11.53 pF
CGH40025F_r6
ID=40025F1
TLIN
ID=TL1
Z0=47.54 Ohm
EL=21 Deg
F0=4000 MHz
Tcase=25
RTH=4.8
IND
ID=L2
L=2481 nH
I_METER
ID=AMP1
IND
ID=L3
L=0.6882 nH
PORT_PS1
P=1
Z=50 Ohm
PStart=-10 dBm
PStop=39 dBm
PStep=1 dB
4 Th
CAP
ID=C1
C=2.525 pF
V_METER
ID=VM1
CAP
ID=C4
C=4.958 pF
unison
with
the
maintenance of output power. Such
CAP
ID=C5
C=3.057 pF
thermal optimization assures reliable
2
1
CAP
ID=C3
C=0.8985 pF
TLIN
ID=TL2
Z0=10.4 Ohm
EL=17.42 Deg
F0=4000 MHz
in
PORT
P=2
Z=50 Ohm
3
operation
as
well
as
improved
performance since the transistors are
I_METER
ID=AMP2
operating cooler.
DCVS
ID=V2
V=28 V
Subject to change without notice.
www.cree.com
1
Basic Amplifier Design
2 GHz to 6GHz Demonstration Amplifier Simulation
DCVS
ID=V1
V=2.15 V
RES
ID=R1
R=25 Ohm
PORT
P=1
Z=50 Ohm
PIPAD
ID=P1
Z1=50 Ohm
Z2=50 Ohm
DB=1.031 dB
IND
ID=L1
L=1.311 nH
CAP
ID=C2
C=11.53 pF
IND
ID=L2
L=2481 nH
TLIN
ID=TL1
Z0=47.54 Ohm
EL=21 Deg
F0=4000 MHz
CGH40025F_r6
ID=40025F1
Tcase=25
RTH=4.8
I_METER
ID=AMP1
2
IND
ID=L3
L=0.6882 nH
1
CAP
ID=C3
C=0.8985 pF
4 Th
CAP
ID=C1
C=2.525 pF
V_METER
ID=VM1
TLIN
ID=TL2
Z0=10.4 Ohm
EL=17.42 Deg
F0=4000 MHz
CAP
ID=C4
C=4.958 pF
CAP
ID=C5
C=3.057 pF
PORT
P=2
Z=50 Ohm
3
I_METER
ID=AMP2
PORT_PS1
P=1
Z=50 Ohm
PStart=-10 dBm
PStop=39 dBm
PStep=1 dB
DCVS
ID=V2
V=28 V
Figure 1 - 2 to 6 GHz, 25 W Broadband PA Schematic
Figure 1 shows the basic schematic of a broadband, 2 to 6 GHz, power amplifier utilizing a Cree
CGH40025F GaN HEMT transistor. This device operates from a nominal 28 volt rail. The transistor symbol in
the schematic shows a 4 port device – gate, drain, source and temperature monitor – a voltmeter serves as
the “thermometer”.
Initial circuit design was concentrated on achieving broadband and flat small signal gain across the
wanted frequency range (Figure 2). The power transfer characteristics of the amplifier were then simulated.
For example, at a constant CW input power of 38 dBm the output power is plotted as a function of frequency
in Figure 3 where it can be seen that the output power varies somewhat due to different levels of compression
and impedance match.
Copyright © 2009-2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and
the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective
owners and do not imply specific product and/or vendor endorsement, sponsorship or association. Cree Confidential and Supplied under
terms of the Mutual NDA.
2
APPNOTE-006 Rev. C
Cree, Inc.
4600 Silicon Drive
Durham, NC 27703
USA Tel: +1.919.313.5300
Fax: +1.919.869.2733
www.cree.com/wireless
Simulated Performance Prior To Optimization
S21 S11 S22
20
Output Power v Frequency
45
p100
p92
p93
p94
p95
p96
p97
p98
p99
p82
p83
p84
p85
p86
p87
p88
p89
p90
p72
p73
p74
p75
p76
p77
p78
p79
p80
p62
p63
p64
p65
p66
p67
p68
p69
p70
p52
p53
p54
p55
p56
p57
p58
p59
p60
p91
p81
p71
p61
p51
10
p1
dB
0
p42
p43
p44
p45
p46
p47
p48
p49
p50
p32
p33
p34
p35
p36
p37
p38
p39
p40
p22
p23
p24
p25
p26
p27
p28
p29
p30
p12
p13
p14
p15
p16
p17
p18
p19
p20
p10
p41
p31
p21
p11
p2
p3
p4
p5
p6
p7
p8
p9
p1
dBm
44
43
-10
DB(|S(1,1)|)
2 to 6 GHz thermal example
-20
DB(|S(2,2)|)
2 to 6 GHz thermal example
DB(|S(2,1)|)
2 to 6 GHz thermal example
-30
2000
3000
p1: Pwr = 38 dBm
p 1 :
P wr
= p 2 -: 1 0P wdr B m=p 3 -: 9 P d
wB
r m =p 4 -: 8 P d
w Br m =p 5 -: 7 P dwBr m = p 6 -: 6 Pdw B
r m =p 7 -: 5 P d
w Br m =
- 4
d B m
p 8 :
P wr
= p 9 -: 3 PdwBr m =p 1 -0 2:
d
PB
w mr p =
1 1 -: 1 P dwBr mp =1 2 0
:
dPBw m
r p =1 3 1: dP B
w mr p =
1 4 2:
d
P Bwmr
=
3
d B m
p 1 5 :
P w r p =1 6 4
:
dPBw m
r p =1 7 5:
d
PB
w mr p =
1 8 6:
d
P Bwmr p =1 9 7
:
dPBw m
r p =2 0 8: dP B
w mr p =
2 1 9:
d
P Bwmr
=
1 0
d Bm
p 2 2 :
P w r p =2 3 1
: 1 Pdw B
r mp =2 4 1: 2 P d
w Br mp =
2 5 1: 3 P dwBr mp =2 6 1
: 4 Pdw B
r mp =2 7 1: 5 P d
w Br mp =
2 8 1: 6 P dwBr m =
1 7
d Bm
p 2 9 :
P w r p =3 0 1
: 8 Pdw B
r mp =3 1 1: 9 P d
w Br mp =
3 2 2: 0 P dwBr mp =3 3 2
: 1 Pdw B
r mp =3 4 2: 2 P d
w Br mp =
3 5 2: 3 P dwBr m =
2 4
d Bm
p 3 6 :
P w r p =3 7 2
: 5 Pdw B
r mp =3 8 2: 6 P d
w Br mp =
3 9 2: 7 P dwBr mp =4 0 2
: 8 Pdw B
r mp =4 1 2: 9 P d
w Br mp =
4 2 3: 0 P dwBr m =
3 1
d Bm
p 4 3 :
P w r p =4 4 3
: 2 Pdw B
r mp =4 5 3: 3 P d
w Br mp =
4 6 3: 4 P dwBr mp =4 7 3
: 5 Pdw B
r mp =4 8 3: 6 P d
w Br mp =
4 9 3: 7 P dwBr m =
3 8
d Bm
p 5 0 :
P w r p =5 1 3
: 9 Pdw B
r mp =5 2 -: 1 0
P w dr Bp m=
5 3 -: 9 P dwBr mp =5 4 -: 8 Pdw B
r mp =5 5 -: 7 P d
w Br mp =
5 6 -: 6 P dwBr m =
- 5
d Bm
p 5 7 :
P w r p =5 8 -: 4 Pdw B
r mp =5 9 -: 3 P d
w Br mp =
6 0 -: 2 P dwBr mp =6 1 -: 1 Pdw B
r mp =6 2 0: dP B
w mr p =
6 3 1:
d
P Bwmr
=
2
d B m
p 6 4 :
P w r p =6 5 3
:
dPBw m
r p =6 6 4:
d
PB
w mr p =
6 7 5:
d
P Bwmr p =6 8 6
:
dPBw m
r p =6 9 7: dP B
w mr p =
7 0 8:
d
P Bwmr
=
9
d B m
p 7 1 :
P w r p =7 2 1
: 0 Pdw B
r mp =7 3 1: 1 P d
w Br mp =
7 4 1: 2 P dwBr mp =7 5 1
: 3 Pdw B
r mp =7 6 1: 4 P d
w Br mp =
7 7 1: 5 P dwBr m =
1 6
d Bm
p 7 8 :
P w r p =7 9 1
: 7 Pdw B
r mp =8 0 1: 8 P d
w Br mp =
8 1 1: 9 P dwBr mp =8 2 2
: 0 Pdw B
r mp =8 3 2: 1 P d
w Br mp =
8 4 2: 2 P dwBr m =
2 3
d Bm
p 8 5 :
P w r p =8 6 2
: 4 Pdw B
r mp =8 7 2: 5 P d
w Br mp =
8 8 2: 6 P dwBr mp =8 9 2
: 7 Pdw B
r mp =9 0 2: 8 P d
w Br mp =
9 1 2: 9 P dwBr m =
3 0
d Bm
p 9 2 :
P w r p =9 3 3
: 1 Pdw B
r mp =9 4 3: 2 P d
w Br mp =
9 5 3: 3 P dwBr mp =9 6 3
: 4 Pdw B
r mp =9 7 3: 5 P d
w Br mp =
9 8 3: 6 P dwBr m =
3 7
d Bm
p 9 9 :
P w r p =1 0 3
0 8: dP B
w mrp 1 =
0 1 3: 9 P dwBrp m1 =0 2 -: 1 0P w d
rp B1m=0 3 -: 9 P d
wB
r pm1 =
0 4 -: 8 P dwBrpm1 =0 5 -: 7 PdwBr m =
- 6
d Bm
p 1 0 6 :
P w r p 1 =0 7 -: 5 P d
w Brpm1 =
0 8 -: 4 P dwBrp m1 =0 9 -: 3 Pdw B
rp m1 =1 0 -: 2 P d
wB
r pm1 =
1 1 -: 1 P dwBrpm1 =1 2 0:
dPBwmr
=
1
d Bm
p 1 1 3 :
P w r p 1 =1 4 2: dP B
w mrp 1 =
1 5 3:
d
P Bwmrp 1 =1 6 4
:
dPBw m
rp 1 =1 7 5
:
dP B
wm
rp 1 =
1 8 6:
d
P Bwmrp 1 =1 9 7:
dPBwmr
=
8
d Bm
p 1 2 0 :
P w r p 1 =2 1 9: dP B
w mrp 1 =
2 2 1: 0 P dwBrp m1 =2 3 1
: 1 Pdw B
rp m1 =2 4 1
: 2 Pd
wB
r pm1 =
2 5 1: 3 P dwBrpm1 =2 6 1: 4 PdwBr m =
1 5
d Bm
p 1 2 7 :
P w r p 1 =2 8 1: 6 P d
w Brpm1 =
2 9 1: 7 P dwBrp m1 =3 0 1
: 8 Pdw B
rp m1 =3 1 1
: 9 Pd
wB
r pm1 =
3 2 2: 0 P dwBrpm1 =3 3 2: 1 PdwBr m =
2 2
d Bm
p 1 3 4 :
P w r p 1 =3 5 2: 3 P d
w Brpm1 =
3 6 2: 4 P dwBrp m1 =3 7 2
: 5 Pdw B
rp m1 =3 8 2
: 6 Pd
wB
r pm1 =
3 9 2: 7 P dwBrpm1 =4 0 2: 8 PdwBr m =
2 9
d Bm
p 1 4 1 :
P w r p 1 =4 2 3: 0 P d
w Brpm1 =
4 3 3: 1 P dwBrp m1 =4 4 3
: 2 Pdw B
rp m1 =4 5 3
: 3 Pd
wB
r pm1 =
4 6 3: 4 P dwBrpm1 =4 7 3: 5 PdwBr m =
3 6
d Bm
p 1 4 8 :
P w r p 1 =4 9 3: 7 P d
w Brpm1 =
5 0 3: 8 P dwBr m =
3 9
d Bm
4000
Frequency (MHz)
DB(PT(PORT_2))[X,49] (dBm)
2 to 6 GHz thermal example
42
p142
p143
p144
p145
p146
p147
p148
p149
p150
p132
p133
p134
p135
p136
p137
p138
p139
p140
p122
p123
p124
p125
p126
p127
p128
p129
p130
p112
p113
p114
p115
p116
p117
p118
p119
p120
p102
p103
p104
p105
p106
p107
p108
p109
p110
p141
p131
p121
p111
p101
5000
41
2000
6000
Figure 2 - S21, S11 and S22 prior to optimization
The self-heating feature of the large-signal
in the transistor from package flange to channel.
operating drain current. Optimization parameters
were set up in Microwave Office for output
ensure that the transistor’s channel temperature
never exceeds 225°C at a case temperature of
85°C i.e. a temperature rise of 140°C.
3235 MHz
167.3 V
100
p1
50
|Vcomp(V_METER.VM1,0)|[X,49] (V)
2 to 6 GHz thermal example
0
2000
3000
4000
Frequency (MHz)
APPNOTE-006 Rev. C
p1: Pwr = 38 dBm
5000
6000
Figure 4 - Transistor temperature rise above
Tcase prior to optimization
Copyright © 2009-2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and
the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective
owners and do not imply specific product and/or vendor endorsement, sponsorship or association. Cree Confidential and Supplied under
terms of the Mutual NDA.
3
6000
Temperature Rise
power, gain and temperature rise as a function of
frequency. The intention of the optimization is to
5000
150
Degrees C
any specific attention has been taken to decreasing
4000
Frequency (MHz)
Figure 3 - Output Power vs. frequency
at Pin=38 dBm prior to optimization
200
model automatically calculates the thermal rise
This is shown in Figure 4 for the amplifier before
3000
Cree, Inc.
4600 Silicon Drive
Durham, NC 27703
USA Tel: +1.919.313.5300
Fax: +1.919.869.2733
www.cree.com/wireless
Simulated Performance After To Optimization
Following thermal optimization the small signal parameters are re-simulated as shown in Figure 5
where there is little change in gain and some improvement in output return loss. Figure 6 shows the CW
output power as a function of frequency – again there is general improvement in output power over the band
even though the “profile” has changed.
S21 S11 S22
12
10
44.5
5
p1
44
-5
p110
p142
p143
p144
p145
p146
p147
p148
p149
p150
p132
p133
p134
p135
p136
p137
p138
p139
p140
p122
p123
p124
p125
p126
p127
p128
p129
p130
p112
p113
p114
p115
p116
p117
p118
p119
p120
p102
p103
p104
p105
p106
p107
p108
p109
p141
p131
p121
p111
p101
p42
p43
p44
p45
p46
p47
p48
p49
p50
p32
p33
p34
p35
p36
p37
p38
p39
p40
p22
p23
p24
p25
p26
p27
p28
p29
p30
p12
p13
p14
p15
p16
p17
p18
p19
p20
p10
p41
p31
p21
p11
p2
p3
p4
p5
p6
p7
p8
p9
p1
dBm
0
dB
Output Power v Frequency
45
p100
p92
p93
p94
p95
p96
p97
p98
p99
p82
p83
p84
p85
p86
p87
p88
p89
p90
p72
p73
p74
p75
p76
p77
p78
p79
p80
p62
p63
p64
p65
p66
p67
p68
p69
p70
p52
p53
p54
p55
p56
p57
p58
p59
p60
p91
p81
p71
p61
p51
43.5
43
-10
DB(|S(1,1)|)
2 to 6 GHz thermal example
42.5
DB(|S(2,2)|)
2 to 6 GHz thermal example
-15
-20
2000
p 1:
P wr
=
p 8:
P wr
=
p 15:
DB(|S(2,1)|)
2 to 6 GHz thermal example
p 22:
=
=
4000
Frequency (MHz)
P wr
P wr
P wr
P wr
P wr
P wr
=
P wr
=
p 92:
P wr
=
p 99:
P wr
=
P wr
P wr
P wr
P wr
- 1 0p 2d: B m
P wr
=
=
4 pd1B6 :m
P wr
1 1p 2d3 :B m P w r
=
- 9 pd3 :B m P w r
P wr
=
Pw r
Pw r
5 pd1 7
Bm
:
Pw r
=
- 3p 5 9
d B: m P w r
4 pd6 6
Bm
:
Pw r
- 8 p4
d :B m P w r
=
=
- 1p 1 1
d B: m P w r
6 p1
d8
Bm
:
Pw r
- 7 p5
d B: m P w r
=
=
=
=
- 9p 5 3
d B: m P w r
5 p6
d7
Bm
:
Pw r
1 2p 7 4
d B: m P w r
=
=
2 0p 3 2
d B: m P w r
- 2p 6 0
d B: m P w r
=
=
2 7p 3 9
d B: m P w r
3 4p 4 6
d B: m P w r
=
=
=
=
3 2p 9 4
d B: m P w r
3p91 0 d1B: m P w r
1 3p 2 5
d B: m P w r
=
=
1 8p 8 0
d B: m P w r
2 5p 8 7
d B: m P w r
P wr
7 p1
d B9m
:
P wr
=
- 6 p d6B: m P w r
=
P wr
8 p d2B0m
:
=
=
=
P wr
3 6
p 4d8B: m P w r
=
=
=
=
3 4p 9 d6B: m P w r
P wr
1 5
p 2d7B: m P w r
2 2
p 3d4B: m P w r
2 9
p 4d1B: m P w r
=
=
2 0p 8 d2B: m P w r
2 7p 8 d9B: m P w r
-p 9
1 0d3B: m P w r
1 p d1B3m
:
=
=
=
- 8p 5 d4B: m P w r
6 p6
d B8m
:
1 3p 7 d5B: m P w r
=
=
2 1p 3 d3B: m P w r
- 1p 6 d1B: m P w r
=
=
-p 1 0 2d: B m
P wr
2 8p 4 d0B: m P w r
3 5p 4 d7B: m P w r
=
=
=
=
3 3p 9 5
d B: m P w r
0 p1
d B2m
:
1 4p 2 d6B: m P w r
=
=
1 9p 8 1
d B: m P w r
2 6p 8 8
d B: m P w r
- 5 pd7B: mP w r
=
9 pd2B1 :m
=
=
P wr
=
=
P wr
- 4
=
P wr
8 pd7B0 :m
P wr
d Bm
d Bm
d Bm
9
d Bm
16
=
d Bm
23
d Bm
30
d Bm
37
d Bm
- 6
d Bm
=
-p 3
1 0 d9B: mP w r
=
-p 2
1 1d0B: m P w r
=
-p 11 1d1 B
: m P wr
=
0p 1d1 2
B :m
P wr
=
1
d Bm
Pw r
=
3p 1 1
d B5m
:
=
4p 1 1
d B6m
:
=
5p 1 d1B7m
:
=
6
p 1d1B8 :m
P wr
=
7p 1d1 9
B :m
P wr
=
8
d Bm
Pw r
=
1p01 2 d2B: m P w r
1
p 31 2d5 B
: m P wr
=
1p41 2 d
6B
: m P wr
=
15
=
P wr
1p71 2 d9B: m P w r
=
=
P wr
1p 1 2 d3B: mP w r
1p 8
1 3 d0B: mP w r
=
=
P wr
1p 2
1 2d4B: m P w r
1p 9
1 3d1B: m P w r
=
=
2
p 01 3d2 B
: m P wr
=
2p11 3 d
3B
: m P wr
=
22
d Bm
d Bm
P wr
=
2p31 3 d
5 B: m P w r
=
2p41 3 d6B: m P w r
=
2p 5
1 3 d7B: mP w r
=
2p 6
1 3d8B: m P w r
=
2
p 71 3d9 B
: m P wr
=
2p81 4 d
0B
: m P wr
=
29
d Bm
P wr
=
3p01 4 d
2 B: m P w r
=
3p11 4 d3B: m P w r
=
3p 2
1 4 d4B: mP w r
=
3p 3
1 4d5B: m P w r
=
3
p 41 4d6 B
: m P wr
=
3p51 4 d
7B
: m P wr
=
36
d Bm
p 148:
P wr
=
3p71 4 d
9 B: m P w r
=
3p81 5 d0B: m P w r
=
3 9
2000
6000
Figure 5 - S21, S11 and S22 after optimization
3000
4000
Frequency (MHz)
5000
6000
Figure 6 - Output Power vs. frequency at
p1: Pwr = 38 dBm
42
dB m
5000
DB(PT(PORT_2))[X,49] (dBm)
2 to 6 GHz thermal example
d Bm
d Bm
d Bm
d Bm
- 5
2
=
=
d Bm
38
=
=
=
=
3 6p 9d8 :B m P w r
d Bm
10
17
24
31
=
=
2 2p 8d4 :B m P w r
2 9p 9d1 :B m P w r
-p71 0 d
5B
: m P wr
3
=
=
=
- 6p 5d6 :B m P w r
1 pd6B3 :m
1 5p 7d7 :B m P w r
=
=
2 3p 3d5 :B m P w r
3 0p 4d2 :B m P w r
3 7p 4d9 :B m P w r
=
=
=
=
3 5
p 9d7B: m P w r
P wr
1 6p 2d8 :B m P w r
=
P wr
7 p d6B9m
:
2 1
p 8d3B: m P w r
2 8
p 9d0B: m P w r
-p 81 0d4 B
: m P wr
2 pd1B4 :m
=
=
=
=
- 7
p 5d5B: m P w r
0 p d6B2m
:
1 4
p 7d6B: m P w r
=
-p41 0 d8B: m P w r
2p 1d1 4
Bm
:
9p 1d2 1
Bm
:
1p61 2 d
8 B: m P w r
=
=
=
=
3 3p 4 5
d B: m P w r
1 1p 7 3
d B: m P w r
=
=
1 9p 3 1
d B: m P w r
2 6p 3 8
d B: m P w r
- 1p05 2 d: B m
Pw r
=
=
=
=
3 1p 9d3 :B m P w r
-p51 0 d
7 B: m P w r
1 2p 2 4
d B: m P w r
=
=
=
1 7p 7d9 :B m P w r
2 4p 8d6 :B m P w r
3 8p 1d0 0
Bm
:
- 2 pd1 0
Bm
:
=
=
=
3 9p 5d1 :B m P w r
- 4p 5d8 :B m P w r
3 pd6B5 :m
1 0p 7d2 :B m P w r
=
=
=
=
=
1 8p 3d0 :B m P w r
2 5p 3d7 :B m P w r
3 2p 4d4 :B m P w r
=
=
=
=
p 78:
p 85:
p 106:
- 3 pd9B: m P w r
=
=
P wr
P wr
p 43:
p 50:
p 57:
p 64:
p 71:
3000
P wr
P wr
p 29:
p 36:
p 113:
p 120:
p 127:
p 134:
p 141:
Pin=38 dBm after optimization
Figure 7 is a plot of transistor drain current as a function of frequency which indicates drain current
reduction of as much as 12% compared to the original design. Figure 8 indicates the temperature rise after
thermal optimization showing temperature decreases of as much as 35°C compared to the original design.
Drain Current versus Frequency
1800
p1
Temperature Rise
150
1600
p1
1200
|Icomp(I_METER.AMP2,0)|[X,49] (mA)
2 to 6 GHz thermal example
1000
800
50
p1: Pwr = 38 dBm
|Vcomp(V_METER.VM1,0)|[X,49] (V)
2 to 6 GHz thermal example
600
2000
3000
4000
Frequency (MHz)
5000
6000
Figure 7 - Drain current vs. frequency at
3250 MHz
132.5 V
100
Degrees C
Milliamps
1400
Pin of 38 dBm after optimization
0
2000
3000
4000
Frequency (MHz)
APPNOTE-006 Rev. C
5000
6000
Figure 8 - Transistor temperature rise
above Tcase after optimization
Copyright © 2009-2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and
the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective
owners and do not imply specific product and/or vendor endorsement, sponsorship or association. Cree Confidential and Supplied under
terms of the Mutual NDA.
4
p1: Pwr = 38 dBm
Cree, Inc.
4600 Silicon Drive
Durham, NC 27703
USA Tel: +1.919.313.5300
Fax: +1.919.869.2733
www.cree.com/wireless
Conclusion
This paper has shown a demonstration of how to use the self-heating feature of Cree’s large-signal GaN
HEMT models to calculate transistor temperature rise as a function of other parameters such as frequency
and RF power level. Specifically the self-heating engine has been used, via optimization, to lower transistor
temperature by minimizing Trise while maintaining output power.
Reference
Cree, Inc. proprietary large-signal model CGH40025F_r6 for Applied Wave Research’s Microwave
Office generated the results in this application note.
Copyright © 2009-2010 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and
the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective
owners and do not imply specific product and/or vendor endorsement, sponsorship or association. Cree Confidential and Supplied under
terms of the Mutual NDA.
5
APPNOTE-006 Rev. C
Cree, Inc.
4600 Silicon Drive
Durham, NC 27703
USA Tel: +1.919.313.5300
Fax: +1.919.869.2733
www.cree.com/wireless